МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ ДЕПАРТАМЕНТ НАУЧНО-ТЕХНОЛОГИЧЕСКОЙ ПОЛИТИКИ И ОБРАЗОВАНИЯ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«КРАСНОЯРСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ»

Институт инженерных систем и энергетики Кафедра «Теоретические основы электротехники»

«МЕТРОЛОГИЯ, СТАНДАРТИЗАЦИЯ И СЕРТИФИКАЦИЯ»

Методические указания к выполнению курсовой работы студентам всех форм обучения

Направление подготовки:

35.03.06 «Агроинженерия»

Профиль:

Электрооборудование и электротехнологии в АПК

Оглавление

Тема 1: Измерение активной мощности в трехфазных сетях электрических сетях	3
1.1 Методические указания при подготовке к занятиям	3
1.2 Краткие теоретические сведения	3
Пример расчета задания 1.1	6
Пример расчета задания 1.2	9

Тема 1: Измерение активной мощности в трехфазных сетях электрических сетях

1.1 Методические указания при подготовке к занятиям

При изучении темы особое внимание следует обратить на способы измерения мощности электрического тока. Измерение мощности в цепи переменного тока электродинамическим ваттметром.

Измерение активной мощности в цепи трехфазного тока методом одного, двух и трех ваттметров. Измерение мощности трехфазного тока с применением измерительных трансформаторов.

1.2 Краткие теоретические сведения

Активная мощность в электрической цепи измеряется прибором, называемым ваттметром, показания которого определяется по формуле:

$$P_{W} = \operatorname{Re}\left(\underline{U}_{W2} \underline{I}_{W1}\right) = U_{W2} \cdot I_{W1} \cdot \cos[\underline{U}_{W2} \cdot \underline{I}_{W1}],$$

где $U_{\rm W}$, $I_{\rm w}$ - векторы напряжения и тока, подведенные к обмоткам прибора.

Для измерения активной мощности всей трехфазной цепи в зависимости от схемы соединения фаз нагрузки и ее характера применяются различные схемы включения измерительных приборов.

Мощность в цепи трехфазного тока, в зависимости от схемы соединения фаз нагрузки и ее характера, может быть измерена с помощью *одного*, *двух* и *трех* ваттметров.

Для измерения активной мощности *симметричной трехфазной цепи* применяется схема *с одним ваттметром*, который включается в одну из фаз и измеряет активную мощность только этой фазы (рис. 1.1, a, δ). Активная мощность всей цепи получается путем умножения показания ваттметра на число фаз:

$$P = 3W = 3U_{\phi}I_{\phi}\cos(\varphi)$$
.

Схема с одним ваттметром может быть использована только для ориентировочной оценки мощности и неприменима для точных и коммерческих измерений.

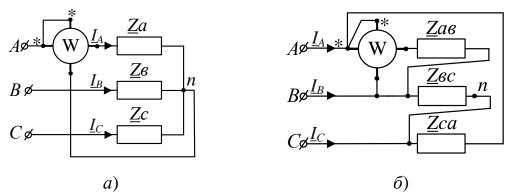


Рисунок 1.1 - Схемы включения ваттметров в трехпроводных сетях: a – с доступной нулевой точкой; δ – при включении потребителей

электроэнергии треугольником.

При *несимметричной* нагрузке активную мощность в *четырехпроводных трехфазных цепях* (при наличии нулевого провода) измеряют *тремя приборами* (рис. 1.2, *а*), в которой производится измерение активной мощности каждой фазы в отдельности, а мощность всей цепи определяется как сумма показаний трех ваттметров:

$$P_{W} = P_{W1} + P_{W2} + P_{W3} = U_{A}I_{A}\cos\varphi_{A} + U_{B}I_{B}\cos\varphi_{B} + U_{C}I_{C}\cos\varphi_{C}$$

$$A \not = W_{1} + W_{2} + P_{W3} = U_{A}I_{A}\cos\varphi_{A} + U_{B}I_{B}\cos\varphi_{B} + U_{C}I_{C}\cos\varphi_{C}$$

$$A \not = W_{1} + W_{2} + W_{3} + W_{4} + W_{5} + W_$$

Рисунок 1.2 - Схемы включения ваттметров:

a – в четырехпроводной цепи; δ – в трехпроводной цепи.

