ФГБОУ ВО «Воронежский государственный технический университет»

Факультет машиностроения и аэрокосмической техники

Кафедра нефтегазового оборудования и транспортировки

Лабораторная работа №4 по курсу «Математическое моделирование в нефтегазовом деле»

Системы массового обслуживания с ожиданием

Выполнил студент группы ФИО

Проверил доцент А.М. Слиденко

Цели работы:

- 1. Рассмотреть основные понятия теории случайных процессов.
- 2. Изучить метод построения модели системы массового обслуживания с ожиданием.
- 3. Провести анализ СМО с ожиданием с помощью уравнений Колмогорова и формул Эрланга.
- 4. Изучить методы приближенного решения системы дифференциальных уравнений с применением системы Mathcad.

Лабораторная работа №4 Система массового обслуживания с ожиданием

Задача. На станцию текущего ремонта автомашин поступает простейший поток заявок на ремонт с плотностью $\lambda=3$. Автомастерская имеет k=3 линий (каналов) для ремонта автомашин. Во дворе станции могут одновременно находиться, ожидая ремонта, не более n=2 машин. Среднее время ремонта одной автомашины – полчаса.

Необходимо:

- 1) Построить граф состояний системы;
- 2) Записать уравнения Эрланга-Колмогорова с помощью этого графа;
- 3) Найти приближенное решение системы дифференциальных уравнений с помощью системы Mathcad (Rkadapt или rkfixed).
 - 4) Построить графики вероятностей состояний;
 - 5) Определить время выхода на стационарный режим;
 - 6) Определить вероятности состояний для стационарного режима;
 - 7) Вычислить вероятность отказа в обслуживании заявки;
- 8) Определить среднее время, в течение которого мастерская свободна;
- 9) Определить относительную и абсолютную пропускную способность СМО;
- 10) Определить среднее число занятых каналов и среднюю длину очереди;
- 11) Определить среднее время нахождения заявок в очереди и среднее время нахождения заявок в мастерской;
- 12) Написать уравнения Эрланга для предельных вероятностей P_k в стационарном режиме;
- 13)Найти решение системы уравнений Эрланга, провести сравнительный анализ полученных результатов.
- 14)Оценить показатели эффективности работы мастерской и дать предложения по их улучшению.

Решение

Возможны следующие состояния системы:

 S_0 – все каналы свободны;

 S_1 – один канал занят, очереди нет;

 S_2 – два канала заняты, очереди нет;

 S_3 -три канала заняты, очереди нет;

 S_4- три канала заняты, в очереди одна заявка;

 S_5 – три канала заняты, в очереди две заявки;

1) Граф состояний системы с тремя каналами обслуживания изображен на рис.1.

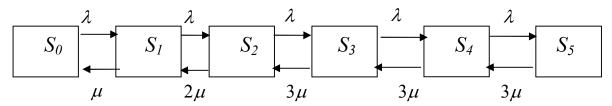
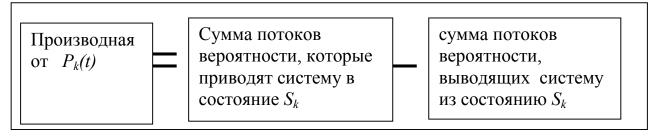


Рис. 1. Граф состояний

2) Запишем уравнения Эрланга с помощью графа состояний. Мнемоническое правило составления уравнений:



$$\frac{dP_0(t)}{dt} = \mu \cdot P_1(t) - \lambda \cdot P_0(t), \tag{1}$$

$$\frac{dP_1(t)}{dt} = \lambda \cdot P_0(t) + 2\mu \cdot P_2(t) - (\mu + \lambda) \cdot P_1(t), \qquad (2)$$

$$\frac{dP_2(t)}{dt} = \lambda \cdot P_1(t) + 3\mu \cdot P_3(t) - (2\mu + \lambda) \cdot P_2(t), \tag{3}$$

$$\frac{dP_3(t)}{dt} = \lambda \cdot P_2(t) + 3\mu \cdot P_4(t) - (3\mu + \lambda) \cdot P_3(t), \tag{4}$$

$$\frac{dP_4(t)}{dt} = \lambda \cdot P_3(t) + 3\mu \cdot P_5(t) - (3\mu + \lambda) \cdot P_4(t), \tag{5}$$

$$\frac{dP_5(t)}{dt} = \lambda \cdot P_4(t) - 3\mu \cdot P_5(t). \tag{6}$$

Кроме того,

$$P_0(t) + P_1(t) + P_2(t) + P_3(t) + P_4(t) + P_5(t) = 1.$$
 (7)

Рассмотрим систему уравнений (1)-(6) с начальными условиями $P_0(0) = 1$, $P_1(0) = P_2(0) = P_3(0) = P_4(0) = P_5(0) = 0$.

