МЕТОДИЧЕСКИЕ УКАЗАНИЯ К КУРСОВОЙ РАБОТЕ

Данная работа предназначена для углубления теоретических и практических знаний по курсу "Электроснабжение с основами электротехники". При выполнении данной работы студент овладевает навыками самостоятельного подхода к составлению и расчету простых схем электроснабжения, выбору материалов и оборудования по схемному решению, а также по обеспечению и безопасности электрических сетей.

В данных методических указаниях все необходимые справочные материалы представлены в виде приложений, что ввиду сложности поиска этих данных в существующей справочной, позволяет студенту более эффективно и оперативно выполнять поставленные задачи. Задания не привязаны к каким-то конкретным специальностям. Поэтому они могут быть использованы всеми студентами по направлению «Строительство».

Задание предусматривает расчет разных типов двигателей, что несколько усложняет работу, но позволяет избежать шаблона при расчетах и повышает уровень знаний студентов.

В работе использована типовая логика при подходе к решению аналогичных задач в практике строительства. Сначала формируется задание, затем выполняется схемное решение, после чего выполняется расчет. Работа заканчивается построением итоговой таблицы и составлением электрической схемы. В методических указаниях приведен порядок выполнения работы со ссылками на соответствующие разделы. Это в значительной степени помогает правильному выполнению работы.

Для более углубленного изучения данного раздела рекомендована учебная литература, приведенная ниже.

ЛИТЕРАТУРА

- 1. Кононенко В.В., Электротехника и электроника. Ростов на/Дону: Феникс, 2007.-778 с.
- 2. Воробъев А.В., Электротехника и оборудование строительных процессов. М.: Изд-во АСВ, 1995. 400 с.
- 3. Касаткин А.С., Немцов М.В., Электротехника. М.: Высшая школа, 2000. 542 с.
- 4. Немцов В.В., Электротехника и электроника. М.: Высшая школа, 2007. 705c.
- 5. Копылов И.П. Электрические машины. М.: Высшая школа, 2002. $609~\rm c.$

КУРСОВАЯ РАБОТА

При выполнении данной работы студент должен ознакомиться: с

- аппаратами управления электроприводом;
- графическим обозначением двигателей и элементов устройств управления;
 - основными аппаратами защиты электротехнических устройств;
 - основными принципами расчёта электрических сетей.

Вариант указывается преподавателем.

В задании требуется спроектировать и рассчитать силовую сеть с аппаратурой управления и защиты для указанных на плане производственного помещения электродвигателей, используемых в качестве электропривода технологического оборудования. Правильный расчёт силовой сети должен обеспечивать экономную, производительную и надёжную работу технологического оборудования с использованием электропривода.

Основные сведения необходимые для выполнения работы

1. Расчет электродвигателей

Расчет номинального тока электродвигателей является основой для всех последующих расчетов силовой сети.

Электродвигатель является основной частью электропривода.

Электроприводом называется часть машинного устройства, состоящая из электродвигателя, передаточного механизма к рабочей машине и аппаратуры управления.

Выбор электродвигателя производится по напряжению, роду тока, рабочим характеристикам, условиям среды, мощности и скорости вращения.

В данной работе в качестве электродвигателей рассматриваются:

- трёхфазные асинхронные двигатели с короткозамкнутым ротором, которые являются основными для нерегулируемого электропривода мощностью до 100 кВт, как самые простые, дешёвые и надёжные в эксплуатации;
- трёхфазные асинхронные двигатели с фазным ротором, которые следует применять в том случае, когда асинхронные двигатели с короткозамкнутым ротором не могут быть применены по условиям режима работы электропривода. Их используют в случае, когда требуется плавный разгон с тяжёлыми условиями пуска, а также в случае работы двигателя в

повторно-кратковременном режиме с большим числом пусков в час (подъёмные машины);

– электродвигатели постоянного тока, обеспечивающие в электроприводах плавное регулирование оборотов рабочей машины в широких пределах.

Приведённые в качестве электропривода рабочих машин трёхфазные асинхронные двигатели с короткозамкнутым ротором серии 4A предназначены для работы в различных условиях окружающей среды. Для данной серии предусмотрены различные модификации: двигатели с повышенным пусковым моментом, с повышенным скольжением, многоступенчатые.

Крановые асинхронные двигатели серии МТКF (с короткозамкнутым ротором) и МТF (с фазным ротором) предназначены для привода крановых механизмов общепромышленного назначения, а также других агрегатов, работа которых характеризуется кратковременными и повторнократковременными режимами работы и большими кратностями нагрузок.

Двигатели постоянного тока предназначены для работы в электроприводах крановых, экскаваторных и других механизмов в условиях повышенной влажности, запылённости и вибраций.

Промышленностью выпускаются двигатели, рассчитанные на три номинальных режима: продолжительный, кратковременный и повторнократковременный.

Под номинальной мощностью, указываемой в паспорте электродвигателя, следует понимать полезную механическую мощность, которую электродвигатель может отдавать на валу в течение времени, соответствующего его номинальному режиму.

Выбор номинальной мощности двигателей производится по условиям нагрева с учётом режима эксплуатации рабочих машин.

Номинальные мощности электродвигателей для механизмов длительной работы с постоянной нагрузкой при температуре воздуха не выше +35°C должны выбираться по статической нагрузке на валу механизма:

$$P_{H} \ge P_{PM} \,, \tag{1}$$

где P_{H} – номинальная мощность двигателя;

 $P_{{\scriptscriptstyle P,M}}$ — номинальная мощность рабочей машины на валу двигателя.

Номинальный ток рассчитывается по разным формулам, в зависимости от типа электродвигателей:

– для асинхронных двигателей
$$I_H = \frac{P_H}{\sqrt{3} \cdot U_H \cdot \cos \boldsymbol{\varphi}_H \cdot \boldsymbol{\eta}_H}$$
 (A); (2)

— для двигателей постоянного тока
$$I_H = \frac{P_H}{U_H \cdot \eta_H}$$
 (A), (3)

 $P_{\rm H}$ при расчетах берётся в Вт.

Характеристики электродвигателей выбираются по приложению 3.

2. Размещение и подключение электрооборудования

Расчет силовой сеть нельзя выполнять без плана размещения оборудования на территории цеха или участка с подключением его к силовым распределительным устройствам (силовым щитам). Подключение электрооборудования к силовым щитам определяется выбором схемы электроснабжения. Для цеховых сетей применяются радиальные и магистральные схемы электроснабжения. Для крупных объектов возможно использование комбинированных схем. При радиальной приёмники (электродвигатели) электроснабжения электроэнергии соединяются независимо друг от друга с источниками электропитания (силовые распределительные пункты, шкафы электропитания и др.). При этом электродвигатель соединяется с источником питания отдельным кабелем. Достоинством такой радиальной схемы является высокая надёжность.

