В лекциях по дисциплине «Теоретические основы электротехники» (ТОЭ) рассматриваются теоретические вопросы и даются сведения описательного характера, значительно меньше внимания уделяется применению полученных знаний для решения задач, связанных с использованием методов расчета параметров и режимов работы электрических цепей.

Настоящее практическое занятие посвящено расчету электрических процессов, происходящих в длинной линии при разомкнутой и короткозамкнутой на конце линии нагрузки.

В начале практического занятия даются теоретические сведения и основные формулы, необходимые для решения задачи по нахождению распределения напряжения и тока в режимах разомкнутой и короткозамкнутой на конце линии. В конце приведен справочный материал, который используется при решении задачи.

Тема: РАСПРЕДЕЛЕНИЯ НАПРЯЖЕНИЯ И ТОКА ВДОЛЬ ЛИНИИ В РЕЖИМЕ ХОЛОСТОГО ХОДА, КОРОТКОГО ЗАМЫКАНИЯ И СОГЛАСОВАННОЙ НАГРУЗИ

Цель занятия:

Овладение методикой определения распределения напряжения и тока в режиме холостого хода, короткого замыкания и согласованной нагрузки.

Порядок выполнения практической работы

1. Ознакомиться с алгоритмом расчета распределения напряжения и тока в режиме холостого хода, короткого замыкания и согласованной нагрузки.

2. Выполнить индивидуальные задания и оформить отчет в соответствии с едиными требованиями к оформлению текстовых и графических документов.

Указания к выполнению индивидуальных заданий

В заданиях каждый студент после ознакомления с теоретическим материалом должен решить задачу в соответствии с номером своего варианта (таблица 1). Номер варианта соответствует номеру в списке группы (См. Microsoft Teams – Теоретические основы электротехники – Файлы - Список группы для выбора варианта индивидуального задания по практическому занятию). Номер варианта индивидуального задания соответствует порядковому номеру студента в списке группы.

Отчёт по практической работе должен содержать решение задачи (образец оформления решения задачи приведен в Приложении 1).

Отчёт оформляют на листе формата A4 (по возможности с использованием оформления ПЭВМ).

Таблица 1

Исходные данные для расчета распределения напряжения и тока в режиме холостого хода и короткого замыкания.

Вариант	1	2	3	4	5	6	7
Длина линии, <i>l, км</i>	200	250	12	24	73	80	120
Волновом сопротивлении, <u>Z_в</u> , Ом	$1579,79e^{-i14^{0}} =$ =1532,84-j382,18	$614,32e^{-i9^0} = \\ = 606,76\text{-}j96,10$	$986,66e^{-i3^{0}} =$ =985,31-j51,64	$1408,57e^{-j14} = = 1366,73j340,76$	$594,06e^{-j6} =$ =590,81-j62,09	1267,11 <i>e^{-j20=}</i> =1190,69- -j433,38	420,33 <i>e^{-j13=}</i> =409,56-j94,55
Коэффициент распространения на единицу длины однородной линии, <u>ү</u> , 1/км	$0,023e^{j72} = = 0,0071 + j0,0219$	$\begin{array}{r} 0,046e^{j78} = \\ = 0,0096 + \\ + j0,0449 \end{array}$	$\begin{array}{r} 0,356e^{j76} = \\ = 0,0861+ \\ + j0,3454 \end{array}$	$\begin{array}{r} 0,070e^{j75} = \\ = 0,0181+ \\ + j0,0676 \end{array}$	$0,134e^{j82} = = 0,0186+ +j0,1327$	$\begin{array}{r} 0,061e^{j69} = \\ = 0,0219 + \\ + \mathrm{j}0,0569 \end{array}$	$\begin{array}{r} 0,112e^{j75} = \\ = 0,0289 + \\ + j0,1081 \end{array}$
Частота сигнала, <i>f</i> , <i>Гų</i> <i>w</i> , c ⁻¹	500 3140	1000 6280	5000 31400	1500 9420	3000 18840	2400 15072	3500 21980
Напряжение источника питания , U_{1m}, B	115000	115000	115000	115000	115000	115000	115000

Продолжение таблицы 1

Вариант	8	9	10	11	12	13	14
Длина линии, <i>l, км</i>	16	100	315	142	114	127	21
Волновом сопротивлении, <u>Z_в</u> , Ом	$1429,47e^{-j8} = 1415,56 \cdot j198,94$	$552,64e^{-j7} = = 548,52 - j67,35$	$577,53e^{-j_{12}} = = = 564,91 - j_{12}0,08$	$874,50e^{-j8} =$ =865,99-j2171	$2200,180e^{-j7} = = 2183,78j268,13$	$985,47e^{-j7} =$ =978,12-j120,09	$1040,54e^{-j7} = = 1032,78j126,81$
Коэффициент распространения на единицу длины однородной линии, <u>ү</u> , 1/км	$0,054e^{j79} = = 0,0103 + +j0,0530$	$\begin{array}{r} 0,036e^{j89} = \\ = 0,0006 + \\ + j0,0359 \end{array}$	$0,022e^{j76} = = 0,0053 + +j0,0213$	$0,073e^{j80} =$ =0,01268+j0,0719	$0,353e^{j82} = = 0,0491 + +j0,3496$	$\begin{array}{r} 0,045e^{j81} = \\ = 0,0070 + \\ + j0,0444 \end{array}$	$0,036e^{j81=}$ =0,0056+ +j0,0356
Частота сигнала, <i>f, Гц</i> <i>w</i> , c ⁻¹	1200 7536	800 5024	300 1884	900 5652	8000 50240	1000 6280	800 5024
Напряжение источника питания , U_{1m}, B	115000	115000	115000	115000	115000	115000	115000

Вариант	15	16	17	18	19	20
Длина линии, <i>l, км</i>	65	43	48	23	92	200
Волновом сопротивлении, <u>Z_в</u> , Ом	$740,83e^{-j23} = = 681,94 - j289,47$	$1188,11e^{-j6} = \\ = 1181,60 - \\ -j124,19$	$1267,44e^{-j20} =$ =1191,00-j433,49	$577,53e^{-j_{12}=}$ =564,91-j120,08	$1390,77e^{-j5} = \\ = 1385,48 - \\ -j121,21$	$1040,54e^{-j7} =$ =1032,-j126,81
Коэффициент распространения на единицу длины однородной линии, <u>ү</u> , 1/км	$\begin{array}{r} 0,027e^{j65} = \\ = 0,0114+ \\ + j0,0245 \end{array}$	$0,134e^{j82} = = 0,0186 + +j0,1327$	$0,091e^{j69} = \\=0,0326+j0,0849$	$0,044e^{j76} = \\ = 0,0106 + \\ +j0,0427$	$0,322e^{j84} = \\ = 0,0337 + \\ +j0,3202$	$\begin{array}{r} 0,071e^{j81} = \\ = 0,0111 + \\ + j0,0701 \end{array}$
Частота сигнала, <i>f</i> , Гц <i>w</i> , c ⁻¹	700 4396	3000 18840	1200 7536	600 3768	9000 56520	1600 10048
Напряжение источника питания , $U_{1m},{ m B}$	115000	115000	115000	115000	115000	115000 115000

І. РАСПРЕДЕЛЕНИЯ НАПРЯЖЕНИЯ И ТОКА В РЕЖИМЕ ХОЛОСТОГО ХОДА, КОРОТКОГО ЗАМЫКАНИЯ И СОГЛАСОВАННОЙ НАГРУЗКИ

Распределение напряжения и тока в линии зависит зависеть как от собственных параметров линии γ , $Z_{\rm B}$ и геометрических размеров линии *l*, которая является функцией длины электромагнитной волны λ , так и от характера нагрузки $Z_{\rm H}$ (режима работы линии).

Рассмотрим предельные режимы работы линии, когда линия разомкнута на конце, либо замкнута накоротко.

Линия разомкнута на конце, т. е. когда нагрузочное сопротивление бесконечно велико.

Бегущая волна, дойдя до конца разомкнутой на конце линии, отражается и двигается обратно к генератору. Таким образом, в линии распространяются две бегущие волны: одна — падающая — движется от генератора к концу линии, а другая — отраженная — движется в обратном направлении. В результате взаимодействия падающих и отражённых волн в линии образуются стоячие волны.

На рисунке1 показано сложение падающей и отраженной волн напряжения, для некоторого момента времени, в разомкнутой линии.

Рис. 1. К пояснению процесса образования стоячих волн

Эти волны проявляются наличием в линии максимумов (пучностей П₁,П₂) напряжения, а также их нулевых значений (узлов У₁,У₂).

Характер распределения напряжения вдоль линии при стоячей волне не изменяется с течением времени. В разные моменты времени изменяется только величина напряжения в каждом сечении линии.

На рис.2 показано распределение напряжения вдоль разомкнутой линии для нескольких различных моментов времени на протяжении нескольких полупериодов.

Рис. 2. Изменение напряжения вдоль линии, разомкнутой на конце, для различных моментов времени

Кривая t_1 (красная линия) соответствует фазе, когда напряжение в линии наибольшее. Далее напряжение становится всё меньше и меньше (кривые t_2 , t_3). Затем напряжение во всей линии становится равным нулю. Затем оно меняет знак и начинает возрастать (кривые t_4 , t_5 , t_6). Через полпериода после начала процесса напряжение снова достигает амплитудного значения, но с обратным знаком. В каждом сечении линии напряжение колеблется по синусоидальному закону. Для пучностей амплитуда наибольшая, равная двойной амплитуде бегущей волны, для других сечений она меньше, и, наконец, для узлов она равна нулю.

Все сказанное относится и к току, но в стоячей волне узлы тока получаются там, где пучности напряжения, а пучности тока находятся в узлах напряжения. Иначе говоря, стоячая волна тока сдвинута на 1/4λ или 90° относительно стоячей волны напряжения. Графически это изображено на рисунке 3 двумя кривыми. Кривая тока дана штриховой линией, а кривая напряжения — сплошной линией.

Рис. 3. Распределение токов и напряжений в длинной линии разомкнутой на конце

Отношение напряжения к току – U/I в каждом сечении линии, так и на её концах будет определять входное сопротивление линии.