Уравнение (7) будет использовано для проверки вычислений.

В системе Mathcad введем исходные данные, начальные условия и вектор - столбец правых частей системы дифференциальных уравнений (листинг 1).

- 3) С помощью функции Rkadapt находим приближенное решение начальной задачи.
 - 4) Строим зависимости вероятностей состояний от времени.
- 5) Переходной период длится до момента $t \approx 3$ ч (определяем с помощью графиков).
- 6) Можно определить вероятности состояний для установившегося режима $P_0 = 0.217$; $P_1 = 0.325$; $P_2 = 0.244$; $P_3 = 0.122$; $P_4 = 0.061$; $P_5 = 0.031$ (определяются по таблице). Кроме того, предельные вероятности определяются двумя способами: а) матричным способом решаем систему линейных уравнений; б) используем формулы Эрланга.

Запишем систему уравнений для предельных вероятностей и найдем решение этой системы матричным способом (листинг 2);

Вычисляем предельные вероятности с помощью формул Эрланга (листинг 2);

Совпадение результатов свидетельствует об отсутствии ошибок в документе (программе).

Вычисляем основные показатели эффективности работы СМО на стационарном режиме (листинг 3).

7) Вероятность отказа в обслуживании заявки, т.е. вероятность состояния, когда все каналы заняты и в очереди нет мест

$$Potk = P_5 = 0.031$$
.

- 8) Среднее время, в течение которого мастерская вообще не загру $t = P_0 \cdot 100\% = 0.217 \cdot 100\% = 21.7\%$ жена
- 9) Относительная пропускная способность есть вероятность того, что заявка будет обслужена

$$q = 1 - Potk = 1-0.031=0.969$$
.

Абсолютная пропускная способность $Q = q \cdot \lambda$ есть среднее число заявок, обслуживаемых системой в единицу времени $Q = q \cdot \lambda = 0,969 \ \ 3 = 2,907$

$$Q = q \cdot \lambda = 0.969 \ 3 = 2.907$$

10) Определяем среднее число заявок в системе

$$\overline{L}_{cucm} = 0 \cdot P_0 + 1 \cdot P_1 + 2 \cdot P_2 + 3 \cdot P_3 + 4 \cdot P_4 + 5 \cdot P_5 =$$

$$= 0 \cdot 0.217 + 1 \cdot 0.325 + 2 \cdot 0.244 + 3 \cdot 0.122 + 4 \cdot 0.061 + 5 \cdot 0.031 = 1.578$$

Среднее время пребывания заявки в системе вычисляется по формуле $\overline{T}_{cucm} = \overline{L}_{cucm} / Q = 0,543$.

Рассчитаем среднее число заявок в очереди
$$\overline{L}_{ou} = 1 \cdot P_4 + 2 \cdot P_5 = 0,123$$
 .

Среднее число занятых каналов вычисляем по формуле

$$\overline{k}_c = 1 \cdot P_1 + 2 \cdot P_2 + 3 \cdot P_3 + 3 \cdot (P_4 + P_5) = 1,455$$
.

Среднее время пребывания заявок в очереди вычисляется по формуле $\overline{T}_{o^q} = \overline{L}_{o^q} / Q = \frac{0.123}{2.907} = 0.042 \, .$

Заключение.

- 1. Абсолютная пропускная способность мастерской $Q = q \cdot \lambda = 2,907$. Это означает, что почти все автомашины будут обслужены (т.е. интенсивность потока обслуженных заявок незначительно отличается от интенсивности потока заявок).
- 2.Вероятность простоя мастерской P_0 =0,217, т. е. оборудование будет простаивать около 22% времени.
- 3.Вероятности нахождения заявок в очереди малы. Среднее число заявок в очереди равно 0,123. Отсюда можно сделать вывод, что очередь в СМО практически отсутствует.