При магистральной схеме электроснабжения однотипные электроприёмники подключаются к общей линии (шине, шиносборке). Это обеспечивает простоту и экономичность подключения, но связано с меньшей надёжностью и взаимозависимостью работы энергоприёмников.

В данной работе подключение электроприёмников осуществляется по радиальной схеме с помощью трёх- или четырёхжильных кабелей для асинхронных двигателей и двухжильных кабелей для двигателей постоянного тока. Прокладка кабелей осуществляется под землёй в газовых трубах или подвеской вдоль стен и опор.

Прокладка кабелей к типовому электроприводу осуществляется от источников электроснабжения вдоль стен. При этом кабель протягивается вдоль стены, а затем — перпендикулярно к ней до двигателя (см. рис. 3 приложение 11). Этим облегчаются доступность ремонта оборудования, замена кабеля и другие работы на производственной площади.

3. Выбор сечения кабелей

Выбор кабелей осуществляется по нагреву и условиям прокладки.

Двигатели группируются по типу или по характеру работы. Питание каждой группы осуществляется от отдельного силового распределительного устройства (шкаф электропитания). В данной работе

используются 3 таких устройства, подключённые в свою очередь к обмотке низкого напряжения, питающего трансформатора. Питающее напряжение объекта — 380/220В. Подвод энергии к силовым распределительным устройствам осуществляется с помощью трёх- или четырёхжильных кабелей, называемых линиями питания. Линия питания всего объекта часто называется вводом. Все кабели на схемах изображаются в однолинейном исполнении.

Одной из основных расчётных характеристик для двигателей с постоянной нагрузкой являются номинальная мощность. При этом мощность:

- а) для одиночного электродвигателя $-P_{H}$, (кВт);
- б) для группы из n однотипных двигателей, подключенных к одному распределительному устройству РУ:

$$P_{H.\Gamma P.} = K_c \cdot (P_{HI} + P_{H2} + ... + P_{Hn}), \quad (\kappa B_T)$$
 (4)

где K_c – коэффициент спроса, (принимается равным 0,9).

Выбор сечения производится по номинальному току (I_H) двигателя. В данной работе расчёт I_H производится, как уже указывалось, отдельно для асинхронных двигателей и двигателей постоянного тока. Для линий, от которых питаются группы двигателей, подключаемых к распределительным устройствам СУ, сечение кабелей подбирается по номинальным токам линий.

Исходя из значений номинальных токов, сечения трех- четырехжильных и двухжильных кабелей, берутся соответственно из таблиц приложений 6(1) и 6(2). При выборе расчетное значение округляется до ближайшего табличного значения (в большую сторону). При выборе учитывать данные для прокладки кабелей в земле.

Выбранное сечение кабеля проверяется на допустимое падение напряжения в нем (ϵ), которое не должно превышать 5%. Падение напряжения ϵ рассчитывается отдельно для каждого двигателя по формуле:

$$\xi = \frac{P_{\mathcal{H}} \cdot \mathbb{I}}{U_{\mathcal{H}}^2 \cdot \mathbf{y} \cdot S} \cdot 100 \tag{5}$$

где $P_{{\scriptscriptstyle H}}{\cdot}\ell$ – момент нагрузки ($P_{{\scriptscriptstyle H}}$ берётся в Вт);

 ℓ – длина кабеля в метрах от силового распределительного пункта до рассчитываемого двигателя;

 U_H – номинальное напряжение двигателя, В (прил. 3);

S — сечение жилы кабеля (провода), мм 2 ;

— удельная проводимость металла жилы кабеля ($_{\text{меди}} = 57 \text{ Om·m},$ $_{\text{алюминия}} = 35,6 \text{ Om·m}).$

В том случае, если $\varepsilon > 5\%$, сечение жилы кабеля берётся большим сечением (следующим по номиналу) и расчёт повторяется.

Тип и марка кабеля определяется по приложению 5. Для линий сечение кабеля подбирается по номинальному току линии (I_{π}).

4. Выбор пускозащитной аппаратуры

Для пуска двигателей чаще всего используются магнитные пускатели. Пускатель обеспечивает управление пуском и отключением двигателя и одновременно защищает двигатель от пониженного напряжения и перегрузки (в комплекте с тепловым реле).

Выбор пускателя и теплового реле для двигателей осуществляется по номинальному току и напряжению (приложение 9).

Для защиты электродвигателей и электрических сетей от токов короткого замыкания используются предохранители с плавкими вставками или автоматические выключатели защиты, устанавливаемые на распределительных пунктах и в силовых шкафах.

Номинальные токи защитных аппаратов должны быть минимальными, но не меньше расчётных, обеспечивая избирательность действия.

Величина номинального тока плавкой вставки $I_{\rm BC}$ предохранителя при подключении одиночного электродвигателя должна удовлетворять условию:

$$I_{BC} \ge \frac{I_{\Pi VCK}}{2.5} \ . \tag{6}$$

Значение пускового тока двигателя $I_{n_{VCK}}$ берется из приложения 3 или определяется по формуле:

$$I_{HYCK}=k_i\cdot I_H$$
,

где k_i – кратность пуска (приложение 3).

Для двигателей постоянного тока и крановых двигателей с фазным ротором (серия MT) $I_{\mathcal{BC}}$ выбирается по номинальному току $I_{\mathcal{H}}$.

Для защиты от токов короткого замыкания на линиях к группам электродвигателей и на линиях ввода, предохранители выбираются, исходя из расчётного тока линии $-I_{\it II}$ (формулы 8 или 9). Для этого предварительно определяется мощность линии $P_{\it Лин}$:

$$P_{JIJH} = P_1 + P_2 + P_3 + \dots + P_n \quad , \tag{7}$$

где P_1, P_2, P_3 и т.д. – мощности подключаемых данной к линии двигателей.

$$I_{\pi} = \frac{P_{\pi UH}}{\sqrt{3} \cdot U_{H} \cdot \cos \boldsymbol{\varphi}_{\pi}} - \text{для асинхронных двигателей;}$$
 (8)

$$I_{\pi} = \frac{P_{\pi MH}}{U_{H}}$$
 — для двигателей постоянного тока. (9)

Коэффициент мощности линии $\cos \varphi_{\pi}$ определяется по формуле:

$$\cos \boldsymbol{\varphi}_{\boldsymbol{M}} = \frac{P_1 \cdot \cos \boldsymbol{\varphi}_1 + P_2 \cdot \cos \boldsymbol{\varphi}_2 + \dots + P_n \cdot \cos \boldsymbol{\varphi}_n}{P_1 + P_2 + \dots + P_n}$$
(10)

Выбор предохранителей и плавких вставок к ним осуществляется по приложению 4, при этом берётся ближайшее (большее) стандартное значение плавкой вставки.