Входным сопротивлением линии называется такое сосредоточенное сопротивление, подключение которого вместо линии к зажимам генератора не изменит режим работы последнего.

Для анализа функциональной зависимости входного сопротивления линии от её параметров ($\underline{Z}_{\rm B}, \underline{\gamma}, l$) и нагрузки ($\underline{Z}_{\rm H}$) воспользуемся схемой замещения однородной длинной линии при отсчете координаты (x) от начала линии (рис 4), для которой уравнения передачи имеют вид:

Рис. 4. Схема замещения однородной длинной линии при отсчете координаты (*x*) от начала линии

$$\begin{cases} \dot{U}_1 = \dot{U}_2 \operatorname{ch} \underline{\gamma} l + \dot{I}_2 \underline{Z}_{\scriptscriptstyle \beta} \operatorname{sh} \underline{\gamma} l \\ \dot{I}_1 = \dot{I}_2 \operatorname{ch} \underline{\gamma} l + \frac{\dot{U}_2}{\underline{Z}_{\scriptscriptstyle \beta}} \operatorname{sh} \underline{\gamma} l \end{cases}, (1)$$

Тогда выражение для входного сопротивления отрезка линии \underline{Z}_{RX} с волновым сопротивлением \underline{Z}_{R} нагруженного на сопротивление нагрузки \underline{Z}_{H} будет иметь следующий вид:

$$\underline{Z}_{\beta x} = \frac{\dot{\nu}_{1}}{\dot{l}_{1}} = \frac{\dot{\nu}_{2} \operatorname{ch} \underline{\gamma} l + \dot{l}_{2} \underline{Z}_{\beta} \operatorname{sh} \underline{\gamma} l}{\dot{l}_{2} \operatorname{ch} \underline{\gamma} l + \frac{\dot{\nu}_{2}}{\underline{Z}_{\beta}} \operatorname{sh} \underline{\gamma} l} = \frac{\dot{l}_{2} \underline{Z}_{\mu} \operatorname{ch} \underline{\gamma} l + \dot{l}_{2} \underline{Z}_{\beta} \operatorname{sh} \underline{\gamma} l}{\dot{l}_{2} \operatorname{ch} \underline{\gamma} l + \frac{\dot{l}_{2} \underline{Z}_{\mu}}{\underline{Z}_{\beta}} \operatorname{sh} \underline{\gamma} l} = \frac{\underline{Z}_{\mu} \operatorname{ch} \underline{\gamma} l + \underline{Z}_{\beta} \operatorname{sh} \underline{\gamma} l}{\operatorname{ch} \underline{\gamma} l + \underline{Z}_{\beta} \operatorname{sh} \underline{\gamma} l} = \frac{\underline{Z}_{\mu} \operatorname{ch} \underline{\gamma} l + \underline{Z}_{\mu} \operatorname{sh} \underline{\gamma} l}{\underline{Z}_{\mu} \operatorname{ch} \underline{\gamma} l + \underline{Z}_{\mu} \operatorname{sh} \underline{\gamma} l} = \frac{\underline{Z}_{\mu} \operatorname{ch} \underline{\gamma} l + \underline{Z}_{\mu} \operatorname{sh} \underline{\gamma} l}{\underline{Z}_{\mu} \operatorname{ch} \underline{\gamma} l + \underline{Z}_{\mu} \operatorname{sh} \underline{\gamma} l} = \frac{\underline{Z}_{\mu} \operatorname{ch} \underline{\gamma} l + \underline{Z}_{\mu} \operatorname{sh} \underline{\gamma} l}{\underline{Z}_{\mu} \operatorname{ch} \underline{\gamma} l + \underline{Z}_{\mu} \operatorname{sh} \underline{\gamma} l} = \frac{\underline{Z}_{\mu} \operatorname{ch} \underline{\gamma} l + \underline{Z}_{\mu} \operatorname{sh} \underline{\gamma} l}{\underline{Z}_{\mu} \operatorname{ch} \underline{\gamma} l + \underline{Z}_{\mu} \operatorname{sh} \underline{\gamma} l} = \frac{\underline{Z}_{\mu} \operatorname{ch} \underline{\gamma} l + \underline{Z}_{\mu} \operatorname{sh} \underline{\gamma} l}{\underline{Z}_{\mu} \operatorname{ch} \underline{\gamma} l + \underline{Z}_{\mu} \operatorname{sh} \underline{\gamma} l} = \frac{\underline{Z}_{\mu} \operatorname{ch} \underline{\gamma} l + \underline{Z}_{\mu} \operatorname{sh} \underline{\gamma} l}{\underline{Z}_{\mu} \operatorname{sh} \underline{\gamma} l} = \frac{\underline{Z}_{\mu} \operatorname{ch} \underline{\gamma} l + \underline{Z}_{\mu} \operatorname{sh} \underline{\gamma} l}{\underline{Z}_{\mu} \operatorname{sh} \underline{\gamma} l} = \frac{\underline{Z}_{\mu} \operatorname{ch} \underline{\gamma} l + \underline{Z}_{\mu} \operatorname{sh} \underline{\gamma} l}{\underline{Z}_{\mu} \operatorname{sh} \underline{\gamma} l} = \frac{\underline{Z}_{\mu} \operatorname{ch} \underline{\gamma} l + \underline{Z}_{\mu} \operatorname{sh} \underline{\gamma} l}{\underline{Z}_{\mu} \operatorname{sh} \underline{\gamma} l} = \frac{\underline{Z}_{\mu} \operatorname{ch} \underline{\gamma} l + \underline{Z}_{\mu} \operatorname{sh} \underline{\gamma} l}{\underline{Z}_{\mu} \operatorname{sh} \underline{\gamma} l} = \frac{\underline{Z}_{\mu} \operatorname{ch} \underline{\gamma} l + \underline{Z}_{\mu} \operatorname{sh} \underline{\gamma} l}{\underline{Z}_{\mu} \operatorname{sh} \underline{\gamma} l} = \frac{\underline{Z}_{\mu} \operatorname{ch} \underline{\gamma} l + \underline{Z}_{\mu} \operatorname{sh} \underline{\gamma} l}{\underline{Z}_{\mu} \operatorname{sh} \underline{\gamma} l} = \frac{\underline{Z}_{\mu} \operatorname{ch} \underline{\gamma} l + \underline{Z}_{\mu} \operatorname{sh} \underline{\gamma} l}{\underline{Z}_{\mu} \operatorname{sh} \underline{\gamma} l} = \frac{\underline{Z}_{\mu} \operatorname{ch} \underline{\gamma} l + \underline{Z}_{\mu} \operatorname{sh} \underline{\gamma} l}{\underline{Z}_{\mu} \operatorname{sh} \underline{\gamma} l} = \frac{\underline{Z}_{\mu} \operatorname{ch} \underline{\gamma} l + \underline{Z}_{\mu} \operatorname{sh} \underline{\gamma} l}{\underline{Z}_{\mu} \operatorname{sh} \underline{\gamma} l} = \frac{\underline{Z}_{\mu} \operatorname{ch} \underline{\gamma} l}{\underline{Z}_{\mu} \operatorname{sh} \underline{\gamma} l} = \frac{\underline{Z}_{\mu} \operatorname{sh} \underline{Z}_{\mu} \operatorname{sh} \underline{\gamma} l} = \frac{\underline{Z}_{\mu} \operatorname{sh} \underline{\gamma} l} = \frac{\underline{Z}_{\mu} \operatorname{sh} \underline{\gamma} l}{\underline{Z}_{\mu} \operatorname{sh} \underline{\gamma} l} = \frac{\underline{Z}_{\mu} \operatorname{sh} \underline{\gamma} l}{\underline{Z}_{\mu} \operatorname{sh} \underline{\gamma} l} = \frac{\underline{Z}_{\mu} \operatorname{sh} \underline{\gamma} l}{\underline{Z}_{\mu} \operatorname{sh} \underline{\gamma} l} = \frac{\underline{Z}_{\mu} \operatorname{sh} \underline{Z}_{\mu} \operatorname{sh} \underline{$$

После деления числителя и знаменателя выражение (2) на $\underline{Z}_s \operatorname{ch} \underline{\gamma} l$ получим

$$\underline{Z}_{\beta x} = \underline{Z}_{\mathrm{B}} \frac{\frac{\underline{Z}_{H}}{\underline{Z}_{\beta}} + th \underline{\gamma} l}{1 + \frac{\underline{Z}_{H}}{\underline{Z}_{\beta}} th \underline{\gamma} l} .$$
(3)

Анализ выражения (3) показывает, что входное сопротивление является функцией параметров линии γ и Z_{s} , её длины l и сопротивления нагрузки Z_{μ} и определяется гиперболическим тангенсом комплексного аргумента γl .

Рассмотрим некоторые частные режимы работы длинной линии, при этом будем рассматривать длинную линию, у которой первичные параметры $R_o = 0$ и $G_o = 0$, т.е. имеет место линия без потерь (α =0). Такая идеализация справедлива для коротких по длине линий, работающих на сверхвысоких частотах, где выполняются условия $R_o \ll \omega L_o$ и $G_o \ll \omega C_o$ и резистивными сопротивлением R_o и проводимостью G_o можно пренебречь по сравнению с сопротивлением индуктивности ωL_o и проводимостью емкости ωC_o в линии.

Если учесть, что коэффициент распространения линии без потерь равен

$$\underline{\gamma} = \alpha + \mathbf{j}\beta = \mathbf{j}\beta = \mathbf{j}\omega\sqrt{L_oC_o}, (4)$$

а связь между гиперболическими и тригонометрическими функциями выражается следующими математическими соотношениями: ch $\gamma l = \cos\beta l$; sh $\gamma l = j\sin\beta l$ и $th\gamma l = tg\beta l$, то уравнения передачи (1), примет вид:

$$\begin{cases} \dot{U}_1 = \dot{U}_2 \cos\beta l + j\dot{I}_2 \underline{Z}_{\beta} \sin\beta l \\ \dot{I}_1 = \dot{I}_2 \cos\beta l + j\frac{\dot{U}_2}{Z_{\beta}} \sin\beta l \end{cases}, (5)$$

и выражение (3) можно переписать в виде:

$$\underline{Z}_{\mu x} = \underline{Z}_{\rm B} \frac{\underline{Z}_{\mu} + j \underline{Z}_{\mu} \mathrm{tg} \frac{2\pi}{\lambda} l}{\underline{Z}_{\mu} + j \underline{Z}_{\mu} \mathrm{tg} \frac{2\pi}{\lambda} l}.$$
 (6)

В режиме разомкнутой на конце линии, входное сопротивление будет равно

$$\underline{Z}_{\rm BX \, XX} = -j\underline{Z}_{\rm B} ctg \, \frac{2\pi}{\lambda} l, \, (7)$$

т.е. носит периодический характер (наличие периодической функции $tg \frac{2\pi}{\lambda}l$) и имеет реактивный характер (множитель –j) и вследствие разности фаз между током и напряжением, может быть индуктивным (X_L) или емкостным (X_C) в зависимости от

знака фазового сдвига между током и напряжением.