Необходимо провести мероприятия направленные на уменьшение времени простоя мастерской.

Можно предположить, что уменьшение числа каналов приведет к повышению эффективности работы системы. Следует также проверить расчетным путем влияние на эффективность уменьшения числа мест в очереди.

Листинг 1

$$\lambda := 3$$
 $\mu := 2$ $N := 120$

$$t_0 := 0$$
 $t_N := 12$

$$\mathbf{S(t,p)} := \begin{bmatrix} -\boldsymbol{\lambda} \cdot \mathbf{p}_0 + \boldsymbol{\mu} \cdot \mathbf{p}_1 \\ \boldsymbol{\lambda} \cdot \mathbf{p}_0 + 2 \cdot \boldsymbol{\mu} \cdot \mathbf{p}_2 - (\boldsymbol{\lambda} + \boldsymbol{\mu}) \cdot \mathbf{p}_1 \\ \boldsymbol{\lambda} \cdot \mathbf{p}_1 + 3 \cdot \boldsymbol{\mu} \cdot \mathbf{p}_3 - (\boldsymbol{\lambda} + 2 \cdot \boldsymbol{\mu}) \cdot \mathbf{p}_2 \\ \boldsymbol{\lambda} \cdot \mathbf{p}_2 + 3 \cdot \boldsymbol{\mu} \cdot \mathbf{p}_4 - (\boldsymbol{\lambda} + 3 \cdot \boldsymbol{\mu}) \cdot \mathbf{p}_3 \\ \boldsymbol{\lambda} \cdot \mathbf{p}_3 + 3 \cdot \boldsymbol{\mu} \cdot \mathbf{p}_5 - (\boldsymbol{\lambda} + 3 \cdot \boldsymbol{\mu}) \cdot \mathbf{p}_4 \\ \boldsymbol{\lambda} \cdot \mathbf{p}_4 - 3\boldsymbol{\mu} \cdot \mathbf{p}_5 \end{bmatrix}$$

вектор правых частей системы дифференциальных уравнений

0

0

специальная функция $\mathbf{Rkadapt}(\mathbf{p0}, \mathbf{t_0}, \mathbf{t_N}, \mathbf{N}, \mathbf{S})$ решает систему дифференциальных, уравнений методом Рунге-Кутта и возвращает матрицу решений

 $\mathbf{Z} := \mathbf{Rkadapt}(\mathbf{p0}, \mathbf{t_0}, \mathbf{t_N}, \mathbf{N}, \mathbf{S})$

		49	50	51	52	53	54	55	56	57	58
	0	4.9	5	5.1	5.2	5.3	5.4	5.5	5.6	5.7	5.8
	1	0.217	0.217	0.217	0.217	0.217	0.217	0.217	0.217	0.217	0.217
$\mathbf{Z}^{\mathbf{T}} =$	2	0.325	0.325	0.325	0.325	0.325	0.325	0.325	0.325	0.325	0.325
_	3	0.244	0.244	0.244	0.244	0.244	0.244	0.244	0.244	0.244	0.244
	4	0.122	0.122	0.122	0.122	0.122	0.122	0.122	0.122	0.122	0.122
	5	0.061	0.061	0.061	0.061	0.061	0.061	0.061	0.061	0.061	0.061
	6	0.03	0.03	0.03	0.03	0.03	0.031	0.031	0.031	0.031	0.031