Для защиты линий от токов перегрузки используются тепловые реле или автоматические выключатели с комбинированными (электромагнитными и тепловыми) расцепителями. Выбор автоматических выключателей осуществляется по приложению 7. В основу выбора берётся номинальный ток расцепителя:

$$I_{HP} \ge I_{\pi}$$
,

при этом должно быть учтено также номинальное напряжение сети – U_{H} .

5. Компенсация реактивной мощности в линиях нагрузки

Использование асинхронных двигателей приводит к понижению коэффициента мощности цепи — $\cos \varphi$. Рациональное значение этого коэффициента должно быть ≥ 0.95 . Для повышения коэффициента мощности цепи ($\cos \varphi$) до данного значения могут быть использованы компенсаторы реактивной мощности, в качестве которых используются специальные статические конденсаторы (прил.10(1)). Наибольшая реактивная мощность цепи $Q_{\scriptscriptstyle M}$ может быть определена:

$$Q_{\scriptscriptstyle M} = P_{\scriptscriptstyle \Pi H H} \cdot tg \, \boldsymbol{\varphi}_{\scriptscriptstyle \Pi} \,, \tag{11}$$

где $P_{\text{лин}}$ – мощность линии (формула 7);

 $arphi_{\scriptscriptstyle \Pi}$ – угол сдвига фаз данной линии, определяется как $arccos\,arphi_{\scriptscriptstyle \Pi}$.

Мощность компенсатора при рациональном значении коэффициента мощности линии $\cos \phi_{\text{рац}} = 0.95$ определяется как:

$$Q_{K} = P_{\Pi U H} \cdot (tg \varphi_{PAU} - tg \varphi_{\Pi}), \qquad (\kappa BAp). \tag{12}$$

Количество и тип статических конденсаторов выбирается по приложению 10 и определяется по формуле:

$$n = \frac{Q_K}{Q_H} , \qquad (13)$$

где Q_H – номинальная мощность выбранного статического конденсатора (количество конденсаторов округлить в большую сторону).

6. Принципиальная электрическая схема объекта

На принципиальной электрической схеме производственного объекта кроме линии самой электрической цепи обозначены и элементы, такие как предохранители, автоматические выключатели, выключатели нагрузок (прил. 8), двигатели (прил. 1), а также источники электропитания, силовые распределительные устройства выпрямители. На линиях питания можно использовать варианты защиты электродвигателей: плавкие предохранители (FU) и магнитные пускатели с тепловым реле (КК), плавкие предохранители и автоматические выключатели (QF), имеющим тепловую защиту (>T°) или автоматические выключатели типа QF>IT°, с защитой от короткого замыкания и от перегрузки (тепловая защита). Магнитные пускатели могут применяться (на схеме показаны их силовые контакты КМ) с тепловым реле или без него.

В данной работе для защиты асинхронных двигателей с короткозамкнутым ротором, крановых двигателей серии МТК с к. з. ротором необходимо рассчитать и подобрать предохранители (FU) и тепловое реле (КК), а для защиты двигателей с фазным ротором серии МТ, двигателей постоянного тока и защиты линии ввода — автоматические выключатели (QF).

На схеме (рис. 1) указать номера двигателей, номиналы подобранных элементов управления и защиты.

Например:

- СУ 9521-12, СУ 9531-11;
- QF1 63 A; QF2 150 A и т.д.;
- FU1 10 A, FU2 25A и т.д.;
- KM1 ПМЕ-211; KM2 ПАЕ-511 и т.д.;
- KK1 I_H 6,3 A; KK2 I_H 40 A;
- номер двигателя вместо обозначения «М».

Выключатели нагрузки SF рассчитывать и подбирать не надо.

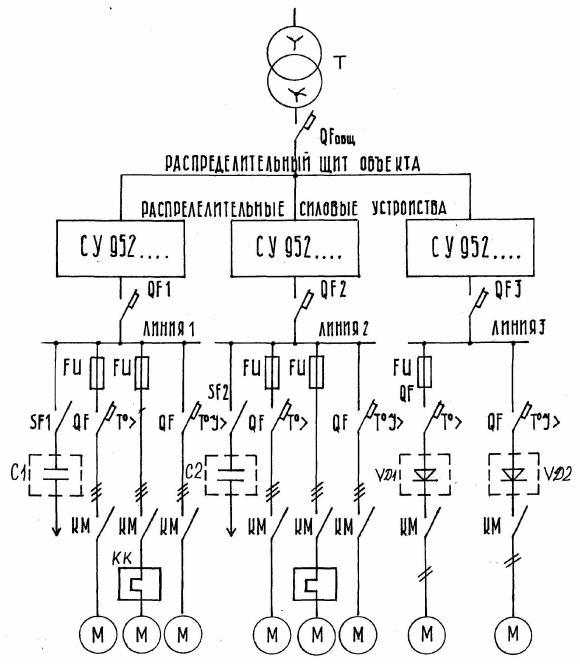


Рис.1. Принципиальная электрическая схема силовой сети промышленного объекта (пример)

Обозначения на схеме: T – силовой трансформатор, SF – выключатель нагрузки, KM – магнитный пускатель, KK – тепловое реле магнитного пускателя, C – конденсатор, FU – предохранитель плавкий, VD – выпрямитель, M – электродвигатель, QF – выключатель автоматический.

Обозначения автоматических выключателей по типу защиты:

Т°> – максимальной температуры (защита от перегрузки),

J > - максимального тока (защита от короткого замыкания),

Предложенная в качестве примера электрическая схема на рис.1 носит ориентировочный характер.

Порядок расчёта силовой сети производственного объекта

- 1. Согласно выданному заданию (№ варианта) нарисовать в масштабе производственное помещение (рис. 2, 3) с расположенными на нём двигателями (приложения 1 и 2). Условно указать вход в помещение (ворота).
- 2. В плане помещения нарисовать силовую сеть в однолинейном исполнении, обозначив места распределительных силовых устройств (РСУ, приложенире 8), учитывая возможность свободного доступа к ним и характер сосредоточения нагрузки (см. рис.3). Линейное напряжение сети 380 В.

Прокладку кабеля от РСУ до двигателя вести вдоль стены и затем перпендикулярно стене по кратчайшему расстоянию. Количество двигателей, подключаемых к одному РСУ не должно превышать 4. Двигатель постоянного тока должен быть подсоединен двухжильным кабелем через выпрямитель (VD) к отдельному РСУ. Питание всех РСУ осуществляется трехжильными кабелями.