Для измерения активной мощности в *техпроводных трехфазных цепях* (при отсутствии нулевого провода) применяется *схема с двумя приборами* (рис. 2.2 б).

1.3 Задание 1

Цель работы: Изучить способы измерения активной мощности в цепи трехфазного тока электродинамическими ваттметрами методом двух и трех ваттметров.

Задание 1.1: Измерение активной мощности в трехфазной цепи при соединении приёмников по схеме треугольника

По данным варианта (табл. 1.1) для нормального режима работы цепи:

- 1) нарисовать схему соединения приемников и схему включения ваттметров в цепь;
 - 2) определить фазные и линейные токи;
 - 3) сделать проверку на баланс мощностей;
 - 4) определить показания ваттметров;
- 5) построить в масштабе векторную диаграмму, выделив на ней векторы напряжений и токов, под действием которых находятся параллельные и последовательные обмотки ваттметров;

Задание 1.2: Измерение активной мощности в трехфазной четырехпроводной цепи

При соединении этих же элементов по схеме звезда с нейтральным проводом:

- 1) нарисовать схему соединения приемников в звезду с нейтральным проводом и схему включения ваттметров в цепь, согласно рис. 1.4 (для всех вариантов)
 - 2) определить токи в линейных и нейтральном проводах;
 - 3) сделать проверку на баланс мощностей;

- 4) определить показания ваттметров;
- 5) построить в масштабе векторную диаграмму, выделив на ней векторы напряжений и токов, под действием которых находятся параллельные и последовательные обмотки ваттметров;
- 6) для обеих схем включения провести сравнительный анализ линейных токов и показаний ваттметров в расчетной трехфазной цепи для различных схем соединения и свести их в таблицу.

Таблица - Анализ линейных токов и показаний ваттметров

Схема соединения	Токи в л	инейных п	роводах,	Показание ваттметров,
приемника		A	Вт	
	$I_{ m A}$	$I_{ m B}$	$I_{ m C}$	$P_{ m W}$
Звезда				
Треугольник				

Схемы к заданию №1

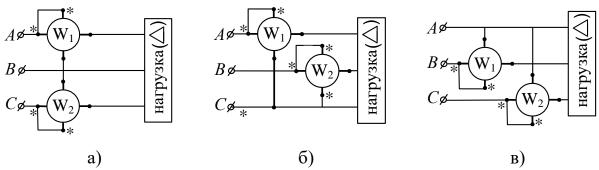


Рисунок 1.3 - Схемы включения ваттметров в трехпроводных сетях

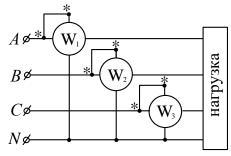


Рисунок 1.4 - Схемы включения ваттметров в четырехпроводной трехфазной цепи (цепь с нейтральным проводом)

Таблица	1.1-	Вариант	ы заданий	кз	аланию	No 1
таолица	T . T	Dapmani	л эаданин	1. 3	аданно	2 1-1

	№.		Параметры элементов электрической схемы								
Га	Ы	4		аза а (а	ne)	Ф	аза в (в	<i>sc</i>)	Ф	аза <i>с</i> (<i>с</i>	ea)
Bap-1	схемы	$U_{\scriptscriptstyle m I}, \ { m B}$	R_1 ,	X_{L1} ,	$X_{\rm C1}$,	R_2 ,	X_{L2} ,	$X_{\rm C2}$,	R_3 ,	X_{L3} ,	$X_{\rm C3}$,
BS	ઈ	В	Ом	Ом	Ом	Ом	Ом	Ом	Ом	Ом	Ом
1	2	3	4	5	6	7	8	9	10	11	12
1	Рис. 1.3,а	380	6	4	5	6	6	9	3	5	5
2	Рис. 1.3,6	220	10	2	0	20	0	0	0	20	0

