МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ЖЕЛЕЗНОДОРОЖНОГО ТРАНСПОРТА

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САМАРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ»

Кафедра «Электроснабжение железнодорожного транспорта»

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ по выполнению расчетно-графической работы по дисциплине

«ЭЛЕКТРОТЕХНИЧЕСКОЕ МАТЕРИАЛОВЕДЕНИЕ»

для студентов специальности 23.05.05 «Системы обеспечения движения поездов», специализация «Электроснабжение железных дорог»

Составители: Е.В. Добрынин

А.С. Цветаева

И.А. Ефремова

Методические рекомендации по выполнению расчетно-графической работы по дисциплине «Электротехническое материаловедение» для студентов специальности 23.05.05 СОДП, специализация «Электроснабжение железных дорог» [Текст]/ составители:.Е.В. Добрынин, А.С. Цветаева, И.А. Ефремова. – Самара.: СамГУПС, 2019. – 20 с.

В методических рекомендациях приведены задание порядок расчета диэлектрических потерь В материалах, a теоретические вопросы также ДЛЯ дополнительного самостоятельного изучения.

Утверждены на заседании кафедры «Электроснабжение железнодорожного транспорта» 29 октября 2019 г., протокол № 2.

Печатается по решению редакционно-издательского совета университета.

Составители: Добрынин Евгений Викторович, к.т.н., доцент каф. ЭСЖТ;

Цветаева Анна Сергеевна, старший преподаватель каф. ЭСЖТ;

Ефремова Ирина Анатольевна, старший преподаватель каф. ЭСЖТ;

Рецензенты:

Табаков Олег Валентинович, к.т.н., доцент каф. ЭСЖТ; Лабунский Леонид Сергеевич, к.т.н., доцент ЭСЖТ

Подпис	ано в печать	Формат 60x84 1/16. Усл. печ. л	Тираж 100 экз.
Заказ №			

© Самарский государственный университет путей сообщения, 2019

Введение

Уровень развития любой области техники в значительной мере определяется номенклатурой и качеством используемых материалов. Благодаря развитию технологии производства материалов стало возможным практическое использование оптоволоконных линий связи, полупроводниковых лазеров, интегральных микросхем и многих других изделий электронной и электротехнической промышленности.

Электротехническими называются специальные материалы, из которых изготавливаются электрические машины, аппараты, приборы, элементы и модули электронных систем. Обычно электротехнические материалы делят на диэлектрические (электроизоляционные), проводниковые, полупроводниковые и магнитные.

В устройствах системы обеспечения движения поездов используются различные виды электротехнических материалов. Правильный их выбор для конкретных условий эксплуатации позволяет обеспечить надежную и долговечную работу устройств.

Для правильного применения и эксплуатации электротехнических материалов необходимо знать их свойства, а также зависимости этих свойств от приложенного напряжения, температуры, влажности и т. д. Величины, с помощью которых оцениваются те или иные свойства материалов, называют характеристиками или параметрами. Чтобы полностью оценить свойства того или иного электротехнического материала, необходимо знать его механические, электрические, тепловые и физико-химические характеристики. У магнитных материалов в первую очередь следует учитывать магнитные характеристики.

Выполнение данной расчетно-графической работы является базой для формирования у студентов компетенции:

ПКО-2 Способен использовать нормативно — технические документы для контроля качества и безопасности технологических процессов эксплуатации, технического обслуживания и ремонта систем обеспечения движения поездов, их модернизации, оценки влияния качества продукции на безопасность движения поездов, использовать технические средства для диагностики технического состояния систем;

Индикатор ПКО-2.4 Знает и применяет теоретические положения о классификации, свойствах и характеристиках материалов, для оценки их пригодности к использованию в составе оборудования СОДП, применяет способв подбора и эффективного использования материалов, нормы расхода материалов, запасных частей и электроэнергии при эксплуатации, техническом обслуживании и ремонте объектов СОДП;

ПКО-5 Способен проводить, на основе современных научных методов, в том числе при использовании информационно- компьютерных технологий, исследования влияющих факторов, технических систем и технологических процессов в области проектирования, эксплуатации, технического обслуживания и ремонта объектов системы обеспечения движения поездов;

Индикатор ПКО-5.4 Способен разрабатывать программы и методики испытаний объектов СОДП; разрабатывать приложения по внедрению результатов научных исследований в области СОДП.