3. Выписать из приложения 3 данные выбранных двигателей, рассчитать их номинальные токи $I_{\rm H}$ (3,4) и записать в таблицу 1 (таблицу представить в конце пояснительной записки).

Пример

Таблица 1

$\mathcal{N}_{\underline{0}}$	Тип	Номин.	Номи-		Крат-	Скорость	Номин.
двига-	двига-	мощн.,	нальн.	cosφ	ность	вращения,	ток,
теля по	теля	Рн, кВт	к.п.д.		пускового	(n_H) ,	A
плану					тока	об/мин	
					(пусковой		
					ток, А)		
21	4A112	5,5	0,85	0,87	7,0	2970	12
	М4У3						
63	MTK	1,4	0,61	0,66	15 A	875	5,3
	011-6		·				·
89	МП-12	2.5	0.80			1200	1.4
09	IVII I-12	2,5	0,80	_	_	1300	14

Для двигателей серии МТF и двигателей постоянного тока, в графе «Кратность пускового тока» принимается равной единице.

Технические данные выбранного двигателя постоянного тока привести в конце приведённой таблицы.

- 4. По приложению 4 для каждого двигателя подобрать предохранитель с током плавкой вставки $I_{\mbox{\tiny BC}}$, рассчитанным с учётом пускового тока (6).
- 5. По приложениям 5 и 6 выбрать марку и сечение кабеля для каждого двигателя. Кабели прокладываются в газовых трубах под землей.
- 6. Определить номинальные токи линий для групп двигателей, подключаемых к отдельным силовым распределительным пунктам. По полученным данным из приложения 4 подобрать предохранители с конкретными токами плавких вставок. Аналогично сделать это для общей линии (ввода).
- 7. Выбрать тип автоматического выключателя с указанием номинального тока расцепителя для всех линий (приложение 7).
- 8. Выбрать марку и сечение жилы кабелей для всех линий (приложения 5 и 6) по величине тока линии $I_{\rm Л}$ (8,9).
- 9. По величине тока линии выбрать тип силовых распределительных устройств с указанием типа и номинального тока (приложение 8).
- 10. Выбрать магнитные пускатели (приложение 9) для всех двигателей с указанием напряжения и максимально допустимого тока нагрузки.
- 11. Определить потери напряжения ε (%) для всех двигателей (5), ε не должен превышать 5%.
- 12. Определить компенсирующую реактивную мощность для асинхронных двигателей по линиям (11,12). Количество и тип статических конденсаторов выбирать по приложению 10 (определяется по формуле 13).
- 13. Нанести на схему силовой сети (приложение 11) места расположения двигателей, обозначения марки кабеля, количество жил, сечение и длину. Например, ВВГ 3 \times 2,5 (50 м). Указать тип силовых распределительных пунктов.
- 14. Нарисовать принципиальную электрическую схему силовой сети (пример на рис.1).
- 15. В пояснительной записке к работе указать конкретные данные по характеру силовой сети, принцип расчёта и выбор конкретных элементов электрической сети (марку и сечения кабелей, способ прокладки, принцип компоновки электрической сети).

В конце пояснительной записки представить в виде табл. 1 и 2 расчётные значения и выбранные элементы электрической сети.

ЛЗ СУ9521- 15-310	Л1 СУ9521- 15-310	94	30	16	№ двигателя (линии)
110	330	110	41,3	13	Расчётный ток, А
ABΒΓ 3x50	АВВГ 3x70	ВВБГ 2x10	AAIIIB 3x6	AAIIIB 3x16	Марка и сечение провода, кабеля
		0,9	1,9	1,2	Падение напряжения в линии
QF3 AB2M 4H-53-41	QF1 BA52-37	QF5 BA51-35	КМ3 ПАЕ-411 ТРП-60	KM1 IIME-211 TPH-40	Тип пускателя, теплового реле (автоматического выключателя)
120	400	125	50	16	Номинальный ток теплового реле (автоматического выключателя), А
I	I	I	FU3 IIH-2-60	FU1 IIH-2-60	№ и тип предохранителя
I	I	I	60	20	Номинальный ток плавкой вставки, А

приложения

Приложение 1

Варианты заданий

No	Название	Рази	меры	Номера двигателей
варианта	•	поме	щения	на плане
	помещения (цеха)	ав	ВС	производственного
1	2	3	4	помещения 5
1	Арматурный	60	84	9,20,30,44,55,64,80,96
2	Формовочный	70	72	17,42,51,55,60,67,88,95
3	Заготовка тяжёлой	80	120	5,9,16,19,45,63,84,90
	арматуры		120	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
4	Сварочный	40	120	3,14,22,28,31,72,83,92
5	Механический	90	96	20,33,36,42,51,73,82,94
6	Бетонный	80	72	3,12,31,41,44,73,81,96
7	Деревообрабатывающий	60	84	9,15,26,33,50,73,79,93
8	Панельных перекрытий	100	120	13,22,38,42,59,66,82,91
9	Ремонтно-механические	110	110	7,14,19,23,46,75,81,93.
	мастерские			
10	Арматурный	80	80	1,15,30,45,60,73,81,89
11	Формовочный	80	80	8,16,21,32,34,74,84,92
12	Заготовка тяжёлой	100	100	81,31,39,43,51,63,83,95
	арматуры			
13	Сварочный	80	80	1,15,30,45,60,73,81,89
14	Механический	60	60	2,8,36,42,4,51,73,82,93,
15	Бетонный	70	70	7,11,17,49,69,7283,98
16	Деревообрабатывающий	50	40	10,25,38,42,54,66,82,91
17	Панельных перекрытий	100	90	15,20,34,46,56,70,87,99
18	Арматурный	90	80	20,34,38,40,64,74,88,89
19	Сварочный	60	70	6,8,22,30,39,70,88,92
20	Механический	70	60	18,43,48,50,56,69,84,98
21	Бетонный	90	100	11,19,27,36,40,67,76,95
22	Деревообрабатывающий	50	60	4,13,24,37,52,68,76,99
23	Панельных перекрытий	120	90	18,20,26,32,42,65,79,99