	№.		Параметры элементов электрической схемы								
Га	PI 19	11	Фаза a (ae) Фаза e (ec)			Φ аза c (ca)					
вар-та	схемы	$U_{\scriptscriptstyle m I}, \ { m B}$	R_1 ,	X_{L1} ,	$X_{\rm C1}$,	R_2 ,	X_{L2} ,	$X_{\rm C2}$,	R_3 ,	X_{L3} ,	$X_{\rm C3}$,
BS	ં	Ъ	Ом	Ом	Ом	Ом	Ом	Ом	Ом	Ом	Ом
1	2	3	4	5	6	7	8	9	10	11	12
3	Рис. 1.3,в		40	4	0	10	18	7	0	10	0
4	Рис. 1.3,а	380	20	0	0	10	20	0	0	10	0
5	Рис. 1.3,б	220	10	20	0	30	30	0	0	40	0
6	Рис. 1.3,в	380	10	10	0	10	0	0	0	20	0
7	Рис. 1.3,а	220	20	0	-10	50	30	0	0	0	-40
8	Рис. 1.3,6	380	30	40	0	10	10	0	0	40	0
9	Рис. 1.3,в	220	40	30	0	40	0	0	0	30	0
10	Рис. 1.3,а	380	10	0	0	20	10	0	0	0	-20
11	Рис. 1.3,6	220	40	0	-30		40	0	0	50	0
12	Рис. 1.3,в	220	15	10	0	12	0	25	20	17	0
13	Рис. 1.3,а	380	30	0	20	25	20	0	20	0	30
14	Рис. 1.3,6	220	10	10	0	5	0	14	15	7	0
15	Рис. 1.3,в	220	17	0	20	15	15	0	5	0	30
16	Рис. 1.3,а	380	20	25	0	35	0	20	20	20	0
17	Рис. 1.3,6	220	5	0	20	10	14	0	18	0	8
18	Рис. 1.3,в	220	10	17	0	12	0	35	15	10	0
19	Рис. 1.3,а		0	0	25	7	35	0	17	0	20
20	Рис. 1.3,6	220	0	7	0	10	0	18	0	14	0
21	Рис. 1.3,в		10	0	35	15	5	0	30	0	14
22	Рис. 1.3,а	380	0	0	17	15	35	0	18	0	20
23	Рис. 1.3,6	380	18	0	7	0	35	0	30	0	20
24	Рис. 1.3,в	380	7	7	0	25	0	5	25	15	0

Пример расчета задания 1.1

Условие задачи.

К трехфазной линии с линейным напряжением $U_{\scriptscriptstyle \rm J}=220~{\rm B}$ подключен трехфазный приемник соединенный «треугольником». Активное и реактивное сопротивления фазы приемника соответственно равны:

$$R_1 = 40 \text{ Om}, \ X_{L1} = 20 \text{ Om}, \ R_2 = 30 \text{ Om}, \ X_{C2} = 30 \text{ Om}, \ R_3 = 80 \text{ Om}.$$

Требуется для цепи, представленной на рис. 1.3, а:

- 1) нарисовать схему соединения приемников и схему включения ваттметров в цепь;
 - 2) определить фазные и линейные токи;
 - 3) сделать проверку на баланс мощностей;
 - 4) определить показания ваттметров;

5) построить в масштабе векторную диаграмму, выделив на ней векторы напряжений и токов, под действием которых находятся параллельные и последовательные обмотки ваттметров;

Решение:

1) Чертим схему нагрузки, согласно заданию она соответствует рис. 1.5 и выбираем условное направление токов.

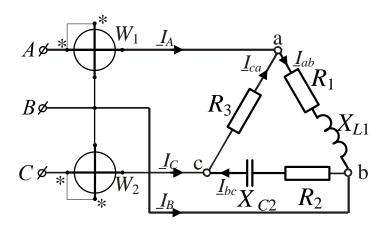


Рисунок 1.5 — Схема включения двух ваттметров для измерения мощности в трехпроводной сети при соединении фаз потребителя «треугольником»

2) Характер нагрузки:

фазы a — активно-индуктивная,

фазы b – активно- емкостная,

фазы c – активная.