 ${f k} := 0 ... {f N}$ контроль вычислений

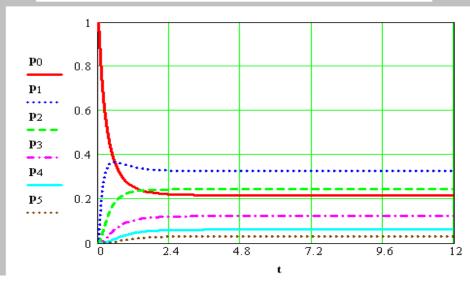
$$SZ_k := Z_{k,1} + Z_{k,2} + Z_{k,3} + Z_{k,4} + Z_{k,5} + Z_{k,6}$$

$$SZ^{T} = \begin{bmatrix} 1010111121213141151616171819 \\ 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \end{bmatrix}$$

$$\mathbf{t} := \mathbf{Z}^{\langle 0 \rangle} \qquad \mathbf{p}_0 := \mathbf{Z}^{\langle 1 \rangle} \qquad \mathbf{p}_1 := \mathbf{Z}^{\langle 2 \rangle} \qquad \mathbf{p}_2 := \mathbf{Z}^{\langle 3 \rangle} \qquad \mathbf{p}_3 := \mathbf{Z}^{\langle 4 \rangle} \qquad \mathbf{p}_4 := \mathbf{Z}^{\langle 5 \rangle} \qquad \mathbf{p}_5 := \mathbf{Z}^{\langle 6 \rangle}$$

Новые (естественные) имена переменных для построения графиков

ГРАФИКИ РЕШЕНИЙ СИСТЕМЫ УРАВНЕНИЙ зависимости вероятностей состояний от времени



Листинг 2

Финальные вероятности. Решение системы линейных уравнений матричным способом. Система линейных уравнений имеет вид

$$\mathbf{A} \cdot \mathbf{P0} = \mathbf{B} \qquad \mathbf{\lambda} := 3 \qquad \mathbf{\mu} := 2$$

$$\mathbf{B} := \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} \quad \mathbf{A} := \begin{bmatrix} -\mathbf{\lambda} & \mathbf{\mu} & 0 & 0 & 0 & 0 \\ \mathbf{\lambda} & -(\mathbf{\lambda} + \mathbf{\mu}) & 2\mathbf{\mu} & 0 & 0 & 0 \\ 0 & \mathbf{\lambda} & -(\mathbf{\lambda} + 2\mathbf{\mu}) & 3\mathbf{\mu} & 0 & 0 \\ 0 & 0 & \mathbf{\lambda} & -(\mathbf{\lambda} + 3\mathbf{\mu}) & 3\mathbf{\mu} & 0 \\ 0 & 0 & 0 & \mathbf{\lambda} & -(\mathbf{\lambda} + 3\mathbf{\mu}) & 3\mathbf{\mu} \\ 1 & 1 & 1 & 1 & 1 & 1 \end{bmatrix}$$

$$|A| = -7.965 \times 10^3$$
 определитель системы

$$\mathbf{P0} := \mathbf{A}^{-1} \cdot \mathbf{B}$$
 $\mathbf{P0}^{\mathbf{T}} = (0.217 \ 0.325 \ 0.244 \ 0.122 \ 0.061 \ 0.031)$

Вычисление предельных вероятностей с помощью формул Эрланга

$$\alpha := \frac{\lambda}{\mu} \quad \mathbf{n} := 3 \quad \mathbf{m} := 2$$

$$\mathbf{p}:=\mathbf{1}...\mathbf{n}$$
 \mathbf{p} \mathbf

$$\alpha := \frac{\lambda}{\mu} \quad \mathbf{n} := 3 \quad \mathbf{m} := 2$$

$$\mathbf{p}_{0} := \frac{1}{\sum_{\mathbf{n}}^{\mathbf{n}} \frac{\alpha^{\mathbf{s}}}{\mathbf{s}!} + \frac{\alpha^{\mathbf{n}}}{\mathbf{n}!} \cdot \left[1 - \left(\frac{\alpha}{\mathbf{n}} \right)^{\mathbf{m}} \right] \cdot \left(\frac{\alpha}{\mathbf{n} - \alpha} \right)$$

$$\mathbf{p}_{0} := \frac{\alpha^{\mathbf{j}}}{\mathbf{j}!} \cdot \mathbf{p}_{0}$$

$$\mathbf{PS_{n+i}} := \left(\frac{\alpha}{\mathbf{n}}\right)^{\mathbf{i}} \cdot \frac{\alpha^{\mathbf{n}}}{\mathbf{n}!} \cdot \mathbf{PS_0}$$

$$\mathbf{PS}^{\mathbf{T}} = (0.217 \ 0.325 \ 0.244 \ 0.122 \ 0.061 \ 0.031)$$

контроль вычислений

$$\sum_{i=0}^{m+n} PS_i = 1$$

Листинг 3

Основные показатели эффективности СМО 🛮 🕽 🗀 😑 2

Предельные вероятности

 $\mathbf{P}_0 := 0.217 \quad \mathbf{P}_1 := 0.325 \quad \mathbf{P}_2 := 0.244 \quad \mathbf{P}_3 := 0.122 \quad \mathbf{P}_4 := 0.061 \quad \mathbf{P}_5 := 0.031$