В результате выполнения работы студент должен:

знать основные свойства электротехнических материалов, условия их применения: способы повышения эффективности применения основных электротехнических материалов в реальных условиях;

уметь определять основные характеристики электротехнических материалов, выбирать электротехнические материалы для различных условий их применения, анализировать причины изменения технико — эксплуатационных свойств электротехнических материалов;

владеть методами и средствами контроля и определения основных характеристик электротехнических материалов, методами выбора электротехнических материалов для различных условий их применения.

1 Содержание и оформление

Расчетно-графическая работа состоит из пояснительной записки и графического материала.

Все документы должны оформляться в соответствии с требованиями государственных стандартов.

1.1 Пояснительная записка

Структурными элементами пояснительной записки являются:

- титульный лист;
- содержание;
- введение;
- 1 задание;
- 2 задание;
- 3 задание;
- 4 задание;
- заключение
- список использованных источников;

Объем пояснительной записки составляет 20-30 страниц формата А4 машинописного текста. Каждая структурная часть начинается с новой страницы.

Пояснительная записка оформляется в соответствии с:

- ГОСТ 7.1-2003 Система стандартов по информации, библиотечному и издательскому делу. Библиографическая запись. Библиографическое описание. Общие требования и правила составления;
- СТБ 7.204-2006. СИБИД. Издания книжные. Общие технические условия.

1.2 Графическая часть

Графический материал включает демонстрационные плакаты (чертежи), а также графики и рисунки в записке, поясняющие содержание текста.

2 Требования к структурным элементам

2.1 Титульный лист

Титульный лист является первой страницей пояснительной записки и оформляется по форме, приведенной в Приложении А. Титульный лист является составной частью записки, но номер страницы на нем не ставится. Следующая за ним страница нумеруется цифрой 2.

2.2 Содержание

Содержание включает:

- введение, наименование всех разделов, подразделов, пунктов (если они имеют наименование) с указанием присвоенной нумерации;
- заключение;
- список использованных источников;
- заключение;
- все приложения с указанием присвоенных им обозначений и заголовков.

2.3 Введение

Введение должно содержать:

- оценку современного состояния решаемой научной проблемы, обоснование и формулировку практической значимости исследования для профессиональной сферы студента;
 - методы выполнения задачи с учетом современного развития науки и техники;
 - актуальность и новизна работы.

2.4 Основная часть

Основная часть должна содержать данные, отражающие существо, методику и результаты выполненной работы. К ним относятся: выполнение трех заданий и письменные ответы на четыре вопроса. Все эти части должны составлять единое целое и изложены в строгой последовательности.

2.5 Заключение

Заключение должно содержать краткие выводы по всем разделам работы;

2.6 Список использованных источников

Список должен содержать сведения об источниках, использованных при выполнении работы и на которые сделаны ссылки в пояснительной записке. Литературу следует располагать по мере появления ссылок в тексте. Пример оформления списка приведен в Приложении Б (ГОСТ 7.1 - 2003. Система стандартов по информации, библиотечному и издательскому делу. Библиографическая запись. Библиографическое описание. Общие требования и правила составления описание документа). Список должен содержать не менее 5 источников, в том числе иноязычные источники и электронные ресурсы.

Внутритекстовые ссылки на использованные источники следует приводить в квадратных скобках, указывая порядковый номер по списку использованных источников.

Например: « ...в литературе [2] приведено ... », или « ... согласно [4] производим...».

3 Правила оформления проекта 3.1 Общие требования

Пояснительная записка расчетно — графической работы должна быть выполнена на одной стороне белой бумаги формата A4 (210x297) мм. Записка выполняется с использованием шрифта Times New Roman черного цвета и межстрочным интервалом печати — 1,5.