Комплексные сопротивления фаз потребителя:

$$\begin{split} \underline{Z}_{ab} &= R_1 + jX_{L1} = 40 + j20 = \sqrt{40^2 + 20^2} \cdot e^{jarctg\frac{20}{40}} = 44,72e^{j26,6} O_{M}, \\ \underline{Z}_{bc} &= R_2 - jX_{C2} = 30 - j30 = \sqrt{30^2 + 30^2} \cdot e^{jarctg\frac{-30}{30}} = 44,42e^{-j45} O_{M} \\ \underline{Z}_{ca} &= R_3 = 80 = 80e^{j0^\circ} O_{M}. \end{split}$$

При соединении элементов по схеме в треугольник фазные напряжения увеличиваются до линейных. Для определения фазы напряжений за начало отсчета принимаем вектор напряжения в фазе А. Воспользуемся формулами:

$$\underline{U}_{AB} = \underline{U}_{ab} = \underline{U}_{A} - \underline{U}_{B} = 127 + 63.5 + j110 = 190.5 + j110 = 220e^{j30^{\circ}} \text{ B;}$$

$$\underline{U}_{BC} = \underline{U}_{bc} = \underline{U}_{B} - \underline{U}_{C} = -63.5 - j110 + 63.5 - j110 = -j220 = 220e^{-j90^{\circ}} \text{ B;}$$

$$\underline{U}_{CA} = \underline{U}_{ca} = \underline{U}_{C} - \underline{U}_{A} = -63.5 + j110 - 127 = -190.5 + j110 = 220e^{j150^{\circ}} \text{ B;}$$

Находим фазные токи по закону Ома.

Ток фазы *ab*:

$$\underline{I}_{ab} = \frac{\underline{U}_{ab}}{Z_{ab}} = \frac{220e^{j30^{\circ}}}{44,72e^{j26,56}} = 4,92e^{j3,44} = 4,91+j0,29 \text{ A}.$$

Ток фазы bc:

$$\underline{I}_{bc} = \frac{\underline{U}_{bc}}{\underline{Z}_{bc}} = \frac{220e^{-j90^{\circ}}}{42,43e^{-j45}} = 5,2e^{-j45} = 3,7-j3,7 \text{ A}.$$

Ток фазы са:

$$\underline{I}_{ca} = \frac{\underline{U}_{ca}}{Z_{ca}} = \frac{220e^{j150^{\circ}}}{80} = 2,75e^{j150} = -2,38 + j1,375 \text{ A}.$$

В соответствии с первым законом Кирхгофа, ток в линии А находится как:

$$\underline{I}_A = \underline{I}_{ab} - \underline{I}_{ca} = 4,91 + j0,29 + 2,38 - j1,37 = 7,29 - j1,08 = 7,37e^{-j8,4} \text{ A}.$$

Аналогичным образом находится ток в линии В

$$\underline{I}_B = \underline{I}_{bc} - \underline{I}_{ab} = 3,7 - j3,7 - 4,91 - j0,29 = -1,21 - j3,99 = 4,17e^{-j106,9}A.$$

Tок в линии C

$$\underline{I}_C = \underline{I}_{ca} - \underline{I}_{bc} = -2.38 + j1.375 - 3.7 + j3.7 = -6.08 + j5.07 = 7.9e^{j140.2}A.$$

3) Проверка решения:

Решение проверим с помощью уравнения энергетического баланса:

$$\underline{S}_{\Gamma} = \underline{S}_{\Pi}$$
.

Мощность, отдаваемая сетью

$$\underline{S}_{\Gamma} = \underline{U}_{A} \cdot \underline{I}_{A}^{*} + \underline{U}_{B} \cdot \underline{I}_{B}^{*} + \underline{U}_{C} \cdot \underline{I}_{C} =$$

$$= 127 \cdot 7,37 e^{j8,4} + 127 e^{-j120^{\circ}} \cdot 4,17 e^{j106,9} + 127 e^{j120^{\circ}} \cdot 7,9 e^{-j140,2} =$$

$$= 935,99 e^{j8,4} + 529,6 e^{-j13,1} + 1003,3 e^{-j20,2}$$

$$= 925,95 + j136,7 + 515,8 - j120 + 941,6 - j346,44 = 2383,35 - j329,74 \text{ B} \cdot \text{A}$$