Окончание приложения 1

$\mathcal{N}_{\underline{0}}$	Название	Рази	меры	Номера двигателей
варианта	производственного	поме	щения	на плане
	помещения (цеха)	ав	ВС	производственного
1	2	3	4	помещения 5
24	Ремонтно-механический	80	70	18,21,336,44,51,65,84,9
25	Арматурный	90	90	8.13.24,33.55.65,72,99
26	Формовочный	70	50	4,10,23,27,44,67,77,97
27	Арматурный	90	120	3,22,28,35,41,86,77,93
28	Сварочный	60	120	3,7,26,32,44,65,88,92
29	Механический	80	84	9,17,25,30,42,67,80,97
30	Бетонный	80	72	22,27,30,39,42,71,79,97
31	Деревообрабатывающий	80	120	8,21,29,33,48,68,77,90
32	Панельных перекрытий	100	60	9,15,21,33,37,68,82,92
33	Сварочный	90	96	19,35,41,47,54,72,81,91
34	Арматурный	60	84	17,29,33,37,47,74,83,93
35	Сварочный	40	96	12,17,27,38,51,70,80,94
36	Механический	60	96	12,20,25,35,45,63,78,99
37	Формовочный	80	60	23,26,28,31,47,68,88,93
38	Сварочный	50	120	10,18,24,35,40,69,84,93
39	Механический	80	90	20,25,28,30,39,70,83,93
40	Бетонный	120	96	3,20,39,44,49,71,80,90
41	Деревообрабатывающий	100	120	2,22,29,38,43,72,79,96
42	Панельных перекрытий	40	80	1,16,39,49,50,71,78,97
43	Арматурный	70	120	4,23,25,44,54,70,77,91
44	Формовочный	80	60	14,19,21,33,52,68,76,94
45	Деревообрабатывающий	40	96	15,20,24,30,54,67,79,90
46	Панельных перекрытий	90	84	16,26,29,37,55,66,80,89
47	Сварочный	96	84	17,21,31,34,48,65,84,92
48	Механический	120	60	3,20,39,44,49,71,80,90
49	Бетонный	80	120	9,15,21,33,37,68,82,92
50	Арматурный	120	90	3,22,28,35,41,86,77,93

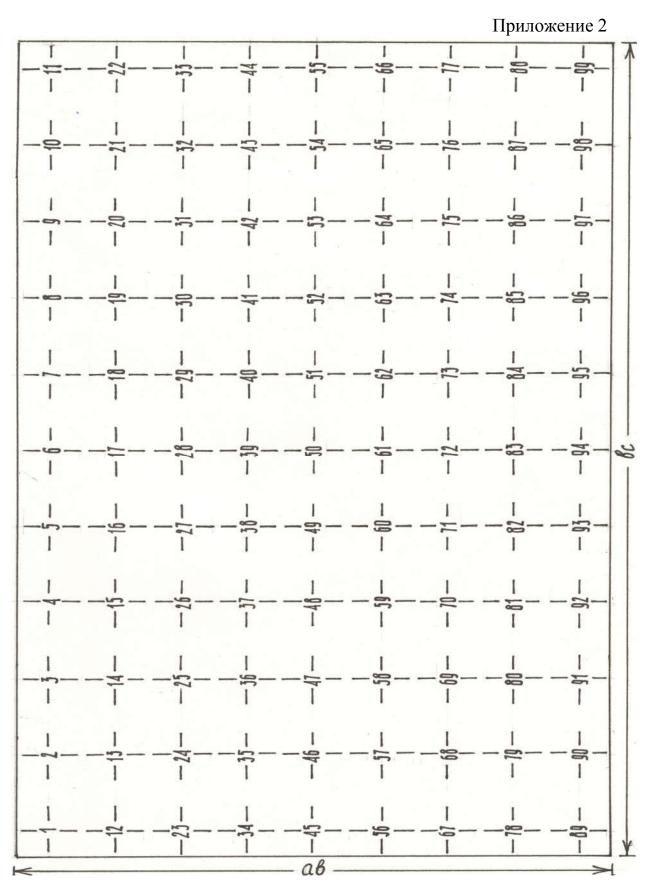


Рис.2. Схема размещения электродвигателей на плане помещения (цеха)

	Номер		Номин.				
ая	двига-		мощ-	Номин.		Крат-	n _{H,}
—)HE I'b	теля	Тип	ность,	к.п.д.,	cosφ	ность	об/мин
xpc oc			Рн, кВт	η _н	-	пуска,	
Синхронная скорость						\mathbf{k}_{i}	
1	2	3	4	5	6	7	8
	1	4410034770	5.5	0.07	0.01	0.5	2000
	1	4А100МУЗ	5,5	0,87	0,91	2,5	2880
	2	4А112М2У3	7,5	0,87	0,88	7,5	2990
	3	4A132M2Y3	11	0,88	0,9	7,5	2990
Н	4	4А16092УЗ	15	0,88	0,91	7,0	2940
3000 об/мин	5	4A160M2У3	18,5	0,88	0,92	7,0	2940
/90	6	4А180 2У3	22	0,88	0,91	7,5	2940
00	7	4A180M2У3	30	0,9	0,9	7,5	2945
300	8	4А200М2У3	37	0,9	0,83	7,5	2945
(,,	9	4А200 2У3	45	0,91	0,9	7,5	2945
	10	4А225М2У3	55	0,91	0,92	7,5	2945
	11	4А250 2У3	75	0,91	0,89	7,5	2960
	12	4А250М2У3	90	0,92	0,9	7,5	2960
	12	4 4 1 1 2 1 4 3 7 2	5.5	0.00	0.05	7.0	1 4 4 5
	13	4A112MY3	5,5	0,88	0,85	7,0	1445
	14	4A132 493	7,5	0,87	0,86	7,5	1455
	15	4A132M4Y3	11	0,87	0,87	7,5	1460
H	16	4A160 4Y3	15	0,88	0,88	7,0	1465
/мин	17	4A160M4Y3	18,5	0,89	0,88	7,0	1465
/90	18	4A180 4Y3	22	0,9	0,9	6,5	1470
500	19	4А180М4У3	30	0,91	0,9	6,5	1470
15(20	4А200 4У3	37	0,91	0,9	7,0	1475
	21	4A200M4У3	45	0,92	0,9	7,0	1475
	22	4А225 4У3	55	0,92	0,8	7,0	1480
	23	4А225М4У3	75	0,93	0,9	7,0	1480
	24	4А250 4У3	90	0,93	0,91	7,0	1480