Текст проекта следует оформлять, соблюдая следующие размеры полей: левое - 30 мм, правое - 10 мм, верхнее, левое, нижнее - 20 мм, абзац выделяется от начала строки 1,25 см.

Заголовки структурных элементов работы и разделов основной части располагаются в середине строки без точки в конце и пишутся прописными буквами. Заголовок отделяется от текста 1 пустой строкой, заголовок отделяется от подзаголовка 1 пустой строкой.

3.2 Нумерация страниц

Страницы пояснительной записки нумеруются арабскими цифрами сквозной нумерацией по всему тексту. Номер страницы проставляется в центре нижней части листа без точки. Титульный лист включается в общую нумерацию страниц, номер страницы на нем не проставляется. Иллюстрации и таблицы, расположенные на отдельных листах, и распечатки с ПЭВМ на листе формата А3 включают в общую нумерацию страниц и учитывают как одну страницу.

3.3 Нумерация разделов и подразделов

Нумеруются арабскими цифрами и записываются с абзацного отступа. Разделы должны иметь порядковую нумерацию в пределах всего текста, за исключением приложений. Пример - 1, 2, 3 и т.д. Подразделы нумеруются в пределах раздела. Номер

подраздела включает номер раздела и подраздела, разделённые точкой. Например, 1.1, 1.2, 1.3 и т.д. После номера раздела и подраздела в тексте точку не ставят.

3.4 Иллюстрации, диаграммы и графики

Иллюстрации выполняются на отдельных листах белой непрозрачной бумаги формата A4. Располагать иллюстрации следует сразу же после их упоминания в тексте или на следующей странице. Слова «Рисунок 1 - Наименование» помещают после пояснительных данных и располагают по центру.

Нумеруются иллюстрации арабскими цифрами порядковой нумерацией в пределах всей пояснительной записки или в пределах разделов.

3.5 Таблицы

Таблицы используются в качестве наглядного материала при сравнении показателей, которые не могут быть представлены в виде зависимости. Название таблицы в полной мере должно соответствовать ее содержанию. Название указывается над таблицей слева, без абзацного отступа в одну строку с ее номером через тире: «Таблица 1 — Наименование», при этом точку после номера таблицы и наименования не ставят. При переносе части таблицы на другую страницу название приводят только над первой частью таблицы, а далее «Продолжение таблицы 1».

3.6 Формулы и уравнения

Формулы и уравнения отделяются от текста сверху и снизу пустыми строками. После формул, а также уравнений с числовыми подставками указываются знаки пунктуации: точки, запятые и точки с запятой. Формулы нумеруются порядковой нумерацией в пределах всей записки арабскими цифрами в круглых скобках в крайнем правом положении на строке либо в пределах каждого раздела. Если уравнение не помещается на одной строке, его можно перенести на следующую знаком равенства (=) или после знаков плюс (+), минус (-), умножения (х), деления (:), повторяя знак в начале следующей строки.

Числовые коэффициенты и символы, входящие в формулы и уравнения, расшифровываются в виде перечислений через точку с запятой в последовательности, в которой они записаны в уравнении. Расшифровка начинается с новой строки с абзацного отступа со слова «где» (без двоеточия) с первым символом в этой же строке.

Формулы с числовыми значениями пишутся в отдельной строке и не нумеруются. Размерности величин, входящих в формулу, следует указывать в одном из следующих вариантов:

- после текста расшифровки символа через запятую;

- после числового значения физической величины, указанного в строке расшифровки;
- после получения результата в формуле с числовой подстановкой величин, входящих в нее.

Задание №1

Провод длиной L из металла M был смонтирован при температуре T_1 , через некоторое время температура изменилась до T_2 . При измерениях оказалось, что длина провода увеличилось на р%, а удельное сопротивление стало ρ_2 .