Активная мощность, потребляемая трехфазной нагрузкой:

$$P_{\text{II}} = P_{ab} + P_{bc} + P_{ca}.$$

$$P_{\text{II}} = R_1 I_{ab}^2 + R_2 I_{bc}^2 + R_3 I_{ca}^2 = 40 \cdot 4,92^2 + 30 \cdot 5,2^2 + 80 \cdot 2,75^2 = 968,25 + 811,2 + 605 = 2384,45 \text{ BT}$$

Суммарная реактивная мощность

$$Q_{\Pi} = Q_{ab} + Q_{bc} = X_{L1}I_{ab}^2 - X_{C2}I_{bc}^2 = 20 \cdot 4,92^2 - 30 \cdot 5,2^2 = 484,13 - 811,2 \text{ B} \cdot \text{Ap}$$

Сравнив мощность отдаваемую источником и мощность, потребляемую трехфазной нагрузкой, видно, что энергетический баланс исследуемой цепи сошелся и, следовательно, задача решена верно.

4) Активная мощность трехфазной цепи равна сумме показаний двух ваттметров:

$$P_W = P_{W1} + P_{W2}$$

Активная мощность, показываемая ваттметром P_{W1} :

$$P_{W1} = U_{AB}I_A\cos\varphi_1 = 220 \cdot 7,37 \cdot \cos(30 + 8,4) = 1270,7$$
 Bt.

Активная мощность, показываемая ваттметром P_{W2} :

$$P_{W2} = U_{CB}I_C \cos \varphi_2 = 220 \cdot 7,9 \cdot \cos(90 - 140,2) = 1112,51$$
 Bt,

Следует обратить внимание, что берется напряжение \underline{U}_{CB} потому, что начало параллельной цепи ваттметра, отмеченное звездочкой подключено к фазе C, а не к B.

$$\underline{U}_{CB} = \underline{U}_C - \underline{U}_B = -\underline{U}_{BC} = 127e^{j120^{\circ}} - 127e^{-j120^{\circ}} =$$

= -63,5 + j110 + 63,5 + j110 = j220 = 220e^{j90°} B.

Найдем показания приборов:

$$P_W = P_{W1} + P_{W2} = 1270,7 + 1112,51 = 2383,2$$
 Bt.

5) Строим в масштабе векторную диаграмму, иллюстрирующую работу схемы включения ваттметров.

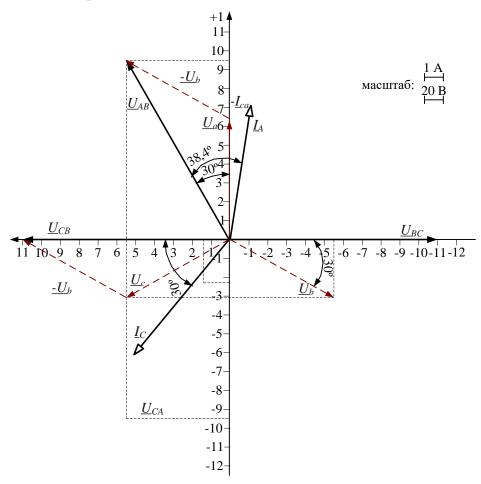


Рисунок 1.6 — Векторная диаграмма, иллюстрирующая работу схемы включения ваттметров, приведенную на рис. 1.5

Пример расчета задания 1.2

Условие задачи.

К трехфазной линии с линейным напряжением $U_{\pi} = 220$ В подключен трехфазный приемник соединенный «звездой» с нейтральным проводом. Активное и реактивное сопротивления фазы приемника соответственно равны:

$$R_1 = 40 \text{ Om}, X_{L1} = 20 \text{ Om}, R_2 = 30 \text{ Om}, X_{C2} = 30 \text{ Om}, R_3 = 80 \text{ Om}.$$

Анализ решения задачи:

1) Чертим схему нагрузки, если нагрузка несимметрична, то нужно включать три ваттметра, согласно заданию она соответствует рис. 1.7.