1. Вероятность того, что пришедшая заявка получит отказ (вероятность состояния, когда все каналы заняты и в очереди нет свободных мест)

 $\mathbf{Potk} := \mathbf{P}_5 \qquad \qquad \mathbf{Potk} = 0.031$

2. Среднее время, в течение которого мастерская свободна

 $t := P_0 100\%$ t = 21.7%

З.Относительная пропускная способность СМО (вероятность того, что заявка будет обслужена)

q := 1 - Potk q = 0.969

4. Абсолютная пропускная способность СМО - среднее число заявок, обслуживаемых системой в единицу времени (интенсивность потока обслуженных заявок)

 $Q := q \cdot \lambda$ Q = 2.907

5.Среднее число занятых каналов 6.Среднее число заявок в системе

 $\mathbf{K}\mathbf{s} := \sum_{\mathbf{m}=0}^{3} \mathbf{m} \cdot \mathbf{P}_{\mathbf{m}} + 3(\mathbf{P}_{4} + \mathbf{P}_{5})$ $\mathbf{L}\mathbf{s} := \sum_{\mathbf{m}=0}^{3} \mathbf{m} \cdot \mathbf{P}_{\mathbf{m}}$ Ls = 1.578Ks = 1.455

7.Среднее число заявок в очереди

 $\mathbf{Lo} := \sum_{\mathbf{m}}^{2} \mathbf{m} \cdot \mathbf{P}_{3+\mathbf{m}}$ $\mathbf{Lo} = 0.123$ Контроль вычислений $\mathbf{Lo} + \mathbf{Ks} = 1.578$

8. Среднее время пребывания заявки в системе и в очереди

9

 $\mathbf{Ts} := \frac{\mathbf{Ls}}{\mathbf{O}} \qquad \mathbf{Ts} = 0.543 \qquad \mathbf{To} := \frac{\mathbf{Lo}}{\mathbf{O}} \qquad \mathbf{To} = 0.042$

Контрольные задания к лабораторной работе №4

Задача. На станцию текущего ремонта автомашин поступает простейший поток заявок на ремонт с плотностью λ . Автомастерская имеет плиний (каналов) для ремонта автомашин. Во дворе станции могут одновременно находиться, ожидая ремонта, не более то машин. Среднее время ремонта одной автомашины $1/\mu$ часов.

Необходимо:

- 1) Построить граф состояний системы;
- 2) Записать уравнения Эрланга-Колмогорова с помощью этого графа;
- 3) Найти приближенное решение системы дифференциальных уравнений с помощью системы Mathcad (Rkadapt или rkfixed).
 - 4) Построить графики вероятностей состояний;
 - 5) Определить время выхода на стационарный режим;
 - 6) Определить вероятности состояний для стационарного режима;
 - 7) Определить вероятность отказа СМО;
- 8) Определить среднее время, в течение которого мастерская свободна;
- 9) Определить относительную и абсолютную пропускную способность СМО;
- 10) Определить среднее число занятых каналов и среднюю длину очереди;
- 11) Определить среднее время нахождения заявок в очереди и среднее время нахождения заявок в мастерской;
- 12) Написать уравнения Эрланга для предельных вероятностей P_k в стационарном режиме;
- 13) Найти решение системы уравнений Эрланга, провести сравнительный анализ полученных результатов.
- 14) Оценить показатели эффективности работы мастерской и дать предложения по их улучшению.