Рассчитать при какой температуре был произведен монтаж провода? Исходные данные приведены в табл.1

Методические указания к решению задачи

Удельное сопротивление, следовательно, и сопротивление металлов, зависит от температуры, увеличиваясь с ее ростом. Температурная зависимость сопротивления проводника объясняется тем, что:

- возрастает интенсивность рассеивания (число столкновений) носителей зарядов при повышении температуры;
 - изменяется концентрация носителей зарядов при нагревании проводника.

Таблица 1 - Исходные данные

N11*	N1* Металл М	α_{l}	ρ ₀	$\alpha_{ ho}$	ρ_2		N2*	p
INI.		10-6	$Om \cdot m/mm^2$	K ⁻¹	Ом·м/мм ²		11/2	%
0	Вольфрам	4,3	0,055	0,0045	0,14		0	0,06
1	Медь	16,6	0,0175	0,004	0,018		1	0,01
2	Серебро	19,5	0,016	0,0035	0,019		2	0,04
3	Алюминий	22,2	0,028	0,0042	0,031		3	0,02
4	Титан	8,6	0,65	0,0035	0,685		4	0,03
5	Золото	14,2	0,023	0,0036	0,026		5	0,08
6	Сталь	13	0,12	0,006	0,123		6	0,09
7	Платина	9	0,0981	0,0035	0,15		7	0,07
8	Латунь	18,7	0,05	0,002	0,054		8	0,1
9	Бронза	18	0,03	0,004	0,033		9	0,05

^{* –} N1 – последняя цифра шифра, N2 – предпоследняя цифра шифра

Опыт показывает, что при не слишком высоких и не слишком низких температурах зависимость удельного сопротивления проводника от температуры выражается формулами:

$$\rho_{T} = \rho_{0}[1 + \alpha_{\rho}(T - T_{0})],$$
 (1)

где ρ_0 , ρ_T — удельные сопротивления вещества проводника соответственно при 20 °C и T °C;

 α_{ρ} — температурный коэффициент сопротивления, измеряемый в СИ в Кельвинах в минус первой степени (K^{-1}).

Изменение сопротивления проводника при нагреве происходит еще и за счет его растяжения, но поскольку оно дает эффект для большинства (кроме термостабильных проводников) на несколько порядков меньше, чем вышеуказанные причины, то им обычно в расчетах пренебрегают.

Однако изменение длины проводов при нагревании и охлаждении следует учитывать при механических расчетах. Степень увеличения или уменьшения первоначального размера металла при изменении температуры на один градус характеризуется коэффициентом линейного расширения α_l .

Таким образом, длина провода после изменения температуры от $T_1{}^0\!C$ до $T_2{}^0\!C$ составит:

$$1_{T2} = 1_{T1} [1 + \alpha_1(T_2 - T_1)], \tag{2}$$

где l_{T1} , l_{T2} — длины провода при температурах T_1 и T_2 соответственно, α_l — коэффициент линейного расширения.

Поскольку в формулах расчет производится через разницу температур, то можно использовать температурную шкалу как в Кельвинах, так и в Цельсиях.

Задание №2

К образцу прямоугольной формы из диэлектрического материала размерами $a \times b$ и толщиной h прикладывается напряжение U. Напряжение подводится к граням ab, покрытым слоем металла. Требуется определить: ток утечки, мощность потерь, удельные потери на постоянном токе.

Затем к образцу прикладывается переменное напряжение с действующим значением U. Требуется определить мощность потерь и удельные диэлектрические потери при частотах f_1 , f_2 , f_3 .

Таблица 2 - Исходные данные

Вели-	Ед. изм.		Номер варианта								
чина	ъд. изм.	0	1	2	3	4	5	6	7	8	9
по предпоследней цифре шифра											
a	MM	250	300	350	400	450	500	550	600	650	700
b	MM	100	150	200	250	300	350	400	450	550	500
h	MM	0,8	1	1,5	1,2	1,3	1,4	1,5	1,6	1,7	1,8
U	кВ	0,6	0,7	0,8	0,9	1	1,1	1,2	1,3	1,4	1,5
f_1	Гц	10	20	30	40	50	60	70	80	90	100
f ₂	кГц	1	2	3	4	5	6	7	8	9	10
f_3	МΓц	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1