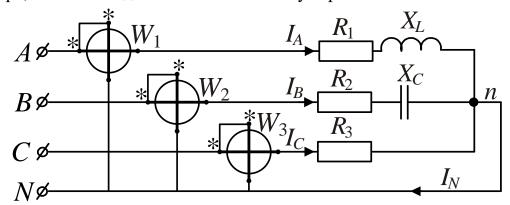


Рисунок 1.7 – схема соединения фаз потребителя «звезда» с нейтральным проводом

2. Комплексные сопротивления фаз потребителя:

$$\underline{Z}_a = R_1 + jX_{L1} = 44,72e^{j26.6} \text{ Om};$$

 $\underline{Z}_b = R_2 - jX_{C2} = 44,42e^{-j45} \text{ Om};$

$$\underline{Z}_c = R_3 = 80 = 80e^{j0^{\circ}}$$
 Om.

Если приемник соединен *звездой с нейтральным* (нулевым) проводом (рис. 2.7), а сопротивления линейных и нейтрального проводов пренебрежимо малы, то фазные напряжения приемника равны соответствующим фазным напряжениям генератора.

Определим действующее значение фазного напряжения

$$U_{\phi} = U_{\pi} / \sqrt{3} = 220 / \sqrt{3} = 127 \,\mathrm{B}.$$

Фазу вектора напряжения фазы А обычно выбирают равной нулю, поэтому фазные напряжения:

$$\underline{U}_{a} = \underline{U}_{A} = U_{\Phi}e^{j0} = 127e^{j0} = 127 \text{ B},$$

$$\underline{U}_{b} = \underline{U}_{B} = 127e^{-j120^{\circ}} = -63,5 - j110 \text{ B},$$

$$\underline{U}_{c} = \underline{U}_{C} = 127e^{j120^{\circ}} = -63,5 + j110 \text{ B}.$$

При соединении приемника в звезду токи линейные равны токам фазным и определяются по закону Ома:

$$\underline{I}_{A} = \underline{I}_{a} = \frac{\underline{U}_{a}}{\underline{Z}_{a}} = \frac{U_{\phi}e^{j0}}{\underline{Z}_{a}} = \frac{127}{44,72e^{j26,6}} = 2,84e^{-j26,6} = 2,54-j1,27 \text{ A},$$

$$\underline{I}_{B} = \underline{I}_{b} = \frac{\underline{U}_{b}}{\underline{Z}_{b}} = \frac{U_{\phi}e^{-j120^{\circ}}}{\underline{Z}_{b}} = \frac{127e^{-j120^{\circ}}}{42,42e^{-j45}} = 3e^{-j75} = 0,77-j2,9 \text{ A},$$

$$\underline{I}_{C} = \underline{I}_{c} = \frac{\underline{U}_{c}}{Z_{c}} = \frac{127e^{j120^{\circ}}}{80} = 1,59e^{j120^{\circ}} = -0,79 + j1,37 \text{ A}.$$

Ток нейтрального провода, в соответствии с первым законом Кирхгофа, находится как алгебраическая сумма токов

$$\underline{I}_N = \underline{I}_A + \underline{I}_B + \underline{I}_C = 2,54-j1,27+0,77-j2,9-0,79+j1,37 = 2,52-j2,8 = 3,77 \cdot e^{-j48} \text{ A}.$$

3) Проверка решения:

Активная мощность, потребляемая всеми фазами нагрузки, находится как сумма активных мощностей фаз, т.е.

$$P = P_a + P_b + P_c.$$

$$P = R_1 I_a^2 + R_2 I_b^2 + R_3 I_c^2 = 40 \cdot 2,84^2 + 30 \cdot 3^2 + 80 \cdot 1,59^2 = 322,624 + 270 + 202,25 = 794,87 \text{ BT}$$

Реактивная мощность трехфазной нагрузки находится как сумма реактивных мощностей

$$Q = Q_a + Q_b + Q_c.$$

В фазе c находится чисто активная нагрузка, поэтому $Q_c = 0$.