На рисунке 5 представлен характер изменения входного сопротивления разомкнутой на конце линии при изменении электрической длины линии.

Рис. 5. Изменение величины и характера входного сопротивления разомкнутой длинной линии (*α* > 0) при изменении её электрической длины

На конце линии (см. рис. 5) наблюдается нулевой уровень тока и максимальный уровень напряжения. Это означает, что входное сопротивление линии равно бесконечности.

Начиная с конца линии (см. рис. 5) начинает убывать емкостная составляющая входного сопротивления - X_c , которая достигает наименьшего значения на расстоянии $1/4 \lambda$ от конца линии. Но здесь ей противостоит столь же малая индуктивная составляющая входного сопротивления - X_L , возникающая в следующем участке $1/4\lambda$ длины линии. На расстоянии, равном $\lambda/4$ длины линии от конца линии (см. рис. 5), напряжение равно нулю, а ток максимален. Это означает, что в этой точке входное сопротивление линии равно нулю. На расстоянии $1/4\lambda$ от конца разомкнутой на конце линии, линия представляет собой последовательный контур.

На отрезке линии между 1/4λ и 1/2λ индуктивная составляющая входное сопротивление увеличивается и в точке 1/2λ входное сопротивление снова становится равным бесконечности. В этой точке линия представляет собой параллельный колебательный контур. Далее изменение входного сопротивления повторяется и в зависимости от своей длины разомкнутая двухпроводная линия (фидер) настраивается или как емкость, или как индуктивность подобно последовательному либо параллельному резонансному контуру.

Сдвиг фаз на 90° между током и напряжением при стоячей волне показывает, что в линии происходит колебание энергии, сходное с колебательным процессом в замкнутом колебательном контуре. Когда напряжение в линии наибольшее, а ток равен нулю, то вся энергия сосредоточена в электрическом поле. Через четверть периода напряжение равно нулю, а ток имеет наибольшее значение, и вся энергия сосредоточена в магнитном поле. Еще через четверть периода энергия снова возвратится в электрическое поле и процесс колебания энергии повторится.

Линия короткозамкнута на конце, т. е. когда нагрузочное сопротивление бесконечно мало.

В короткозамкнутой линии стоячая волна напряжения сдвинута на 1/4λ или 90° относительно стоячей волны тока. Графически это изображено на рисунке 6 двумя кривыми.

В случае короткозамкнутой на конце линии, входное сопротивление будет равно

$$\underline{Z}_{\rm BX K3} = \underline{j}\underline{Z}_{\rm B} tg \frac{2\pi}{\lambda} l, (8)$$

т.е. имеет чисто реактивный характер (множитель +j) и носит периодический характер (наличие периодической функции $tg \frac{2\pi}{\lambda} l$)

На рисунке 7 представлен характер изменения входного сопротивления короткозамкнутой линии при изменении электрической длины линии.

Рис. 7. Изменение величины и характера входного сопротивления короткозамкнутой длинной линии (*α* > 0) при изменении её длины

В точке В на конце линии (см. рис. 6) наблюдается нулевой уровень напряжения и максимальный уровень тока (пучность тока). Это означает, что на конце линии входное сопротивление линии $Z_{\text{вх}} = 0$.

Начиная с закороченного конца линии (см. рис. 7) начинает возрастать индуктивная составляющая входного сопротивления - X_L , которая достигает наибольшего значения на расстоянии 1/4 λ от конца линии. Но здесь ей противостоит столь же большая емкостная составляющая входного сопротивления - X_C , возникающая в следующем участке 1\4 λ длины линии.

На расстоянии, равном $\lambda/4$ электрической длины линии от точки В (см. рис. 6), ситуация обратная, т. е. напряжение максимально, а ток равен нулю

На расстоянии 1/4λ от конца закороченной линии, линия представляет собой параллельный контур и полное сопротивление линии в этой точке становится равным бесконечности.

На отрезке линии между 1/4λ и 1/2λ емкостная составляющая входное сопротивление уменьшается до нуля и в точке 1/2λ входное сопротивление становится равным нулю. В этой точке линия представляет собой последовательный колебательный контур. Далее изменение входного сопротивления повторяется и в зависимости от своей длины короткозамкнутая двухпроводная линия (фидер) настраивается или как индуктивность, или как емкость подобно последовательному либо параллельному резонансному контуру.

Также как и линии разомкнутой на конце, в короткозамкнутой линии, сдвиг фаз на 90° между током и напряжением при стоячей волне показывает, что в линии происходит колебание энергии, сходное с колебательным процессом в замкнутом колебательном контуре. Когда напряжение в линии наибольшее, а ток равен нулю, то вся энергия сосредоточена в электрическом поле. Через четверть периода напряжение равно нулю, а ток имеет наибольшее значение, и вся энергия сосредоточена в магнитном поле. Еще через четверть периода энергия снова возвратится в электрическое поле и процесс колебания энергии повторится.

Эти свойства двухпроводной линии (фидера) позволяют использовать их как резонансные элементы в колебательных контурах, фильтрах и согласующих устройствах. Отрезки линии, представляющие собой эквиваленты индуктивности, ёмкости или колебательного контура, могут иметь длину менее $1/4\lambda$. Это позволяет подбором длины линии получить необходимую индуктивность или ёмкость. Например, нужную индуктивность можно получить из короткозамкнутой линии длиной меньше $1/4\lambda$, а из разомкнутой линии длиной менее $1/4\lambda$ можно получить необходимую ёмкость. Замкнутая линия длиной $1/4\lambda$ представляет собой параллельный колебательный контур, а эта же разомкнутая линия превратится в последовательный колебательный контур. На рисунках 5 и 7 представлены разные возможности использования разомкнутой или короткозамкнутой линии в качестве согласующего элемента.

II. АЛГОРИТМ РАСЧЕТА РАСПРЕДЕЛЕНИЯ НАПРЯЖЕНИЯ И ТОКА В РЕЖИМЕ ХОЛОСТОГО ХОДА, КОРОТКОГО ЗАМЫКАНИЯ И СОГЛАСОВАННОЙ НАГРУЗКИ

Исходные данные.

По заданным вторичным параметрам однородной длинной линии длиной l км, волновом сопротивлении $Z_{\rm B}$ [Oм], коэффициенте распространения однородной линии $\gamma \left[{1/_{\rm KM}} \right]$ и частоте $f \left[{\Gamma _{\rm L}} \right]$ (см. таблицу 1 «Исходные данные для расчета распределения напряжения и тока в режиме холостого хода и короткого замыкания»)

1. Построить эпюры распределения напряжения и тока вдоль линии для случаев короткого замыкания, холостого хода и согласованной нагрузки, если линейное напряжение источника питающего линию изменяется по закону $u(t) = U_{1m} \sin \omega t$, где

 $U_{1m} = 115000$ B.

2. Определить, при какой частоте в заданной линии будет укладываться одна четверть волны $(l = \frac{\lambda}{4})$.

Решение:

1. Распределение напряжения и тока вдоль линии при холостом ходе.

Для анализа распределение напряжения и тока вдоль лини будем использовать схему замещения длинной линии

Схема замещения длинной линии

Воспользуемся уравнениями передачи однородной длинной линии для комплексных значений напряжения \dot{U}_x и тока \dot{I}_x с использованием гиперболических функций для произвольного сечения линии *x* через комплексные действующие значения напряжения \dot{U}_1 и тока \dot{I}_1 в начале линии при отсчете координаты *x* от начала линии будут иметь вид:

$$\begin{cases} \dot{U}_{x} = \dot{U}_{1} \operatorname{ch} \underline{\gamma} x - \dot{I}_{1} \underline{Z}_{\scriptscriptstyle B} \operatorname{sh} \underline{\gamma} x\\ \dot{I}_{x} = \dot{I}_{1} \operatorname{ch} \underline{\gamma} x - \frac{\dot{U}_{1}}{\underline{Z}_{\scriptscriptstyle B}} \operatorname{sh} \underline{\gamma} x \end{cases} . (1)$$

Подставив в выражения (1) вместо комплексных действующих значений напряжения \dot{U}_1 и тока \dot{I}_1 в начале линии комплексные действующие значения напряжения \dot{U}_{10} и тока \dot{I}_{10} в начале линии при холостом ходе, будем иметь

$$\begin{cases} \dot{U}_{x} = \dot{U}_{10} \operatorname{ch} \underline{\gamma} x - \dot{I}_{10} \underline{Z}_{\scriptscriptstyle B} \operatorname{sh} \underline{\gamma} x\\ \dot{I}_{x} = \dot{I}_{10} \operatorname{ch} \underline{\gamma} x - \frac{\dot{U}_{10}}{\underline{Z}_{\scriptscriptstyle B}} \operatorname{sh} \underline{\gamma} x \end{cases}.$$
(2)

Определяем действующее значение тока в начале линии для разомкнутой на конце линии

$$\dot{I}_{10} = \frac{\dot{U}_{10}}{\underline{Z}_{10}}, A$$

где $\dot{U}_{10} = |U_{10}|e^{j\psi_{1u}}|U_{10}|e^{j\psi_{1u}}|$ – действующее значение напряжения в начале линии при $\psi_{1u} = 0$, равно $|U_{10}| = \frac{115000}{\sqrt{3}} = 66500$, B;

 $\underline{Z}_{10} = \underline{Z}_{BX,XX} = \frac{\underline{Z}_{B}}{th\gamma l}$, Ом - входное сопротивление линии в режиме холостого хода.