по последней цифре шифра											
3		2	2,05	2,1	2,15	2,2	2,25	2,3	2,35	2,4	2,45
ρ	×10 ¹⁶ Ом·м	0,5	1	1,5	2	2,5	3	3,5	4	4,5	5
ρs	×10 ¹⁶ Ом·м	1	2	3	4	5	6	7	8	9	10
tgδ	×10 ⁻⁴	2	2,1	2,2	2,3	2,4	2,5	2,6	2,7	2,8	2,9

Методические указания к решению задачи

В цепях постоянного напряжения через диэлектрик протекает незначительный ток, обусловленный движением свободных зарядов. Он называется током сквозной проводимости и током утечки. Ток утечки равен сумме объемного Iv и поверхностного Is токов:

$$I = Iv + Is. (3)$$

Токи Iv и Is можно определить по закону Ома:

$$I_V = \frac{U}{R_V} \qquad I_S = \frac{U}{R_S}, \tag{4}$$

где $R_V = \rho \cdot \frac{h}{a \cdot b}$ — объемное сопротивление образца; $R_S = \rho_S \cdot \frac{h}{2 \cdot (a+b)}$ — поверхностное сопротивление образца.

Диэлектрическая проницаемость ε позволяет определить способность диэлектрика образовывать электрическую емкость. Емкость плоского конденсатора C с двумя металлическими обкладками прямо пропорциональна диэлектрической проницаемости материала, заключенного между обкладками:

$$C = \varepsilon_0 \varepsilon \frac{s}{h},\tag{5}$$

где h – толщина диэлектрика, м;

 $S = a \cdot b$ – площадь одной обкладки, м²;

 $\varepsilon_0 = 8.85 \cdot 10^{-12} \, \Phi/\text{м} -$ электрическая постоянная.

Диэлектрическая проницаемость є зависит от интенсивности процессов поляризации, протекающих в диэлектриках под воздействием внешнего электрического поля. Различают четыре основных вида поляризации: электронную, дипольную, ионную и спонтанную.

Активная мощность, выделяющаяся в проводнике, не зависит от характера напряжения – она одинакова как при действии постоянного напряжения, так и

действующего значения переменного. Если такой же опыт провести с диэлектриком, то мощность при переменном напряжении будет больше.

Активную мощность, выделяющуюся в диэлектрике при постоянном напряжении, можно определить по формуле:

$$P = U \cdot I, \tag{6}$$

где U – постоянное напряжение, приложенное к диэлектрику, B;

I – ток утечки через диэлектрик, A.

При переменном напряжении активная мощность выделившаяся в диэлектрике определяется по формуле:

$$P = U^2 \cdot 2\pi \cdot f \cdot C \cdot tg\delta, \tag{7}$$

где U – действующее значение переменного напряжения, приложенного к диэлектрику, B;

f – частота, Γ ц;

C – ёмкость образца, Φ ;

 $tg\delta$ – тангенс угла диэлектрических потерь.

Выделяющуюся в диэлектрике активную мощность называют мощность потерь или просто диэлектрическими потерями. Для сравнения характеристик диэлектриков пользуются удельными потерями, т.е. потерями в 1 м³ материала:

$$p = \frac{P}{V}, \, \text{BT/M}^3 \tag{8}$$

где $V = a \cdot b \cdot h$ – объем исследуемого образца.

При решении задачи следует сравнить удельные потери на постоянном и переменном токе с частотами $f_1,\,f_2$ и $f_3.$

Задание №3

Дайте определение магнитного материала. Приведите классификацию магнитных материалов. Назовите основные параметры магнитных материалов и кратко поясните их физический смысл. Кратко опишите сами материалы, определите их место по приведенной классификации. Назовите области использования заданных материалов.

Рассчитайте и постройте зависимость магнитной проницаемости □ от напряженности магнитного поля H (для магнитомягкого материала).

Исходные данные для расчета представлены в табл. 3 (вариант выбирается по последней цифре шифра).