Продолжение приложения 3

1	2	3	4	5	6	7	8
	25	4А132 6У3	5,5	0,85	0,8	6,5	965
	26	4А132М62У3	7,5	0,85	0,81	6,5	970
	27	4А160 6У3	11,5	0,86	0,86	6,0	975
-	28	4А160М6У3	15	0,87	0,87	6,0	975
ИИF	29	4А160М6У3	18,5	0,88	0,87	5,0	975
1000 об/мин	30	4А200 М6У3	22	0,9	0,9	6,5	975
0 0	31	4А200 6У3	30	0,9	0,9	6,5	980
00	32	4А225М6У3	37	0,91	0,89	6,5	980
	33	4А250 6У3	46	0,92	0,89	6,5	985
	34	4А250М6У3	55	0,92	0,89	6,5	985
	35	4А280 6У3	75	0,92	0,89	5,5	985
	36	4А280М6У3	90	0,93	0,89	5,5	985
	37	4А132М8У3	5,5	0,83	0,74	5,5	720
	38	4А160 38У3	7,5	0,86	0,75	6,0	720
	39	4A160М8У3	11	0,87	0,75	6,0	730
	40	4A180 М8У3	15	0,87	0,82	6,0	730
	41	4A800M8У3	18,5	0,88	0,84	5,5	735
	42	4А200 38У3	22	0,89	0,84	5,5	730
IMH	43	4A225M8У3	30	0,9	0,81	6,0	735
об/мин	44	4А250 8У3	37	0,91	0,83	6,0	735
	45	4А250 8У3	45	0,91	0,84	6,0	740
750	46	4А280М8У3	55	0,32	0,84	5,5	735
	47	4А280М8У3	75	0,92	0,85	5,5	735
	48	4А315 8У3	90	0,93	0,85	6,5	740
	49	4А112 М8У3	2,2	0,76	0,71	5,0	700
	50	4А112 М38У3	3,0	0,79	0,74	5,0	700
	51	4А132 8У3	4,0	0,83	0,7	5,5	720
				_	_		
	52	4А250 10У3	30	0,88	0,81	6,0	590
	53	4A250M10У3	37	0,84	0,81	6,0	590
) (54	4А280 10У3	37	0,91	0,78	6,0	590
009	55	4A280M10У3	45	0,91	0,78	6,0	590
90	56	4А315М10У3	55	0,92	0,75	6,0	590
	57	4А315М10У3	75	0,92	0,8	6,0	590
	58	4А355М10У3	90	0,93	0,83	6,0	590

Продолжение приложения 3

1	2	3	4	5	6	7	8
1	59	4А315 12У3	45	0,91	0,75	6,0	490
ИИН	60	4А315М12У3	55	0,91	0,75	6,0	490
0/v	61	4А355 12У3	75	0,91	0,76	6,0	490
500 об/мин	62	4A355M12У3	90	0,92	0,76	6,0	490

Продолжение приложения 3

$\underline{\mathit{Технические данные крановых двигателей}}$ серии MTK с к. з. ротором 50 Γ μ , Un = 380 B (при ΠB =40%)

Номер двигателя	Тип двигателя	Номин. мощ- ность, Рн, кВт	Номин. к.п.д., η н	cosφ _H	n _{н,} об/мин	I _{IIVCK} , A
1	2	3	4	5	6	7
63 64 65 66 67 68 69 70 71 72 73 74 75	MTK 011-6 MTK 012-6 MTK 11-6 MTK 112-6 MTK 211-6 MTK 311-6 MTK 312-6 MTK 421-6 MTK 412-6 MTK 311-8 MTK 312-8 MTK 44-8 MTK 442-8	1,4 2,2 3,5 5 7,5 11,5 15,0 22,0 30,0 7,5 11,5 15,0 22,0	0,61 0,67 0,72 0,71 0,75 0,77 0,81 0,82 0,73 0,73 0,78 0,8	0,66 0,69 0,79 0,74 0,77 0,76 0,78 0,79 0,78 0,71 0,74 0,71	875 880 885 895 880 880 890 935 935 690 700 695 700	15 22 35 53 78 190 205 275 380 95 150 185 295

13	Номер	Тип	Номин.	Номин.		n _{H,}
нна ТЪ	двига-	двигателя	мощность,	к.п.д., η н	COSΦH	об/мин
кро	теля		Рн, кВт			
Синхронная скорость						
1	2	3	4	5	6	7
	76	MT 011-6	1,4	0,61	0,65	885
	77	MT 012-6	2,2	0,64	0,68	890
1Н	78	MT 111-6	3,5	0,7	0,78	895
/WI	79	MT 112-6	5	0,75	0,7	930
1000 об/мин	80	MT 24-6	7,5	0,74	0,7	930
00	81	MT 311-6	11,5	0,79	0,6	945
10	82	MT 312-6	15,0	0,82	0,73	965
	83	MT 411-6	22,0	0,83	0,73	965
	84	MT 412-6	30,0	0,85	0,71	970
I	85	MT 311-8	7,5	0,73	0,68	685
09 4MF	86	MT 312-8	11,5	0,7	0,71	705
750	87	MT 411-8	15,0	0,81	0,67	710
0	88	MT 412-8	22,0	0,82	0,63	720

Окончание приложения 3

Технические данные двигателей постоянного тока

Номер	Тип	Номин. мощность,	Номин. к.п.д.,	Номин. напряжение,	Частота вращения n _{н.}
двигателя	двигателя	Рн, кВт	η _н	U_{H}	об/мин
1	2	3	4	5	6
89	MΠ – 12	2,5	0,80	220	1300
90	$M\Pi - 22$	5	0,82	440	1300
91	$M\Pi - 32$	7	0,82	440	900
92	$M\Pi - 42$	15	0,85	440	700
93	$M\Pi - 52$	33	0,89	440	650
94	$M\Pi - 62$	44	0.91	440	580
95	$M\Pi - 72$	53	0,92	440	580
96	$\Pi - 91$	19	0,81	220	600
97	$\Pi - 61$	6	0,84	220	1000
98	$\Pi - 81$	14	0,81	220	750
99	$\Pi - 52$	4,5	0,80	220	1000

<u>Параметры предохранителей типа ПН-2</u> <u>и номинальные токи плавких вставок</u>

Тип	Максимальный	Номинальные токи
предохранителя	ток предохранителя, А	плавких вставок, А
ПН-2-15	15	6,10,15
ПН-2-60	60	15,20,25,35,45,60
ПН-2-100	100	60,80,100
ПН-2-200	200	100,125,160,200
ПН-2-350	350	200,225,260,350
ПН-2-600	600	350,430,500,600
ПН-2-1000	1000	600,700,830,1000

Приложение 5

Марки кабелей, рекомендуемых для прокладки в земле (траншеях)

Область	Тип и марки кабелей			
применения	с медными жилами	с алюминиевыми		
		жилами		
1	2	3		
В земле (траншеях)	ПвБбШв, ВБбШв,	АПвБбШв, ААБнл,		
с низкой	ВБбШнг, ВВБ, ВВБГ,	ААБл, ААШв, ААШпс,		
коррозионной	ВБбШвнг	ААПл, АСБ		
активностью				

Примечания

- 1. Все кабели рассчитаны на номинальное напряжение до 1000 В.
- 2. Все указанные кабели выпускаются в трёхжильном и четырехжильном исполнении. В качестве защитного заземления и зануления может использоваться металлическая оболочка кабеля.
 - 3. Значение буквы или их сочетания:
 - A алюминиевая жила;
 - АС алюминиевая жила в свинцовой оболочке;
 - Б броня из двух стальных лент;
- Π броня из оцинкованных плоских проволок, поверх которых наложен защитный покров;
 - Γ отсутствие защитных покровов поверх брони или оболочки;
- Шв (Шп) защитный покров в виде выпрессованного шланга из поливинилхлорида (полиэтилена);

ААШв – кабель с алюминиевыми жилами в алюминиевой оболочке и защитным покровом в виде шланга из поливинилхлорида;

ААБв – кабели с выпрессованной оболочкой из поливинилхлорида (в) под бронёй из стальных лент (Б) с защитными покровами.

