ВАРИАНТ 11

Задача 1

\bar{p} \bar{p}

Статика

Определение реакций опор двух уравновешенных балок, к которым приложена произвольная плоская система сил

Определить реакции опор A и B двух уравновешенных балок, а также усилия в соединительном шарнире C. Весом балок и трением в шарнирах пренебречь.

 P_1 –заданная сосредоточенная сила,

P = P' - пара сил,

М – момент заданной пары сил,

q - интенсивность равномерно распределенной нагрузки параллельных сил.

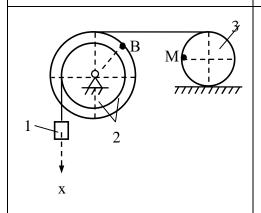
Распределенную нагрузку следует заменить эквивалентной сосредоточенной силой $Q=q \cdot l$, приложенной в середине участка длины l, на который она действует.

	Исходные		
(данные		
3			
3	$P_1 =$	1 H	
	P = P'	4 H	
	M =	2 HM	
	q_{max} =	2 H/M	
1	KE =	2 M	
,	α =	30 град	
	$\beta =$	60 град	
, 1	γ=	60град	
	a =	2 M	

Задача2 Кинематика точки

Определение скорости и ускорения точки по заданным уравнениям ее движения

Уравнения движения точки в плоскости xOy


$$x = -4t^2 + 1$$
 cm;
 $y = -3t$ cm.

Момент времени для вычислений $t_1 = 0.5$ с.

- 1. Определить уравнение траектории точки и построить ее на плоскости хОу.
- 2. Найти координаты точки x1, y1 в момент времени t1 и обозначить эту точку на траектории буквой M.
- 3. Найти проекции и модули векторов скорости \vec{V} и ускорения точки \vec{a} в момент времени t1.
- 4. Построить в точке М векторы скорости \vec{V} и ускорения точки \vec{a} , используя удобный для изображения масштаб величин.
- 5. Разложить полученный вектор ускорения \vec{a} на векторы касательного $\vec{a}_{\rm r}$ и нормального $\vec{a}_{\rm n}$ ускорений точки М. Сделать вывод о темпе ее движения (ускоренное или замедленное).
- 6. Аналитически найти величины касательного и нормального ускорений точки M, а также радиус кривизны траектории ρ в данной точке.

Задача 3 Кинематика твёрдых тел

Определение скоростей и ускорений тел механической системы при поступательном, вращательном и плоском движениях

По заданному уравнению движения груза 1 х=х(t) при указанных размерах блока и катка, соединенных нерастяжимыми нитями, определить: скорость и ускорение груза 1, скорость и ускорение точки В блока 2, а также скорость точки М катка 3. Изобразить на чертеже векторы скоростей и ускорений в заданный момент времени t1.

((t) = 10t²+{	8t+9 <i>с</i> м
$R_2 =$	40см
$r_2 =$	25 см
$R_3 =$	20 см
	1 -

Исходные

данные

ВАРИАНТ	11		
Задача 4	Динамика материальной точки	Применение основного уравнения динамики точки к определению уравнения прямолинейного движения тела x=x(t) в инерциальной системе отсчета.	
изменяюще	-	5 кг совершает прямолинейное движение под действием силы 3 начальный момент точка имела скорость V ₀ = 0.2 м/с. Во ск 1?	
	Теоремы динамики механической системы	Применение теоремы об изменении кинетической э системы (T) к определению скорости и ускорения гр	-
77777777	2 B	Механизм, изображенный на схеме и удерживаемый в равновесии, состоит из трех тел, соединенных нерастяжимыми нитями. В некоторый момент времени под действием сил тяжести груз 1 начинает опускаться. Определить скорость груза как функцию перемещения $V_1=V_1(S)$ и найти ее величину после того, как груз переместится на расстояние $S_1=2$ м. Считать, что каток 3 катится по шероховатой плоскости без скольжения, а его коэффициент трения качения $k=0.02R_3$.	Исходные данные $m_1=10\mathrm{Ke}$ $m_2=60\mathrm{Ke}$ $m_3=30\mathrm{Ke}$ $i_2=35\mathrm{cm}$ $R_2=40\mathrm{cm}$ $r_2=25\mathrm{cm}$ $R_3=20\mathrm{cm}$
Задача 6	Аналитическая статика	Принцип возможных скоростей в задаче о равновесии сил, приложенных к механической системе с одной степенью свободы	
y Am		Изображенный на рисунке механизм находятся в вертикальной плоскости в состоянии покоя под действием взаимно уравновешивающихся пары сил с заданным моментом М и силы тяжести груза Q. Определить <i>силу Q</i> , применяя принцип возможных скоростей и пренебрегая силами сопротивления.	Исходные данные $r_1 = 25 \ cm$ $r_2 = 30 \ cm$

 $r_3 = 40 \text{ cm}$ M = 100 Hm