Таблица 3 - Параметры магнитомягких материалов

_	1 **	_	I	-						
Ba-	Наименование	Па-								
ри-	магнитомягкого	pa-	Значения H (к $A/м$), B (Тл)							
ант	материала	мет-								
		ры								
0	Железо особо	H	0,01	0,02	0,03	0,05	0,07	0,1		
	чистое	В	1,18	1,3	1,38	1,48	1,55	1,6		
1	Железо техни-	Н	0,5	1,0	2,5	5,0	10	30		
	чески чистое	В	1,38	1,5	1,62	1,71	1,81	2,05		
2	Пермаллой	Н	0,01	0,03	0,05	0,1	0,3	0,5		
	50HXC	В	0,2	0,65	0,75	1,05	1,24	1,28		
3	Электротехничес-	Н	0,5	1,0	2,5	5,0	10	30		
	кая сталь Э11	В	12	13,7	15,3	16,3	17,6	20		
4	Электротехничес-	Н	0,5	1,0	2,5	5,0	10	30		
	кая сталь Э330	В	16	17	18,5	19	19,5	20		
5	Электротехничес-	Н	0,1	0,3	0,5	1	2	2,5		
	ская сталь Э44	В	0,65	1,07	1,21	1,3	1,41	1,44		
6	Альсифер	Н	0,01	0,02	0,03	0,04	0,05	0,06		
		В	1,44	1,5	2,1	2,6	3,0	3,4		
7	Пермаллой	Н	0,01	0,03	0,05	0,1	0,3	0,5		
	79 HM	В	0,53	0,66	0,69	0,73	0,77	0,78		
8	Феррит	Н	0,1	0,3	0,5	1	2	2,5		
	200НН	В	0,04	0,095	0,11	0,14	0,16	0,165		
9	Феррит	Н	0,01	0,03	0,05	0,1	0,3	0,5		
	2000HM	В	0,07	0,15	0,18	0,2	0,225	0,23		

Рассчитайте и постройте зависимость объемной плотности магнитной энергии в воздушном зазоре магнитотвердого материала W=f(B) и кривую размагничивания B=f(-H). Исходные данные для расчета приведены в табл.4 (вариант выбирается по предпоследней цифре шифра).

Таблица 4 - Параметры магнитотвердых материалов

			1 / 1	1						
Ba-	Наименование	Пара-								
ри-	магнитотвердого	мет-	Значения H (кА/м), B (Тл)							
ант	материала	ры								
0	Феррит	H	0	40	80	120	130	-	-	
	07БИ	В	0,18	0,15	0,09	0,02	0	-	-	
1	Феррит	Н	0	40	80	120	130	-	-	
	1БИ	В	0,22	0,18	0,125	0,07	0	-	-	
2	Феррит	Н	0	40	80	120	160	180	-	
	3БА	В	0,3	0,25	0,2	0,125	0,05	0	-	
3	Викаллой	Н	0	10	20	30	35	38	-	
	11	В	1,02	1,01	1,0	0,9	0,7	0	-	
4	Сплав	Н	0	10	20	30	40	48	-	
	ЮНДК15	В	0,75	0,67	0,56	0,42	0,2	0	-	
5	Мартенситная	Н	0	1	2	3	4	5	5,2	
	сталь ЕХ	В	1,05	1,0	0,92	0,84	0,65	0,18	0	
6	Мартенситная	Н	0	1	2	3	4	5	5,5	
	сталь Е7В6	В	1,1	1,05	0,98	0,9	0,75	0,35	0	
7	Металлокерамика	Н	0	10	20	30	40	50	-	
	(сплав магнико)	В	1,0	0,99	0,95	0,87	0,7	0	-	
8	Сплав	Н	0	10	20	30	40	-	-	
	ЮНД4	В	0,5	0,43	0,34	0,21	0	-	-	
9	Сплав	Н	0	10	20	30	40	44	-	
	ЮНДК24	В	1,23	1,22	1,17	1,03	0,8	0	-	

Методические рекомендации по решению задачи

Материалы, которые под действием внешнего магнитного поля намагничиваются, называют магнитными. Основными магнитными материалами являются железо, никель, кобальт и различные сплавы на их основе. Свойства магнитных материалов оцениваются магнитными характеристиками.