Для сечений линии с координатами 0; l/4; l/2; 3l/4; l км, отсчитываемых от её начала определяем γx ; sh γx ; и ch γx , которые входят в выражения (1), при этом учитывая

формулы для тригонометрических и гиперболических функций комплексного переменного $\gamma = \alpha + j\beta$:

$$sh\underline{\gamma}l = sh(\alpha + j\beta)l = sh(\alpha l + j\beta l) = sh\alpha lcos\beta l + j chalsin\beta l;$$

 $ch\gamma l = ch(\alpha + j\beta)l = ch\alpha lcos\beta l + jsh \alpha lsin \beta l.$

Результаты расчетов сводим в таблицу 1.

Таблица 1

<i>l</i> , км	αl	βl	shαl	ch <i>al</i>	cosβl	sinβl	ch <u></u>	shγl	th <u>y</u> l
0									
l/4									
l/2									
<i>31/4</i>									
l									

Полезная информация.

При численных расчета гиперболического тангенса thyl от комплексного числа $(\underline{\gamma}l = \alpha l + j\beta l)$ можно воспользоваться другим известным соотношением между гиперболическими и тригонометрическими функциями, а именно

$$th\underline{\gamma}l = th(\alpha l \pm j\beta l) = \frac{sh2\alpha l \pm jsin2\beta l}{ch2\alpha l + cos2\beta l}$$

Для сечений линии с координатами 0; l/4; l/2; 3l/4; l км, отсчитываемых от её начала onpedeляем sh2αl, ch2αl, sin2βl и cos 2βl, воспользовавшись таблицами «Круговых, показательных и гиперболических функций» (Приложение 2).

Примечание: В случае если комплексное число, например, $\gamma l = 2\alpha l + j2\beta l = = 0,4 + j46,54$, имеет численное значение мнимой части (j46,54) больше 2π радиан, то для того чтобы вычислить численное значение периодических функций cos2 βl или sin2 βl необходимо воспользоваться равенствами

 $cos(\alpha + 2k\pi) = cos\alpha$

u

 $sin(\alpha + 2k\pi) = sin\alpha$,

где k— целое число периодов периодических функций косинус и синус. Тогда численное значение периодических функций косинус и синус будут равны

 $\cos 2\beta l = \cos 46,54 = \cos (46,54 - 7.6,28) = \cos 2,58 = -0,83$

U

$$sin2\beta l = sin46, 54 = sin(46, 54 - 7.6, 28) = sin2, 58 = 0, 55.$$

По найденным гиперболическим и тригонометрическим функциями sh2αl, ch2αl, sin2βl и cos 2βl определяется гиперболический тангенс thγl. Результаты расчетов сводим в ниже приведенную таблицу.

Таблица

<i>l</i> , км	2αl	2βl	sh2 <i>al</i>	ch2 <i>al</i>	cos2βl	sin2βl	ch <u></u>	sh <u></u>	th <u>y</u> l
0									
<i>l/4</i>									
<i>l/2</i>									
<i>31/4</i>									

l					

Для найденных значений γx ; sh γx ; и ch γx , используя выражения (1), определяем напряжение и ток в сечениях линии x = 0; 25; 50; 75 и 100 км.

Результаты расчетов сводим в таблицу 2.

Таблица 2

Х, КМ	Режим холостого хода		
	Ток, А	Напряжение, В	
0			
<i>l/4</i>			
<i>l/2</i>			
31/4			
l			

По данным расчетов строим эпюры распределения действующих значений напряжения и тока вдоль линии при холостом ходе (рис. 1).

2. Распределение тока и напряжения вдоль линии при коротком замыкании.

По аналогии определяем распределение тока и напряжения вдоль линии при коротком замыкании.

Определяем действующее значение тока в начале линии для короткого замыкания в линии

$$\dot{I}_{1\kappa} = \frac{\dot{U}_{1\kappa}}{\underline{Z}_{1\kappa}}, \, \mathbf{A}$$

где $\dot{U}_{1\kappa} = |U_{1\kappa}|e^{j\psi_{1u}}|U_{10}|e^{j\psi_{1u}}|$ – действующее значение напряжения в начале линии при $\psi_{1u} = 0$, равно $|U_{1\kappa}| = \frac{115000}{\sqrt{3}} = 66500$, B;

 $\underline{Z}_{1\kappa} = \underline{Z}_{BX,K3} = \frac{\dot{U}_{1\kappa}}{\dot{I}_{1\kappa}} = \underline{Z}_{B} t h \underline{\gamma} l$, Ом - входное сопротивление линии в режиме короткого замыкания.

По выражениям (1), для принятых сечений с координатами x = 0; 25; 50; 75 и 100 км, отсчитываемых от её начала, x (см. табл. 1) определяем напряжение и ток.

Вычисленные значения токов и напряжений при коротком замыкании линии сводим в таблицу 3, а построенные по результатам вычислений эпюры распределения токов и напряжений вдоль линии приведены на рисунке 2.

Таблица 3

Х, КМ	Режим короткого замыкания		
	Ток, А	Напряжение, В	
0			
1/4			
<i>l/2</i>			
31/4			
0			

3.Распределение токов и напряжений вдоль линии при согласованной нагрузке. Распределение токов и напряжений вдоль линии при согласованной нагрузке

 $(\underline{Z}_{\rm H} = \underline{Z}_{\rm B})$, определяется аналогично режимам холостого хода и короткого замыкания.

Особенность данного режима является то, что в любом сечении линии входное сопротивление её остается постоянным и равным волновому

$$\underline{Z}_{\rm BX} = \underline{Z}_{\rm B}$$
 . Om

Ток в начале линии, нагруженной на $\underline{Z}_{H} = \underline{Z}_{B}$, будет равен

$$\dot{I}_1 = \frac{\dot{U}_1}{\underline{Z}_{\scriptscriptstyle B}}$$
. A

По выражениям (1) находим значение напряжения и тока в сечениях с координатами x = 0; 25; 50; 75 и 100 км, принятых ранее (см. табл. 1). Вычисленные значения токов и напряжений сведены в таблицу 4.

Таблица 4

X, KM	Режим согласованной нагрузки		
	Ток, А	Напряжение, В	
0			
1/4			
<i>l/2</i>			
31/4			

0	
0	
0	

На рисунке 3 приведены эпюры распределения действующих значений тока и напряжения вдоль линии, работающей в режиме согласованной нагрузки.

Рис. 3. Распределения действующих значений напряжения и тока вдоль линии при согласованной нагрузке

4. Определение частоты, при которой в заданной линии будет укладываться одна четверть волны, т.е. $l = \frac{\lambda}{4}$ или $\lambda = 4$ l.

Для этого используем соотношения:

$$\lambda = \frac{2\pi}{\beta}$$

И

$$v_{\Phi} = \frac{\omega}{\beta} = \frac{2\pi f}{\beta} = \frac{2\pi f}{\frac{2\pi}{\lambda}} = f\lambda$$

Откуда

$$f = \frac{v_{\Phi}}{\lambda}$$

или при длине волны, равной $\lambda = 4l$ имеем

$$f = \frac{v_{\phi}}{\lambda} = \frac{v_{\phi}}{4l}, \ \frac{1}{c}$$

где $v_{\phi} = 300000 \text{ KM}/_{\text{C}}$ – скорость электромагнитной волны в вакууме.

Приложение 1

Образец формы титульного листа отчета по практическому занятию и содержание пунктов отчета

Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования «Уральский государственный горный университет»

Кафедра Электротехники

ОТЧЕТ по практическому занятию №____ по дисциплине «ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ЭЛЕКТРОТЕХНИКИ» Тема: _____

(наименование темы)

Студент(ка) гр.

Дата выполнения практического занятия

Преподаватель

Екатеринбург 202___

Исходные данные:

По заданным вторичным параметрам однородной длинной линии длиной l км, волновом сопротивлении $\underline{Z}_{\rm B}$ Ом, коэффициенте распространения однородной линии $\underline{\gamma} \ 1/_{\rm KM}$ и частоте $f \,\Gamma$ ц (см. таблицу 1 «Исходные данные для расчета распределения напряжения и тока в режиме холостого хода и короткого замыкания») построить эпюры распределения напряжения и тока вдоль линии для случаев короткого замыкания, холостого хода и согласованной нагрузки, если напряжение источника питающего линию изменяется по закону u = $U_{1m} \sin \omega t$, где $U_{1m} = 115000 \,\text{B}$. Определить, при какой частоте в заданной линии будет укладываться одна четверть

Определить, при какой частоте в заданной линии будет укладываться одна четверть волны $(l = \frac{\lambda}{4})$.

т	•	~				
I	а	OJ	П	41	Ia	1

Длина линии, <i>l, км</i>	100
Волновом сопротивлении, <u>Z_в</u> , Ом	$450e^{-j_{18}}$
Коэффициент распространения на единицу длины однородной линии, <u>ү</u> , 1/км	$1,13 \cdot 10^{-3} e^{j71}$
Частота сигнала, <i>f</i> , Гц	50
Напряжение источника питания , U_{1m} , В	115000

Решение:

1. Найдем распределение напряжения и тока вдоль линии при холостом ходе.