Реактивная мощность остальных фаз

$$Q = Q_a + Q_b = X_{L1}I_a^2 - X_{C2}I_b^2 = 20 \cdot 2,84^2 - 30 \cdot 3^2 = 161,31 - 270 = -108,7 \text{ B} \cdot \text{Ap}.$$

$$S_{\Gamma} = \underline{U}_{A} \cdot \underline{I}_{A} + \underline{U}_{B} \cdot \underline{I}_{B} + \underline{U}_{C} \cdot \underline{I}_{C} =$$

$$= 127 \cdot 2,84 e^{j26,6} + 127 e^{-j120^{\circ}} \cdot 3 e^{j75} + 127 e^{j120^{\circ}} \cdot 1,59 e^{-j120^{\circ}} =$$

$$= 360,68 e^{j26,6} + 381 e^{-j45} + 201,93 e^{j0^{\circ}}$$

=
$$322,6 + j161,27 + 269,4 - j269,4 + 201,93 = 793,94 - j108,1 B \cdot A$$

4) Активная мощность трехфазного приемника равна сумме показаний трех ваттметров:

$$P_W = P_{W1} + P_{W2} + P_{W3} = 322,5 + 269,4 + 201,93 = 793,83 \text{ Bt},$$

где $P_{\rm W1},\ P_{\rm W2},\ P_{\rm W3}$ — фазная мощность, показываемая ваттметрами $W_1,\ W_2\ W3,$ определяются как:

$$\begin{split} P_{W1} &= U_A I_A \cos \varphi_a = 127 \cdot 2,84 \cos(0 + 26,6) = 322,5 \; \; \text{Bt} \; ; \\ P_{W2} &= U_B I_B \cos \varphi_e = 127 \cdot 3 \cos(-120 + 75) = 269,4 \; \; \text{Bt} \; ; \\ P_{W3} &= U_C I_C \cos \varphi_c = 127 \cdot 1,59 \cos(120 - 120) = 201,93 \; \; \text{Bt} \; . \end{split}$$

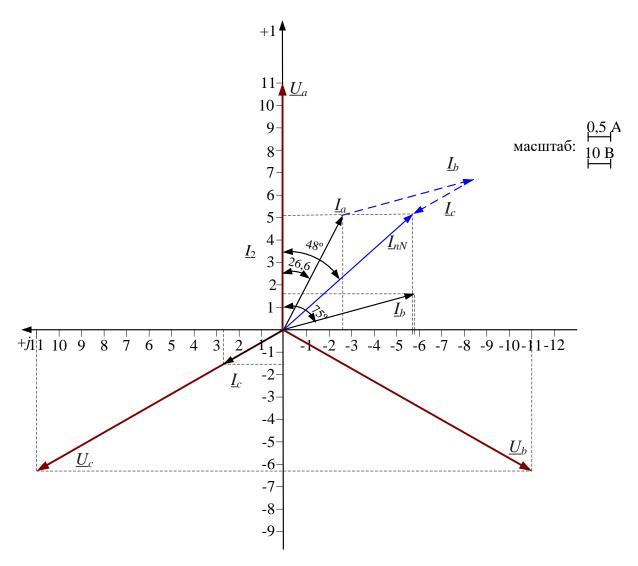


Рисунок 1.8 — Векторная диаграмма иллюстрирующая работу схемы включения ваттметров, приведенную на рис. 3.7

Сравнительный анализ линейных токов и показаний ваттметров в расчетной трехфазной цепи для различных схем соединения при заданных сопротивлениях в фазах приемника приводится в табл. 3.2.

Таблица 1.2 - Анализ линейных токов и показаний ваттметров

Схема соединения	Токи в л	инейных п	Показание ваттметров,	
приемника		A	Вт	
	$I_{ m A}$ $I_{ m B}$ $I_{ m C}$			P
Звезда	2,84	3	1,59	793,83
Треугольник	7,37	4,17	7,9	2383,2

Вывод: При соединении элементов приемника по схеме в треугольник - токи в линейных проводах увеличиваются на $\sqrt{3}$, а мощность в 3 раза, т. е. $P_{\Lambda}=3P$ \∠