Магнитная проницаемость μ определяет способность материала к намагничиванию: чем она больше, тем легче намагничивается материал. Магнитная проницаемость зависит от действующей напряженности магнитного поля Н. Поэтому для оценки способности материала к намагничиванию приходится учитывать начальную магнитную проницаемость μ_{max} .

Определить величину μ в зависимости от H можно по формуле:

$$\mu = \frac{1}{\mu_0} \cdot \frac{B}{H} \,, \tag{9}$$

где $\mu_0 = 4\pi {\cdot} 10^{\text{--}7} \; \Gamma\text{H/M}$ - магнитная постоянная;

В - магнитная индукция, Тл;

Н - напряженность магнитного поля, А/м.

В контрольной работе требуется рассчитать величины μ и построить график зависимости $\mu = f(H)$. Пример графика представлен на рис.1.

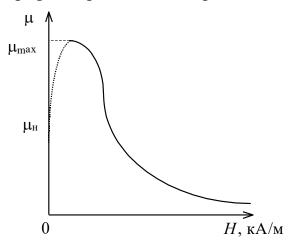


Рисунок 1 - График зависимости $\mu = f(H)$

Магнитотвердые материалы применяют для изготовления постоянных магнитов. Основное требование к постоянным магнитам состоит в том, что они должны создавать в воздушном зазоре между своими полюсами магнитное поле с постоянными значениями напряженности H и магнитной индукции B.

К характеристикам магнитотвердых материалов относятся остаточная магнитная индукция Br, коэрцитивная сила H_c , а также максимальная объемная плотность энергии магнитного поля в воздушном зазоре W_m . Она измеряется в Дж/м³, если индукция B выражена в Tл, а напряжённость поля H в A/м. Объемная плотность энергии магнитного поля определяется по формуле:

$$W = \frac{BH}{2} \tag{10}$$

В контрольной работе для магнитотвердого материала следует построить графики: кривую размагничивания B = f(-H) и кривую объемной плотности магнитной энергии в воздушном зазоре W = f(B). Пример графиков представлен на рис.2.

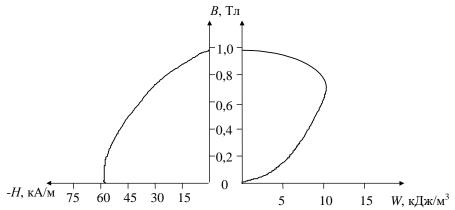


Рисунок 2 - График размагничивания B = f(-H) и график объемной плотности магнитной энергии в воздушном зазоре W = f(B)

Задание №4

Письменно ответить на четыре вопроса (объем ответа -2-3 стр.)

Таблица 5 -Вопросы для письменного ответа

	По предпоследней цифре шифра		По последней цифре шифра				
1	Сверхпроводящий соленоид	1	Плазма				
2	Пьезоэлектрики. Свойства и области применения	2	Фотоэлементы				
3	Аморфные магнитопроводы	3	Ферриты. Ферритовые сердечники				
4	Конденсаторы повышенной ёмкости. Суперконденсаторы	4	Электрическая дуга. Свойства дуги				
5	Сегнетоэлектрики. Свойства и области применения	5	Термоэлектрические модули				
6	Металлические сверхпроводники	6	Тензодатчики				
7	Полимерные высоковольтные изоляторы	7	Термодатчики				
8	Старение изоляции	8	Постоянные магниты				
9	Электроизоляция кабелей	9	Фарфоровые изоляторы				
0	Сверхпроводящая керамика	0	Стеклянные изоляторы				
1	Сплавы для термопар. Где используются термопары	1	Переменные резисторы				
2	Медь как проводниковый материал. Достоинства и недостатки меди	2	Пропиточные вещества, компаунды их назначение				
3	Электротехнические лаки	3	Лакоткани: хлопчатобумажная, шелковая, стеклолакоткань				
4	Основные механизмы поляризации	4	Электротехническое стекло				
5	Слоистые пластики: гетинакс, текстолит, стеклотекстолит	5	Конденсаторы на основе органических диэлектриков				
6	Конденсаторы переменной емкости	6	Железо и стали. Достоинства и недостатки				
7	Ферромагнитная жидкость	7	Алюминий. Достоинства и недостатки, влияние примесей на проводимость, оксидная пленка				
8	Светодиоды	8	Электротехническая резина				
9	Оксидные конденсаторы	9	Жидкие кристаллы				
0	Трансформаторная сталь	0	Конденсаторная бумага				