Для анализа распределение напряжения и тока вдоль лини будем использовать схему замещения длинной линии

Схема замещения длинной линии

Воспользуемся уравнениями передачи однородной длинной линии для комплексных значений напряжения \dot{U}_x и тока \dot{I}_x с использованием гиперболических функций для

произвольного сечения линии x через комплексные действующие значения напряжения \dot{U}_1 и тока \dot{I}_1 в начале линии при отсчете координаты x от начала линии будут иметь вид:

$$\begin{cases} \dot{U}_x = \dot{U}_1 \operatorname{ch} \underline{\gamma} x - \dot{I}_1 \underline{Z}_{\scriptscriptstyle B} \operatorname{sh} \underline{\gamma} x \\ \dot{I}_x = \dot{I}_1 \operatorname{ch} \underline{\gamma} x - \frac{\dot{U}_1}{\underline{Z}_{\scriptscriptstyle B}} \operatorname{sh} \underline{\gamma} x \end{cases} . (1)$$

Подставив в выражения (1) вместо комплексных действующих значений напряжения \dot{U}_1 и тока \dot{I}_1 в начале линии комплексные действующие значения напряжения \dot{U}_{10} и тока \dot{I}_{10} в начале линии при холостом ходе, будем иметь

$$\begin{cases} \dot{U}_{x} = \dot{U}_{10} \operatorname{ch} \underline{\gamma} x - \dot{I}_{10} \underline{Z}_{\scriptscriptstyle B} \operatorname{sh} \underline{\gamma} x\\ \dot{I}_{x} = \dot{I}_{10} \operatorname{ch} \underline{\gamma} x - \frac{\dot{U}_{10}}{\underline{Z}_{\scriptscriptstyle B}} \operatorname{sh} \underline{\gamma} x \end{cases}.$$
(2)

Определим действующее значение тока в начале линии при холостом ходе

$$\dot{I}_{10} = \frac{\dot{U}_{10}}{\underline{Z}_{10}} = \frac{115000}{\sqrt{3 \cdot 4180e^{-j89}}} = 15,9 \ e^{j89}, \text{A}$$

где $\dot{U}_{10} = |U_{10}|e^{j\psi_{1u}}|U_{10}|e^{j\psi_{1u}}|$, при $\psi_{1u} = 0$ равно $|U_{10}| = \frac{115000}{\sqrt{3}} = 66500$, В –

действующее значение напряжения в начале линии при холостом ходе;

 $\underline{Z}_{10} = \underline{Z}_{\text{вх.хх}} = \frac{\underline{Z}_{\text{в}}}{th\gamma l} = \frac{450e^{-j18} \cdot 0,994e^{j12}}{0,107e^{j71}} = 4180e^{-j89}, \text{Ом} - \text{входное сопротивление линии}$ в режиме холостого хода.

Для сечений линии с координатами x = 0; 25; 50; 75 и 100 км, отсчитываемых от её начала, определяем γx ; sh γx ; и сh γx , которые входят в выражения (2).

Результаты расчетов сведены в таблицу 1

Таблица 1

Х, КМ	<u>γ</u> x	sh <u>γ</u> x	chyx
0	0	0	1
25	0,0088+j0,0268	$0,028e^{j90}$	1
50	0,0176+j0,0536	0,00176+j0,059=0,059 <i>e^{j88}</i>	0,998+j0,0104=0,998e ^{j4'}
75	0,0264+j0,0804	$0.0263+j0,0795=0,084e^{j72}$	0,997+j0,0021=0,997 <i>e^{j6'}</i>
100	0,0353+j0,107	$0,0351+j0,107=0,107e^{j71}$	0,994+j0,0038=0,994 <i>e</i> ^{j12}

Определим напряжение и ток для сечения линии х = 25 км

$$\dot{U}_{25} = \dot{U}_{10} \operatorname{ch} \underline{\gamma} x - \dot{I}_{10} \underline{Z}_{\mathrm{B}} \operatorname{sh} \underline{\gamma} x = 66500 \cdot 1 - 15,9 \ e^{j89} \cdot 450 e^{-j18} \cdot 0,028 e^{j90} = 66690 - j63,2 = 66700 e^{-j3'}, \mathrm{B}$$

$$\dot{I}_{25} = \dot{I}_{10} \text{ ch } \underline{\gamma}x - \frac{\dot{U}_{10}}{\underline{Z}_{\text{B}}} \text{ sh } \underline{\gamma}x = 15,9 \ e^{j89} \cdot 1 - \frac{66500}{450e^{-j18}} \cdot 0,028e^{j90} = 1,818 + j11,83 = 11,9e^{j81}. \text{ A}$$

Аналогично определяем напряжение и ток для остальных сечений линии. Результаты расчетов сведены в таблицу 2. По данным расчетов построены эпюры распределения действующих значений напряжения и тока вдоль линии при холостом ходе (рис. 1).

Таблица 2

Х, КМ	Режим холостого хода					
	Ток, А	Напряжение, В				
0	15,9 <i>e^{j89}</i>	66500				
25	11,9 <i>e^{j81}</i>	$66700e^{-j3'}$				
50	7,98 <i>e^{j81}</i>	$66740e^{-j6'}$				
75	3,45 <i>e^{j89}</i>	66780 <i>e</i> ^{-j10'}				
100	0	$66800e^{-j_{12}'}$				

2. По аналогии определяем распределение тока и напряжения вдоль линии при коротком замыкании.

Предварительно вычисляем ток короткого замыкания в начале линии

$$\dot{I}_{1\mathrm{K}} = \frac{\dot{U}_{1\mathrm{K}}}{\underline{Z}_{1\mathrm{K}}} = \frac{115000}{\sqrt{3 \cdot 48,5}e^{j53}} = 1370 \ e^{-j53}, \mathrm{A}$$

где $\dot{U}_{1\kappa} = |U_{1\kappa}|e^{j\psi_{1u}}|U_{10}|e^{j\psi_{1u}}|$, при $\psi_{1u} = 0$ равно $|U_{1\kappa}| = \frac{115000}{\sqrt{3}} = 66500$, В –

действующее значение напряжения в начале линии при холостом ходе;

$$\underline{Z}_{1\kappa} = \underline{Z}_{BX,K3} = \frac{U_{1\kappa}}{i_{1\kappa}} = \underline{Z}_{B} th \underline{\gamma} l. = \frac{450e^{-j13} \cdot 0.994e^{j12}}{0.111e^{j69}} = 48.5 e^{j53}, \text{ Om - входное}$$

сопротивление линии в режиме короткого замыкания.

По уравнениям (2), где вместо \dot{U}_1 и \dot{I}_1 , подставляем $\dot{U}_{1\kappa}$ и $\dot{I}_{1\kappa}$ для принятых сечений х (см. табл. 1) определяем напряжение и ток.

Так, например, для х = 25 км имеем:

$$\dot{U}_{25} = \dot{U}_{1\kappa} \operatorname{ch} \underline{\gamma} x - \dot{I}_{1\kappa} \underline{Z}_{\mathrm{B}} \operatorname{sh} \underline{\gamma} x = 66500 \cdot 1 - 1370 \ e^{-j^{53}} \cdot 450 e^{-j^{18}} \cdot 0,028 e^{j^{90}} = 50150 - j^{5230} = 50300 \ e^{-j^{8}}, \mathrm{B}$$

$$\dot{I}_{25} = \dot{I}_{1\kappa} \operatorname{ch} \underline{\gamma} x - \frac{\dot{U}_{1\kappa}}{\underline{Z}_{B}} \operatorname{sh} \underline{\gamma} x = 1370 \ e^{-j53} \cdot 1 - \frac{66500}{450 e^{-j18}} \cdot 0,028 e^{j90} = 816,3 + j1104 = 1371 \ e^{-j53}. \text{ A}$$

Ток и напряжение для остальных х находим аналогично. Вычисленные значения токов и напряжений при коротком замыкании линии приведены в таблице 3, а

построенные по результатам вычислений эпюры распределения токов и напряжений вдоль линии приведены на рисунке 2.

Τ	аблица	3
		-

х, км	Режим короткого замыкания					
	Ток, А	Напряжение, В				
0	$1370 \ e^{-j53}$	66500				
25	$1371 \ e^{-j53}$	$50300 e^{-j8}$				
50	$1372 e^{-j53}$	$33300 \ e^{-j18}$				
75	$1373 e^{-j53}$	$14600 \ e^{-j10}$				
100	$1374 \ e^{-j53}$	0				

Рис. 2. Эпюры распределения действующих значений напряжения и тока вдоль линии при коротком замыкании

3. Распределение токов и напряжений вдоль линии при согласованной нагрузке, т.е. когда сопротивление нагрузки равно волновому сопротивлению ($\underline{Z}_{H} = \underline{Z}_{B}$) определяется аналогично режимам холостого хода и короткого замыкания.

Особенность данного режима является то, что в любом сечении линии входное сопротивление её остается постоянным и равным волновому ($\underline{Z}_{BX} = \underline{Z}_{B}$). Следовательно входное сопротивление линии в данном режиме равно

$$\underline{Z}_{BX} = \underline{Z}_{B} = 450e^{-j18}$$
. Ом
Ток в начале линии, нагруженной на $\underline{Z}_{H} = \underline{Z}_{B}$, будет равен
 $i = \frac{\dot{U}_{1}}{1} = \frac{115000}{115000} = 148 c \frac{j18}{118}$

$$\dot{I}_1 = \frac{\dot{U}_1}{\underline{Z}_{\text{B}}} = \frac{115000}{\sqrt{3 \cdot 450}e^{-j_{13}}} = 148 \ e^{j_{18}}.$$
 A

По уравнениям (2) находим значение напряжения и тока в сечениях, принятых ранее (см. табл. 1).

Например, при х = 25 км имеем:

$$\dot{U}_{25} = \dot{U}_{1} \operatorname{ch} \underline{\gamma}x - \dot{I}_{1}\underline{Z}_{B} \operatorname{sh} \underline{\gamma}x = 66500 \cdot 1 - 148 \ e^{j18} \cdot 450e^{-j18} \cdot 0,028e^{j90} = = 66500 - j1863 = 66500 \ e^{-j1}, B$$
$$\dot{I}_{25} = \dot{I}_{1} \operatorname{ch} \underline{\gamma}x - \frac{\dot{U}_{1}}{\underline{Z}_{B}} \operatorname{sh} \underline{\gamma}x = 148e^{-j18} \cdot 1 - \frac{66500}{450e^{-j18}} \cdot 0,028e^{j90} = 148 \ e^{j16}. A$$

Вычисленные значения токов и напряжений сведены в таблицу 4. На рисунке 3 приведены эпюры распределения действующих значений тока и напряжения вдоль линии, работающей в режиме согласованной нагрузки.

Таблица 4

Х, КМ	Режим согласованной нагрузки					
	Ток, А	Напряжение, В				
0	148 e ^{j18}	66500				
25	148 $e^{j_{16}}$	$66500 e^{-j1}$				
50	145 $e^{j_{15}}$	$66200 \ e^{-j2}$				
75	143 e ^{j13}	$64750 \ e^{-j4}$				
100	143 $e^{j_{12}}$	$66300 \ e^{-j6}$				

Рис. 3. Распределения действующих значений напряжения и тока вдоль линии при коротком замыкании

4. Определим частоту, при которой в заданной линии будет укладываться одна четверть волны, т.е. $l = \frac{\lambda}{4}$ или $\lambda = 4 l$.