МШв — кабели с медными жилами в защитной оболочке в виде шланга из поливинилхлорида.

Марки кабелей с медными жилами обозначают как кабели с алюминиевыми жилами, но вместо обозначения AA используют обозначение М или буква A отсутствует (ААШв – кабель с алюминиевыми жилами, МШв – кабель с медными жилами; ABBГ – кабель с алюминиевыми жилами, BBГ – кабель с медными жилами).

Приложение 6(1)

Кабели и провода с алюминиевыми жилами с резиновой изоляцией в металлических защитных оболочках и кабели с алюминиевыми жилами с пластмассовой или резиновой изоляцией в свинцовой, пластмассовой или резиновой оболочках, бронированные и небронированные (до 1000 В).

Сечение	Токовые нагрузки кабелей и проводов, А				
провода,	Одножильный	Двухжильный		Трёхжильный	
S, mm ²	в воздухе	в воздухе	в земле	в воздухе	В
					земле
1	2	3	4	5	6
2,5	23	21	34	19	29
4	31	29	42	27	38
6	38	38	55	32	46
10	60	55	80	42	70
16	75	70	105	60	90
25	105	90	135	75	115
35	130	105	160	90	140
50	165	135	205	110	175
70	210	165	245	140	210
95	250	200	295	170	255
120	295	230	340	200	295
150	340	270	390	235	335
185	395	312	440	270	385

Кабели с медными жилами, с резиновой изоляцией в свинцовой в поливинилхлоридной, непритовой или резиновой оболочках, бронированные и небронированные

Сечение,	Токовые нагрузки кабелей и проводов, А				
S, mm ²	Провода и кабели, рабочее напряжение до 1000В				
	Одножильные	Двухжил	пьные	Трёхжи.	льные
		При прокладке			
	в воздухе	в воздухе	в земле	в воздухе	в земле
1	2	3	4	5	6
1,5	23	19	33	19	27
2,5	30	27	44	25	38
4	41	38	55	35	49
6	50	50	70	42	60
10	80	70	105	55	90
16	100	90	135	75	115
25	140	115	175	95	150
35	170	140	210	120	180
50	215	175	265	145	225
70	270	215	320	180	275
95	325	260	385	220	330
120	385	300	445	260	385
150	440	350	505	305	435
185	510	405	570	350	500
	Токовые нагрузки относятся к проводам и кабелям, как с				
	заземляющей жилой, так и без неё				

Приложение 7(1)

Краткие сведения основных автоматических выключателей

Тип	Номинальное	Номинальный ток
автомата защиты	напряжение, В	расцепителя, Ін, А
1	2	3
A 63	400	10; 12,5; 16; 20; 25
AK 50	400	0,6; 0,8; 1,0; 1,2; 2,5; 2,0; 2,5; 4,0; 5,0;
		6,0; 8,0; 10; 12,5; 15; 20; 30; 40; 50
AΠ – 50 3MT	500	1,5; 2,5; 4,0; 6,0; 10; 16; 25; 40; 50;63
AE2046	660	16; 20; 25; 31,5; 40; 50; 63; 80; 100

Окончание приложения 7(1)

Тип	Номинальное	Номинальный ток
автомата защиты	напряжение,	расцепителя,
	В	I_{H} , A
1	2	3
AE2056	660	16; 20; 25; 31,5; 40; 50; 63; 80; 100
BA51 - 25	660	3; 15; 4,0; 6,3;8,0; 10; 12,5; 16; 20; 25
BA51 - 35	660	16; 20; 25; 31,5; 40; 50; 63; 80; 100;
		125; 160; 200; 250
BA52 - 37	660	16; 20; 25; 31,5; 40; 50; 63; 80; 100;
		125; 160; 200;250; 320,400

Приложение 7(2) <u>Технические данные автоматических выключателей серии AB2M</u>

Тип	Максимальный	Номинальный ток
автоматического	ток	максимального
выключателя	выключателя,	расцепителя,
	I _H , A	I, A
1	2	3
AB2M 4H-53-41	250	120; 150; 250
AB2M 4C-55-41	400	120; 150; 200; 250; 300; 400
AB2M 10H-53-41	800	200; 250; 300; 400; 500; 630; 800
AB2M 10C-55-41	1000	600; 800; 1000
AB2M 15H-53-43	1200	600; 800; 1000; 1200
AB2M 15C-55-43	1500	500; 600; 800; 1000; 1200; 1500
AB2M 20H-53-43	2000	800; 1000; 1200; 1500; 2000

Приложение 8 <u>Силовые распределительные устройства серии СУ – 9500</u>

Тип	Кол-во	Номинал.	Тип	Кол-во	Номинал.
распределит.	автоматич.	ток	распределит.	авт.	ток
устройства	выключ.,	выключ.	устройства	выключ.,	выключ.,
	ШТ.	$I_{H,A}$		ШТ	I_{H} , A
1	2	3	4	5	6
СУ 9521-11	6	600	СУ 9523-12	4	1200
СУ 9521-12	2	600	СУ 9523-12	8	800
СУ 9521-14	4	800	СУ 9523-14	4	1200
СУ 9521-15	4	400	СУ 9531-11	6	600
СУ 9522-11	8	800	СУ 9532-11	8	800
СУ 9522-12	10	1000	СУ 9532-12	10	1000
СУ 9522-13	2	600	СУ 9533-11	12	1200
СУ 9522-16	4	800	СУ 9533-13	8	1200
СУ 9522-17	6	1000	СУ 9543-11	10	1400