Библиографический список

- 1. Журавлева, Л.В. Электроматериаловедение: Учебник для начального профессионального образования / Л.В. Журавлева. М.: Издательский центр «Академия», 2012.
- 2. Сорокин, В.С. Материалы и элементы электронной техники. Том 1: Учебник для студ. высш. учебн. заведений / В.С. Сорокин, Б.Л. Антипов, Н.П. Лазарев. М.: Издательский центр «Академия», 2006.

Пример оформления титульного листа

МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ЖЕЛЕЗНОДОРОЖНОГО ТРАНСПОРТА ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ САМАРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ (СамГУПС)

КАФЕДРА «Электроснабжение железнодорожного транспорта»

РАСЧЕТНО-ГРАФИЧЕСКАЯ РАБОТА по дисциплине «МАТЕРИАЛОВЕДЕНИЕ»

Выполнил: студент Ф.И.О.

Группа

Проверил: должность, Ф.И.О.

Пример оформления списка использованных источников

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Марквардт, К.Г. Электроснабжение электрифицированных железных дорог / К.Г. Марквардт. М.: Транспорт, 1982. 528 с.
- 2. . Энергетическая стратегия холдинга «Российские железные дороги» на период до 2015 года и на перспективу до 2030 года [Электронный ресурс]: утв. президентом ОАО «РЖД» 15 декабря 2011г. №2718р. 97 с. Режим доступа: doc.rzd.ru/doc/public/ru.[23.12.15]
- 3. Митрофанов, А.Н. Управление технологиями электропотребления и энергосбережения [Текст] : учеб.пособие для вузов ж. д. трансп. / А.Н. Митрофанов, М.А. Гаранин, Е.В. Добрынин. Самара : СамГУПС, 2009. 151 с.
- 4. Инструкция по расчету наличной пропускной способности железных дорог: утв. первым вице-президентом ОАО «РЖД» от 10.11.2010г. №128. 289 с.
- 5. Григорьев, В.Л. Тепловые процессы в устройствах тягового электроснабжения: Учеб. пособие для вузов ж. д. транспорта / В.Л. Григорьев, В.В. Игнатьев. М.: ГОУ «Учебно-методический центр по образованию на железнодорожном транспорте», 2007. 182 с.
- 6. Гаранин, М.А. Повышение точности расчета энергообеспеченности перевозочного процесса / М.А. Гаранин, С.А. Блинкова // Вестник транспорта Поволжья. 2012. N = 6(36). C. 36.
- 7. Пат. 120796 Российская Федерация, МПК G06F17/50. Автоматизированная система ведения и анализа графика движения [Текст] / Блинкова С.А., Гаранин М.А., Никоноров Д.А. ; заявитель и патентообладатель Самарский государ-ственный университет путей сообщения (СамГУПС); № 2012116658/08 ; заявл. 24.04.2012; опубл. 27.09.2012.— 2 с.
- 8. ГОСТ Р 32192—2013 Надежность в железнодорожной технике. Основные термины и определения. М.: Стандартинформ, 2013. 43 с.
- 9. Программа для расчета системы тягового электроснабжения «Esnew-1.1». Свидетельство об официальной регистрации программ для ЭВМ № 2004612461 [Текст] / А.Н. Митрофанов, М.А. Гаранин, Е.В. Добрынин; заявитель и патентообладатель СамГАПС. опубл. 05.11.04.