Для этого используем соотношения:

И

$$v_{\Phi} = \frac{\omega}{\beta} = \frac{2\pi f}{\beta} = \frac{2\pi f}{\frac{2\pi}{\lambda}} = f\lambda$$

 $\lambda = \frac{2\pi}{\beta}$

Откуда

$$f = \frac{v_{\phi}}{\lambda}$$

или при длине волны, равной $\lambda = 4l$ имеем

$$f = \frac{v_{\phi}}{\lambda} = \frac{v_{\phi}}{4l} = \frac{300 \cdot 10^3}{4 \cdot 100} = 732, 1/c$$

где $v_{\phi} = 300000 \text{ KM}/_{\text{C}}$ – скорость электромагнитной волны в вакууме.

Примечание: Студенты оформляют отчет с использование для оформления и печати ЭВМ.

Таблица 4. Круговые, показательные и гиперболические функции

(Аргумент в дуговых единицах и градусах) *

æ	$\sin x$	cos æ	tg æ	ex	e x	sh x	ch x	th .v	ж в гра- дусах
0.00									
0,00	0,00000	1 00000	0,00000	1,00000	1,00000	0,00000	1,00000	0,00000	0,00
01	0,0:000	0,0995	0,01000	1,01005	0,59005	0,01000	1,00005	0,01000	0,57
02	0,02000	0,99980	0.02000	1,02 25	0,98020	0,02000	1,00020	0,02000	1,15
03	0,03000	0,9-955	0,03001	1,03045	0,97040	0,03000	1,00045	0,02999	1,42
04	0,03-99	0,9~920	0.04002	1 05197	0.05192	0,04001	1,00080	0,03998	2,29
05	0.049 0	0,95677	0.06004	1,00127	0,98126	0,05002	1,00125	0,04990	2,80
07	0,05190	0,99755	0.07011	1,00104	0,94170	0.00004	1,00.80	0,00999	0,44
68	0.00334	0,90700	0.08317	1.08200	0.92319	0,07000	1,00240	0,00968	4,01
09	0,68938	0,99595	0.09024	1,09417	0,91093	0.09012	1.00405	0.08976	5.16
0.10	0.09983	0.99500	0.10083	1 10517	0.90484	0.10017	1.00500	0.00067	5 73
11	0.16978	89999 0	0,10000	1 11693	0.82583	0.11022	1,00500	0,09507	6 30
12	0.11971	0.99281	0.12 28	1,19750	0.82692	0.12029	1,00721	0,10900	6.88
13	0.12963	0.99156	0.13074	1.1.883	0.57810	0.13037	1 00846	0 12927	7.45
14	0.13254	0.990?2	0.14)92	1.15.27	0.86 36	0.14.146	1,00982	0.13909	8.02
15	0.14.44	0.98877	0.15114	1.16:83	0.86071	0.15066	1.01:27	0.14889	8.59
16	0.15932	0.98723	0.16138	1,17351	0.85214	0.16068	1 01283	0.15865	9,17
17	0,16918	0,98558	0.17165	1,18530	0.84366	0.17082	1.01448	0.16838	9.74
18	0.17903	0.98384	0.18197	1,19722	0.83527	0.18097	1.0:624	0,178,8	10.31
19	0,18886	0,98200	0,19232	1,20925	0,82696	0,19115	1,01810	0,18775	10,89
0.20	0.19867	0.98007	0.20271	1 22140	0.81873	0 20134	1 02007	.0 10738	11.46
21	0.2.846	0.97803	0.21314	1.22268	0.81058	0,20104	1.022:3	0,19730	19/03
22	0.21823	0.97590	0.22362	1 24608	0.80252	0 22178	1 02120	0.20057	12,00
23	0.22798	0.97367	0.2.414	1.24000	0.79453	0.23203	1,02455	0,22603	13,18
24	0.25770	0.97134	0.24 72	1.27125	0.78663	0.24231	1 02894	0.23550	13,75
25	0.24740	0.96891	0.25534	1 28403	0.7880	0 25281	1 03:41	0 24492	14.32
26	0.25708	0.96539	0.266 2	1,2,693	0.77105	0.26294	1,03399	0 25430	14,90
27	0,26673	0.96577	0,27676	1.30 96	0.76338	0.27329	1.03667	0.26362	15.47
28	0.27636	0,96106	0.28755	1.32313	0,75578	0.28267	1.03946	0.27291	16.04
29	0,23595	0,95824	0,29841	1,33643	0,74826	0,294./8	1,04235	0,28213	16,62
0.30	0.29552	0.95534	0.30934	1.34986	0.74682	0.30452	1 04534	0.20131	17 19
31	0.30506	0.95233	0.32.33	1.36.43	0.74345	0 31499	1 04844	0.37744	17 76
32	0.31457	0,049/4	0.33139	1,30343	0.72615	0.32549	1.05164	0.3.05	18'33
33	0.324.4	0.945.4	0.34252	1.3 3.97	0.71892	0.336.02	1 05495	0.31852	18,91
34	0.333.9	0.94275	0.05374	1,40425	0.71177	0.346.9	1.05836	0.32748	(9.48
35	0,342.0	0,939.57	0.56503	1.41907	0.70469	0.35719	1.06.88	0.33638	20.05
36	0,35227	0,93590	0.37640	1.43333	0.69768	0.36783	1.06550	0.34521	20.63
37	0,56162	6,93 33	0,38786	1.44773	0.6 073	0.37850	1.06923	0.35399	21.20
38	0,370° 2	0,92866	0,39941	1.45228	0.68386	0.38921	1.07307	0.36271	21.77
39	0,38019	0,92491	0,41105	1,47698	0,67706	0,39996	1,07702	0,37136	22,35
9.40	0.38942	0.92106	0 42279	1 42190	0.67032	0.41075	1 08107	0 27005	00.00
41	0.39861	0.91712	0 43463	1,4 104	0.66.63	6 49158	1.08107	0,01980	93 AC
42	0.407 6	0.91319	0.44657	1.55062	0.6-705	0.42100 0.1324E	1.08050	0,00047	94.06
43	0,41687	0.90397	0.4/862	1.53793	0.65.51	0 44 337	1.00388	0,03030	24,00
44	0,42594	0.90475	0.41.78	1.55971	0.614.)4	0 45434	1.01837	0.41264	25.91
45	0.434°7	0,90045	0.48306	1.56831	0.6.763	0.46534	1,16297	0 49100	25.78
46	0,4 395	0.89605	0.43545	1.58467	0.63128	0.47640	1,19768	0 430 . 8	26.36
47	0,45289	0,29157	0,50797	1,59999	0.62500	0,48750	1,11250	0.43820	26.93
48	0,46178	0,88619	0.52061	1,61607	0,61878	0,49865	1.11743	0.44624	27.50
49	7,47-63	0,86233	0,53339	1,63232	0,61263	0,50984	1,12247	0,45422	28,07
0,50	0,47943	0.87758	0.54630	1.64872	0.60653	0.52110	1,12763	0 46212	28.65
		.,	2)01000 1	*10.015	0,00000	01021101	-1-2100	0,10212	20,00

* Дополн. табл. для значений аргумента $\pi/4$, $\pi/2$, $3\pi/4$, π , $5\pi/4$, $3\pi/2$, $7\pi/4$, 2π (стр. 42) Примечание. Для значений x > 6,3 будот 1) (по меньшей мере для 3 десятичных знаков) sh $x \approx ch \ x \approx \frac{1}{2} \ e^{x_i}$ расчет, как в прим. 2 (стр. 57); 2) th $x \approx 1,00000$; 3) sin x, сов x, tg x равны соответственным значениям функций для значений аргумента $x - 2\pi$, $x - 4\pi$, $x - 6\pi$,..., лежащих между 0,0 и 6,3. — Следует считаться с пробой ch $x \pm \pm$ sh, $x = e^{\pm x}$.