Приложение 9(1) *Магнитные пускатели (исполнение реверсивное и нереверсивное)*

Марка магнитного пускателя	Токовая нагрузка, А Рабочее напряжение до 660 В	
1	2	
ПМЕ – 111	10	
ПМЕ – 113(рев)	10	
ПМЕ – 211	25	
ПМЕ – 213(рев)	25	
ПАЕ – 311	40	
ПАЕ – 313(рев)	40	
ПАЕ – 411	63	
ПАЕ – 413(рев)	63	
ПАЕ – 511	100	
ПАЕ – 513(рев)	100	
ПАЕ – 611	146	
ПМА – 160	160	
ПВН – 250	250	
ПМ 12 – 1001	120	
ПМ 12 - 1601	160	
КТ 6043	400	

Приложение 9(2)

Технические данные тепловых реле

Тип теплового реле	Максимальный ток	Номинальный ток
	теплового реле, А	нагревательного элемента
		теплового реле, А
1	2	3
TPH - 10	10	2,0; 2,5; 3,2; 4,0; 5,0; 6,3; 8,0; 10
TPH - 40	40	12,5; 16; 20; 32; 40
ТРП - 60	60	25; 30; 40; 50; 60
ТРП - 150	150	50; 60; 80; 100; 120; 150

$\underline{Texhuчeckue\ dahhыe\ mpёхфазныx\ конdенсаторов\ muna\ KM\ на\ напряжение} 0,23\ ...\ 0,525\ \kappa B$

Приложение 10(1)

Тип	Емкость	Мощность,
конденсатора	С, мкф	кВАр
1	2	3
KM-0,23-5-3	301	5
KM-0,23-3-3	223	3,7
KM-0,23-18-3	1125	18
KM-0,4-5-3	110	5,5
KM-0,4-7-3	140	7
KM-0,4-9-3	180	9
KM-0,4-36-3	726	36
KM-0,525-7-3	35	7,3
KM-0,525-9-3	105	9
KM-0,525-45-3	525	45

Примечание

Обозначение типа конденсатора содержит символы: К – косинусный; М – масляный; первое число – номинальное напряжение, кВ; второе – мощность, кВАр; третье – количество фаз.

Данные можно использовать в учебных целях.

Приложение 10(2)

Комплексные, конденсаторные установки

Тип установки	Напряжение, кВ	Номинальная реактивная мощн., кВАр
1	2	3
УКЛ(П)НО 38-150-50 УЗ	0,38	150
УКЛ(П)НО 38-380-50 УЗ	0,38	380
УКМ 0,38 -75 УЗ	0,38	75
УКТ 0,38 -75 УЗ	0,38	75
УКМ 0,38 – 150 УЗ	0,38	150
УКТ 0,38 – 150 УЗ	0,38	150
ККУ 0,38 – Мс БРВ2	0,38	160
УКМ 58 – 0,4 – 20 – 10 УЗ	0,4	20
УКМ 58 – 0,4 – 30 – 10 УЗ	0,4	30
УКМ 58 – 0,4 – 50 – 25 УЗ	0,4	50
УКМ 58 – 0,4 – 67 – 33,3 УЗ	0,4	67
УКМ 58 – 0,4 –100 – 33,3 УЗ	0,4	100
УКМ 58 – 0,4 – 150 – 30 УЗ	0,4	150
УКМ 58 – 0,4 – 180 – 30 УЗ	0,4	180
УКМ 58 – 0,4 – 200 – 33,3 УЗ	0,4	200
УКМ 58 – 0,4 – 300 – 33,3 УЗ	0,4	300
УКМ 58 – 0,4 – 402 – 67 УЗ	0,4	402
УКМ 58 – 0,4 – 603 – 67 УЗ	0,4	603

Приложение 11

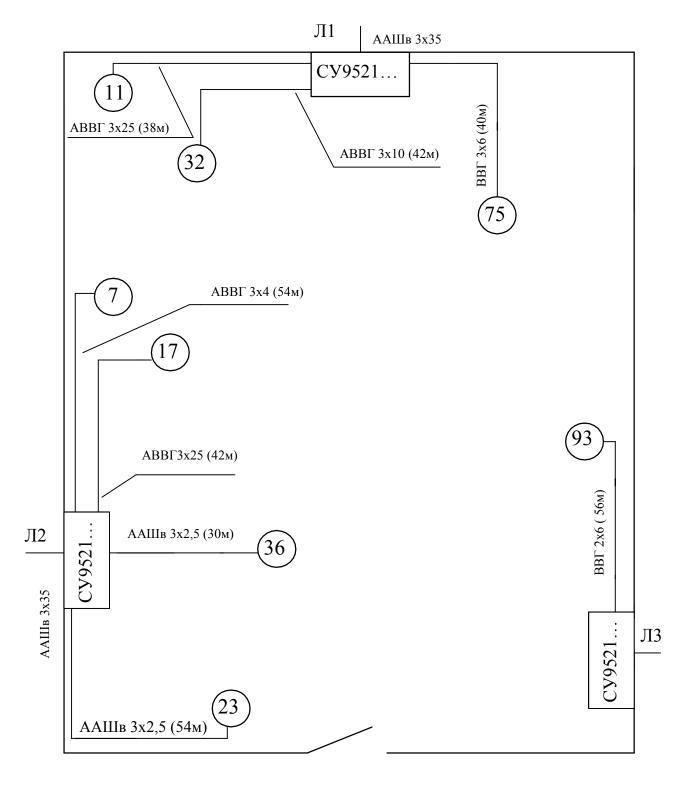


Рис.3. План размещения и подключения электродвигателей к силовым распределительным щитам (Пример)

Литература

- 1. Электротехнический справочник / под ред. В.Г. Герасимова. М.: Изд-во МЭИ, 2003. Т.1. 440 с.
- 2. Электротехнический справочник / под ред. В.Г. Герасимова. М.: Изд-во МЭИ, 2003. Т.2. 518 с.
 - 3. Электротехнический справочник / под ред. В.Г. Герасимова. –
- 4. М.: Изд-во МЭИ, 2004. T.3. 964 с. Электротехнический справочник / под ред. В.Г. Герасимова. М.: Изд-во МЭИ, 2004. T.4. 696 с.
- 5. ГОСТ 2.747-68 ЕСКД. Обозначения условные графические в схемах. Размеры условных графических обозначений.
- 6. ГОСТ 2.756-76 ЕСКД. Обозначения условные графические в схемах. Воспринимающая часть электромеханических устройств. ГОСТ 2.755-87 ЕСКД. Обозначения условные графические в электрических схемах. Устройства коммутационные и контактные соединения.
 - 7. Правила устройства электроустановок ПУЭ, издание 7, 2003.

Электроснабжение с основами электротехники

Методические указания по изучению курса для студентов заочного обучения и второго высшего образования направления подготовки — «Строительство»

Составитель: Захватов Г.И.