Вариант	Плотность	Плотность	Число	Число мест
	потока	потока	каналов	в очереди
	заявок	обслуживаний	n	m
	λ	μ		
1	2	0.4	2	3
2	4	1	3	1
3	5	0,4	2	2
4	5	0,5	2	3
5	6	0,3	3	1

6	2	0,2	1	3
7	5	0,02	2	3
8	6	0,05	1	4
9	7	0,03	2	2
10	4	0,2	2	3
11	3	0,4	3	2
12	2	0,3	2	2
13	1	0,3	3	1
14	3	0,2	4	1
15	4	0,5	2	3

6.13. Контрольные вопросы и задачи к лабораторным работам No3 и No4

- 1. Что называют потоком событий?
- 2. Приведите пример системы массового обслуживания.
- 3. Что называется случайным процессом? Приведите примеры.
- 4. Что представляет собой граф состояний системы?
- 5.Какой поток событий называется стационарным? ординарным? без последействия? Приведите примеры.
 - 6.Какой поток событий называют простейшим?
 - 7. Что называют плотностью потока?
 - 8.Дайте определение СМО с отказами.
 - 9.Дайте определение СМО с ожиданием.
 - 10.Какой режим работы СМО называют стационарным?
 - 11.Как определяются предельные (финальные) вероятности?
- 12.Приведите мнемоническое правило составления дифференциальных уравнений Колмогорова.
- 13.Приведите формулы Эрланга вычисления предельных веро-ятностей для СМО с отказами.
- 14.Приведите формулы Эрланга вычисления предельных вероятностей для СМО с ожиданием.
- 15.Назовите основные показатели эффективности работы *СМО*.
- 16.На каком режиме вычисляются основные показатели эффективности СМО?
- 17. Что называют относительной пропускной способностью СМО?
- 18. Что называют абсолютной пропускной способностью СМО?
 - 19.Как определяется среднее число занятых каналов?
 - 20.Как определяется среднее число заявок в системе?

- 21.Как определяется среднее число заявок в очереди?
- 22.Как определяется среднее время пребывания заявки в системе?
- 23. В СМО с отказами 2 канала. Предполагая потоки заявок и обслуживаний простейшими, (λ интенсивность потока заявок, μ —интенсивность потока обслуживаний для одного канал) составить уравнения Колмогорова.

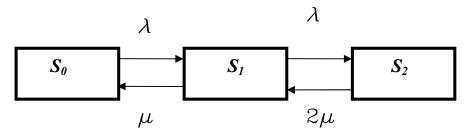
Решение. Возможные состояния системы:

 S_0 - в СМО нет заявок;

 S_1 - в СМО одна заявка;

 S_2 - в СМО две заявки.

Граф состояний системы имеет вид



Уравнения Колмогорова составляем с помощью мнемонического правила:

$$\frac{dP_0}{dt} = \mu P_1 - \lambda P_0,$$

$$\frac{dP_1}{dt} = \lambda P_0 + 2\mu P_{31} - (\lambda + \mu) P_1,$$

$$\frac{dP_2}{dt} = \lambda P_1 - 2\mu P_2, \qquad P_0 + P_1 + P_2 = 1.$$

24. В СМО с отказами 2 канала. Предполагая потоки заявок и обслуживаний простейшими, интенсивности которых равны $\lambda=2$, $\mu=3$, найти среднее число занятых каналов на стационарном режиме.

Решение. Находим предельные вероятности по формуле Эрланга

$$P_0 = \frac{1}{1 + \alpha + \frac{\alpha^2}{2!}}, \quad P_k = \frac{\alpha^k}{k!} P_0, \quad k = 1, 2. \quad \alpha = \frac{\lambda}{\mu} = \frac{2}{3}.$$

$$P_0 = \frac{1}{1 + \frac{2}{3} + \left(\frac{2}{3}\right)^2 \frac{1}{2}} = \frac{1}{1 + \frac{2}{3} + \frac{2}{9}} = \frac{9}{17}, \quad P_1 = \alpha P_0 = \frac{2}{3} \cdot \frac{9}{17} = \frac{6}{17},$$

$$P_2 = \frac{\alpha^2}{2} P_0 = \frac{\left(\frac{2}{3}\right)^2}{2} \cdot \frac{9}{17} = \frac{2}{17}.$$

Проверка:

$$\frac{9}{17} + \frac{6}{17} + \frac{2}{17} = 1.$$

Случайная величина K — число занятых каналов имеет следующий закон распределения:

K	0	1	2
P	$\frac{9}{17}$	$\frac{6}{17}$	$\frac{2}{17}$

Математическое ожидание вычисляется по формуле

$$\vec{K} = M(K) = 0 \cdot \frac{9}{17} + 1 \cdot \frac{6}{17} + 2 \cdot \frac{2}{17} = \frac{10}{17} \approx 0,59.$$

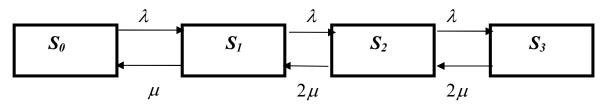
25. В СМО с ожиданием 2 канала и 1 место в очереди. Предполагая потоки заявок и обслуживаний простейшими, составить уравнения Колмогорова.

Решение. Возможные состояния системы:

 S_0 – в СМО нет заявок; S_1 - в СМО один канал занят, в очереди нет заявок;

 S_2 – в СМО два канала заняты, в очереди нет заявок.

 S_3 – в СМО два канала заняты, в очереди одна заявка.



Уравнения Колмогорова:

$$\frac{dP_0}{dt} = \mu P_1 - \lambda P_0,$$

$$\frac{dP_1}{dt} = \lambda P_0 + 2\mu P_2 - (\lambda + \mu) P_1,
\frac{dP_2}{dt} = \lambda P_1 + 2\mu P_3 - (\lambda + 2\mu) P_2
\frac{dP_3}{dt} = \lambda P_2 - 2\mu P_3, \qquad P_0 + P_1 + P_2 + P_3 = 1.$$

26. В СМО с ожиданием 2 канала и 1 место в очереди. Предполагая потоки заявок и обслуживаний простейшими, интенсивности потоков $\lambda=3$, $\mu=1$, найти среднее число заявок на обслуживании и среднее число заявок в очереди.

Решение. Находим предельные вероятности состояний используя формулы Эрланга

$$P_0 = \frac{1}{1 + \alpha + \frac{\alpha^2}{2} + \frac{\alpha^2}{2} \left(1 - \left(\frac{\alpha}{2}\right)^1\right) \left(\frac{\alpha}{2 - \alpha}\right)}, \qquad \alpha = \frac{\lambda}{\mu} = \frac{3}{1} = 3.$$

Тогда получаем

$$P_0 = \frac{1}{1+3+\frac{3^2}{2}+\frac{3^2}{2}\left(1-\left(\frac{3}{2}\right)^1\right)\left(\frac{3}{2-3}\right)} = \frac{1}{1+3+\frac{3^2}{2}+\frac{3^2}{2}\frac{3}{2}} = \frac{4}{61}$$

$$P_{1} = \alpha P_{0} = 3 \cdot \frac{4}{61} = \frac{12}{61}, \quad P_{2} = \frac{\alpha^{2}}{2} P_{0} = \frac{3^{2}}{2} \cdot \frac{4}{61} = \frac{18}{61},$$

$$P_{3} = \frac{\alpha^{2}}{2} \cdot \frac{\alpha}{2} P_{0} = \frac{3^{2}}{2} \cdot \frac{3}{2} \cdot \frac{4}{61} = \frac{27}{61}.$$

Вычислим среднее число заявок на обслуживании (то есть среднее число занятых каналов).

K	0	1	2
P	$\frac{4}{61}$	$\frac{12}{61}$	$\frac{18}{61} + \frac{27}{61}$

$$\vec{K} = M(K) = 0 \cdot \frac{4}{61} + 1 \cdot \frac{12}{61} + 2 \cdot \left(\frac{18}{61} + \frac{27}{61}\right) = \frac{102}{61} \approx 1,672$$

Закон распределения случайной величины L_0 – числа заявок в очереди имеет вид

		0	1
I	•	$\frac{4}{61} + \frac{12}{61} + \frac{18}{61}$	$\frac{27}{61}$

Вычисляем математическое ожидание

$$\vec{L}_0 = M(L_o) = 0 \cdot \left(\frac{4}{61} + \frac{12}{61} + \frac{18}{61}\right) + 1 \cdot \frac{27}{61} = \frac{27}{61} \approx 0,44.$$