(Артумент в дуговых единицах и градусах) * (продол						женису			
x	sin x	cos x	ig .x	ex	ex	sh x	ch x	th x	х в гра- дусах
0,50 51 52 53 54 55 56 57 58 59	0,47943 0,48818 0,49688 0,50553 0,51414 0,52269 0,53119 0,53263 0,54802 0,55636	0,87758 0,87274 0,86782 0,86281 0,85771 0,85252 0,84726 0,84726 0,83094	$\begin{array}{c} 0,54630\\ 0,55936\\ 0,572.6\\ 0,58592\\ 0,59943\\ 0,61311\\ 0,62695\\ 0,64J97\\ 0,6.517\\ 0,66956\end{array}$	$1,64872 \\ 1,66529 \\ 1,68203 \\ 1,69893 \\ 1,71631 \\ 1,73525 \\ 1,75067 \\ 1,76827 \\ 1,76827 \\ 1,7604 \\ 1,85399 \\ 1,8539 \\ 1,8$	0,60653 0,5050 0,59452 0,5865 0,57695 0,57121 0,5653 0,55990 0,55433	0,52110 0,53240 0,54375 0,55516 0,56663 0,57815 0,58973 0,60137 0,6.307 0,62483	$\begin{array}{c} 1,12763\\ 1,13289\\ 1,13827\\ 1,14377\\ 1,14938\\ 1,15510\\ 1,16094\\ 1,16690\\ 1,17297\\ 1,17916\end{array}$	0,46212 0,46995 0,47770 0,48538 0,49299 0,50J52 0,50J52 0,50798 0,51536 0,52267 0,52990	28,65 29,22 29,79 30,37 30,94 31,51 32,09 32,66 33,23 33,80
0,60 61 62 63 64 65 56 67 68 69	0,56464 0,57287 0,58104 0,58914 0,59720 0,60519 0,61312 0,62399 0,62879 0,63654	0,82534 0,81065 0,81388 0,80803 0,80210 0,79608 0,78199 0,78382 0,77757 0,77125	0,68414 0,69892 0,71591 0,72911 0,74454 0,76020 0,77610 0,79225 0,80866 0,82534	1,82212 1,84043 1,85893 1,87761 1,89648 1,91554 1,93479 1,95424 1,97388 1,99372	$\begin{array}{c} 0.54881\\ 0.54335\\ 0.53794\\ 0.53259\\ 0.52205\\ 0.51685\\ 0.51171\\ 0.50662\\ 0.50158\\ \end{array}$	0,63665 0,64854 0,66349 0,67251 0,68439 0,69675 0,70897 0,72126 0,7363 0,74607	$\begin{array}{c} 1.18547\\ 1.19.89\\ 1.19844\\ 1.20510\\ 1.21189\\ 1.21879\\ 1.2252\\ 1.23297\\ 1.24025\\ 1.24765\\ \end{array}$	0,53705 0,54413 0,55113 0,558496 0,57167 0,57836 0,58498 0,59152 0,59798	24,38 34,95 35,52 36,10 26,67 37,24 37,82 38,39 38,39 38,56 39,53
0,70 71 72 73 74 75 76 77 78 * 79	0,64422 0,65183 0,65938 0,65687 0,67429 0,63164 0,68892 0,66614 0,70328 0,71035	0,76484 0,75826 0,75181 0,74517 0,77847 0,73.69 0,72484 0,71791 0,71091 0,70385	0,84229 0,85953 0,87707 0,89492 0,91309 0,93160 0,95045 0,96967 0,98926 1,00925	2,01375 2,03399 2,05443 2,07508 2,09594 2,11700 2,13828 2,15977 2,18147 2,20340	0,49659 0,49164 0,48675 0,48191 0,47711 0,47237 0,46267 0,46267 0,46301 0,42841 0,45384	0,75858 0,77117 0,78384 0,79659 0,80941 0,82232 0,83530 0,84838 0,86153 0,87478	$\begin{array}{c} 1,25517\\ 1,26282\\ 1,27059\\ 1,27849\\ 1,28652\\ 1,29468\\ 1,30297\\ 1,31139\\ 1,31994\\ 1,32862 \end{array}$	0,60437 0,61068 0,61691 0,62307 0,62915 0,63515 0,63515 0,64695 0,64695 0,64695 0,64693	40,11 40,68 41,25 41,83 42,40 42,97 43,54 44,12 44,60 45,26
0,80 81 82 83 84 85 86 87 88 89	0,71736 0,72429 0,73115 0,73793 0,74464 0,75128 0,75784 0,76433 0,77674 0,77707	0,69671 0,68950 0,68222 0,67488 0,65746 0,6598 0,65244 0,64483 0,63715 0,62941	$\begin{array}{c} 1,02964\\ 1,05046\\ 1,07171\\ 1,09343\\ 1,11563\\ 1,13833\\ 1,16156\\ 1,18532\\ 1,20966\\ 1,23460\end{array}$	2,22554 2,24791 2,27050 2,29332 2,31637 2,33965 2,36516 2,35691 2,41090 2,43513	0,44933 0,44486 0,44043 0,41605 0,43171 0,42741 0,42316 0,41895 0,41895 0,41478 0,41066	0,88811 0,90152 0,9.603 0,97863 0,94233 0,95612 0,97000 0,98358 0,59806 1,01224	$\begin{array}{c} 1,33743\\ 1,34638\\ 1,35547\\ 1,36468\\ 1,3.4.4\\ 1,38353\\ 1,39316\\ 1,40293\\ 1,41284\\ 1,42289\end{array}$	0,66404 0,66956 0,67503 0,6858 0,69107 0,68620 0,70133 0,7064 0,71133	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
0,90 91 92 93 94 95 95 95 96 97 98 99 1.00	0,78333 0,78950 0,79560 0,80162 0,80776 0,81342 0,81919 0,82489 0,83050 0,83603 0,83603	0,62161 0,61375 0,60582 0,59783 0,58979 0,58,68 0,57352 0,56530 0,55702 0,54869	$\begin{array}{c} 1,26016\\ 1,28637\\ 1,31326\\ 1,34087\\ 1,36923\\ 1,39838\\ 1,42836\\ 1,42836\\ 1,42920\\ 1,45920\\ 1,52368\\ 1,52368\\ 1,55741\\ \end{array}$	2,45960 2,48432 2,50929 2,53451 2,55998 2,58571 2,6170 2,63794 2,66446 2,69123 2,71828	0,40657 0,40252 0,39852 0,39455 0,38,63 0,385/4 0,38289 0,37908 0,37908 0,37158 0,37158	1,02652 1,04,90 1,05539 1,06998 1,08468 1,09948 1,1144,0 1,12843 1,1144,0 1,12843 1,144,0 1,15583	1,43309 1,44342 1,45390 1,46453 1,47535 1,49729 1,50851 1,51988 1,53141 1,54308	0,7163 0,7211 0,7259 0,7305 0,7352 0,7392 0,7392 0,7442 0,7442 0,7447 0,7530 0,7573 0,7573	51,57 52,14 52,71 53,20 53,20 53,20 53,80 54,43 55,00 55,58 7 56,17 6 16,73 9 57,30
		1 -12-12-24	1	1.	1	1		1	1

Таблица 4. Круговые, показательные и гиперболические функции ~\ * (Протовжение)

Дополнительная таблица для значений аргумента n/4, n/2, 3n/4, n, 5n/4, 3n/2, 7n/4,
 2n (стр. 42).

Таблица 4. Круговые, показательные и гиперболические функции

(Аргумент в дуговых единицах и градусах) *

(Продолжение)

								•	
x	sin x	cos x	tg x	ex	e-x	sh x	ch x	th x	ж в гра дусах
1,00 01 02 03 04 05 06 07 08 09 1,10	0,84147 0,84683 0,85211 0,85730 0,86240 0,86742 0,87720 0,87720 0,88196 0,88663 0,89121	0,54030 0,53,86 0,52337 0,51482 0,50622 0,49757 0,48887 0,48812 0,47133 0,46249 0,45350	1,55741 1,59221 1,62813 1,66524 1,70361 1,74332 1,78442 1,82703 1,87122 1,91709 1,96476	2,71828 2,74560 2,77319 2,80107 2,82922 2,85765 2,88637 2,91538 2,94468 2,97427 3,00417	0,36788 0,36422 0,36359 0,35701 0,35345 0,34994 0,34646 0,34301 0,3396 0,33622 0,33287	1,17520 1,19069 1,20630 1,22203 1,23788 1,25386 1,26396 1,28619 1,30254 1,31903 1,33565	1,54308 1,55491 1,56689 1,57904 1,59134 1,61379 1,61641 1,62919 1,64214 1,65525 1,65852	0,76159 0,76576 0,76987 0,77391 0,77789 0,78181 0,78566 0,78946 0,79320 0,79688 0,80050	57,30 57,87 58,44 59,01 59,59 60,16 60,73 61,31 61,88 62,45 63,03
11 12 13 14 15 16 17 18 19	0,89570 0,90010 0,93441 0,93863 0,91276 0,91680 0,92075 0,92461 0,92837	0,44466 0,43568 0,42666 0,41759 0,40849 0,39934 0,39015 C,38092 0,37166	2,01434 2,6596 2,11975 2,17588 2,23450 2,28580 2,35998 2,42727 2,49790	3,03436 3,06485 3,09566 3,12677 3,15819 3,18993 3,22,99 3,25437 3,28708	0,32956 0,32628 0,323.3 0,31982 0,31664 0,31349 0,31037 0,30728 0,3.422	$1,35240 \\ 1,36929 \\ 1,38631 \\ 1,4.347 \\ 1,42078 \\ 1,43822 \\ 1,45881 \\ 1,47355 \\ 1,49143 \\ 1,49144 \\ 1,49$	$\begin{array}{c} 1,68,96\\ 1,69557\\ 1,7,934\\ 1,72329\\ 1,73741\\ 1,75171\\ 1,76618\\ 1,78,83\\ 1,79565\end{array}$	0,8,406 0,8,757 0,81102 0,81441 0,81775 0,82104 0,82427 0,82427 0,82745 0,83058	63,60 64,17 64,74 65,32 65,89 66,46 67,04 67,61 68,18
1,20 21 22 23 24 25 26 27 28 29	0,93204 0,93562 0,93910 0,94249 0,94578 0,94898 0,95209 0,95510 0,95802 0,96684	0,38236 0,38302 0,34365 0,33424 0,32480 0,31532 0,30582 0,29628 0,28672 0,27712	$\begin{array}{c} 2,57215\\ 2,65033\\ 2,73275\\ 2,81982\\ 2,91193\\ 3,00957\\ 3,11327\\ 3,22363\\ 3,34135\\ 3,46721 \end{array}$	3,32012 3,35348 3,38719 3,42123 3,45561 3,49034 3,52542 3,56085 3,59664 3,63279	0,30119 0,29820 0,29523 0,29229 0,28938 0,28650 0,28650 0,28655 0,2865 0,2865 0,2865 0,2865 0,2865 0,278.4 0,27527	$\begin{array}{c} 1,50946\\ 1,52764\\ 1,54598\\ 1,55447\\ 1,58311\\ 1,60192\\ 1,62088\\ 1,64001\\ 1,65930\\ 1,67876\end{array}$	$\begin{array}{c} 1,81066\\ 1,82584\\ 1,84.21\\ 1,85676\\ 1,87250\\ 1,88842\\ 1,90454\\ 1,92084\\ 1,92084\\ 1,93734\\ 1,95403\end{array}$	0,83365 0,83668 0,83965 0,84258 0,84258 0,84846 0,84828 0,85106 0,85380 0,85648 0,85913	68,75 69,33 69,90 70,47 71,05 71,62 72,19 72,77 73,34 73,91
1,30 31 32 33 34 35 36 87 38 39	0,96356 0,96618 0,96872 0,97115 0,97348 0,97572 0,97786 0,97991 0,98185 0,98370	0,26750 0,25785 0,24818 0,23348 0,22875 0,21901 0,20924 0,19945 0,18964 0,17981	$\begin{array}{c} 3,60210\\ 3,74708\\ 3,90335\\ 4,07231\\ 4,25562\\ 4,45522\\ 4,45522\\ 4,67344\\ 4,91306\\ 5,17744\\ 5,47069 \end{array}$	3,66930 3,7,617 3,74342 3,78104 3,81904 3,85743 3,89619 3,93535 3,97490 4,01485	$\begin{array}{c} 0.27253\\ 0.26582\\ 0.26714\\ 0.26448\\ 0.26185\\ 0.25924\\ 0.25636\\ 0.25411\\ 0.25158\\ 0.22158\\ 0.24908 \end{array}$	$\begin{array}{c} 1,69838\\ 1.71818\\ 1.75828\\ 1.75828\\ 1.77860\\ 1.779009\\ 1.81977\\ 1.84{\scriptstyle -}6\\ 1.86{\scriptstyle -}66\\ 1.86289\end{array}$	$\begin{array}{c} 1,97091\\ -1,988:00\\ 2,00528\\ 2,02276\\ 2,04044\\ 2,05833\\ 2,07643\\ 2,07643\\ 2,09473\\ 2,11324\\ 2,13196\end{array}$	0,86172 0,86428 0,86925 0,87167 0,87405 0,87629 0,87629 0,87869 0,88055 0,88055 0,88317	74,48 75,63 76,63 76,78 77,35 77,92 78,59 79,07 79,64
1,40 41 42 43 44 45 46 47 48 49	0,98545 0,98710 0,68865 0,99010 0,99146 0,99271 0,98337 0,99492 0,99492 0,99588 0,99674	0,16997 0,16010 0,15:23 0,14033 0,13042 0,12050 0,12057 0,10.63 0,0°067 0,.8071	5,79789 6,16536 6,58112 7,05647 7,60183 8,23810 8,98861 9,91550 10,98338 12,34986	$\begin{array}{c} 4,05520\\ 4,09596\\ 4,13712\\ 4,17870\\ 4,22070\\ 4,26311\\ 4,30506\\ 4,34924\\ 4,39295\\ 4,43710\\ \end{array}$	$\begin{array}{c} 0,2466)\\ 0,24414\\ 0,24171\\ 0,23931\\ 0,23693\\ 0,23457\\ 0,23224\\ 0,22993\\ 0,22764\\ 0,22537\end{array}$	$\begin{array}{c} 1.90430\\ 1.92591\\ 1.94770\\ 1.95970\\ 1.99188\\ 2.01427\\ 2.05686\\ 2.05965\\ 2.0876.\\ 2.10586\end{array}$	$\begin{array}{c} 2,15090\\ 2,17005\\ 2,18942\\ 2,29940\\ 2,22881\\ 2,24884\\ 2,26910\\ 2,28958\\ 2,31029\\ 2,33123\\ \end{array}$	0,88535 0,88749 0,88960 0,89167 0,89370 0,89569 0,89765 0,89958 0,89958 0,90147 0,90332	80,21 80,79 81,36 81,93 82,51 83,08 83,65 84,22 84,80 85,37
1,50	0,99749	0,07074	14,10142	4,48169	0,22313	2,12928	2,35241	0,90515	85,94

* Дополнительная таблица для значений аргумента п/4, п/2, 3л/4, п, 5п/4, 3п/2, 7п/4, 2n

Дополнительная таблица для значений аргумента п/4, п/2, зп/4, п, оп/4, вп/2, 7п/4, 2а (стр. 42).
 Для определения промежуточных значений рекомендуется пользоваться подробными таблицами К. На у a s h i. Пятизначные таблицы круговых и гиперболических функций, а также функций е^x и е^{-x} х с натуральными числами как артументом, Берлин и Лейпциг 1921 (Verein, wiss. Verleger).

		1.7.1	тумсат в д	<i><i>y</i>r<i>vmax</i> e</i>		a span, and	<i>,</i>	the Lord of	
x	sin x	cos x	tg x	e x	e-x	sh x	ch x	th x	х в гра- дусах
1,50 51 52 53 54 55 56 *57 58	0,99749 0,9%15 0,99871 0,99917 0,99953 0,99978 0,99998 0,99994 0,99996 0,99996	0,07074 0,06176 0,05077 0,04079 0,03079 0,02079 0,01080 +0,00080 0,00920 0,01920	$\begin{array}{c} 14,10142\\ 16,42899\\ 19,66966\\ 24,49841\\ 32,46114\\ 48,07849\\ 92,62050\\ +1255,766\\ -118,6492\\ -524,6698\end{array}$	4,48169 4,51673 4,57223 4,61818 4,66459 4,71147 4,75882 4,80665 4,85496 4,90375	0,22313 0,22091 0,21871 0,21654 0,21438 0,21225 0,21014 0,20805 0,20393	2,12928 2,15291 2,17676 2,207.82 2,22510 2,24961 2,27434 2,29930 2,32449 2,34991	2,35241 2,37552 2,59547 2,41736 2,43949 2,46186 2,48448 2,50735 2,63047 2,55384	$\begin{array}{c} 0.90515\\ 0.90694\\ 0.90870\\ 0.9142\\ 0.91212\\ 0.91212\\ 0.91379\\ 0.91542\\ 0.91703\\ 0.91860\\ 0.92015 \end{array}$	85,94 86,52 87,09 87,66 88,24 88,81 89,95 90,53 91,10
1,60 70 80 90	0,99957 0,99166 0,97385 0,94630	$\begin{array}{c} -0,02920 \\ -0,12884 \\ -0,22720 \\ -0,32329 \end{array}$	$\begin{array}{r} -34,23254 \\ -7,69660 \\ -4,28626 \\ -2,92710 \end{array}$	4,95303 5,47395 6,04965 6,68589	0,20190 0,18268 0,16530 0,14957	2,37557 2,64563 2,94217 3,26816	2,57746 2,82832 3,10747 3,41773	0,92167 0,93541 0,94681 0,95624	91,67 97,40 103,13 108,86
2,00 10 20 *30 40 50 69 70 80 90	0,90930 0,86321 (,80857) 0,74571 0,67546 0,51550 0,42738 0,33499 0,23925	$\begin{array}{c} -0,41615\\0,50485\\ -0,58850\\0,66628\\0,73739\\1,80114\\0,85689\\0,9(4)7\\0,9(4)7\\0,94222\\0,97096\end{array}$	$\begin{array}{rrrr} - 2,18594 \\ - 1,70985 \\ - 1,37382 \\ - 1,11921 \\ - 0,91601 \\ - 0,74702 \\ - 0,60169 \\ - 0,47273 \\ - 0,35553 \\ - 0,24641 \end{array}$	$\begin{array}{c} \textbf{7,38906} \\ \textbf{8,16617} \\ \textbf{9,02501} \\ \textbf{9,97418} \\ \textbf{11,02318} \\ \textbf{12,18249} \\ \textbf{13,46374} \\ \textbf{14,87973} \\ \textbf{16,44435} \\ \textbf{18,17415} \end{array}$	0,13534 0,12246 0,11:89 0,1026 0,02072 0,08208 (,07427 0,06721 0,06081 0,05502	3,62686 4,02186 4,45711 4,93696 5,46623 6,05,20 6,63473 7,40326 8,19192 9,05956	$\begin{array}{c} 3,76220\\ 4,14431\\ 4,56791\\ 5,03722\\ 5,55695\\ 6,13229\\ 6,7691\\ 7,47347\\ 8,15273\\ 9,11458\end{array}$	0.96403 0.97045 0.97574 0.98010 0.98661 0.98661 0.98903 0.99101 0.99263 0.99396	114,59120,32126,05131,78137,51143,24148,97154,70160,43166,16
3,00 *10 20 30 40 50 60 70 80 *90	$\begin{array}{r} 0,14112\\ +0,04158\\ -0,05837\\ -0,15775\\ -0,25554\\ -0,35078\\ -0,44252\\ -0,52584\\ -0,61186\\ -0,68777\end{array}$	0,98999 0,99914 0,99829 0,98748 0,96680 0,93646 0,84810 0,84810 0,79097 0,72593	- 0,14255 - 0,04162 + 0,05847 0,15975 0,26442 0,37470 0,49347 0,62473 0,77356 0,94742	$\begin{array}{c} 20,08554\\ 22,19795\\ 24,53253\\ 27,11264\\ 29,96410\\ 33,11545\\ 36,59823\\ 40,44730\\ 44,70118\\ 49,40245\end{array}$	0,04979 0,04305 0,04076 0,03688 0,03337 0,03320 0,0320 0,02472 0,02237 0,02237	10,01787 11,07645 12,24588 13,53788 14,96535 16,54263 18,28546 29,21129 22,35941 24,69110	10,06766 11,12155 12,28665 13,57476 14,99874 16,57252 18,51578 20,23501 22,36178 24,71155	0,92505 0,99595 0,99368 0,92728 0,99777 0,92818 0,99851 0,99878 0,99300 0,99918	171,89 177,62 183,35 189,08 194,81 200,54 206,26 211,99 217,72 223,45
4,00 10 20 30 40 50 60 *70 80 90	$\begin{array}{c} -0.75680\\ -0.81628\\ -0.87158\\ -0.91617\\ -0.95160\\ -0.97753\\ -0.99369\\ -0.99992\\ -0.999616\\ -0.98245\end{array}$	$\begin{array}{c}0.65364\\ -0.57482\\ -0.49026\\ -0.40780\\ -0.30733\\ -0.21080\\ -0.11215\\ -0.01239\\ +0.08750\\ 0.18651\end{array}$	$\begin{array}{c} 1,15782\\ 1,42353\\ 1,77778\\ 2,28585\\ 3,09532\\ 4,63733\\ 8,86918\\ +80,71280\\ -11,38487\\ -5,26749\end{array}$	54,59815 60,34029 66,68633 73,68979 81,45087 90,01713 99,48432 109,9472 121,5104 134,2898	0,01832 0,01657 0,01500 0,01357 0,01228 0,01111 0,01005 0,00910 0,00823 0,00745	27,28992 30,16186 33,33567 36,84311 40,71930 45,00391 49,73713 54,96904 60,75199 67,14117	27,30823 36,17843 33,35066 36,85668 40,73157 45,01412 49,74718 54,97813 60,75932 67,14261	0,99933 0,99945 0,99355 0,99955 0,99970 0,99975 0,99980 0,99983 0,99985 0,99989	229,18 234,91 240,64 246,37 252,10 257,83 263,56 239,29 275,02 280,75
5,00 10 20 30 *40 50 60 70 80 90 6.00	$\begin{array}{c} -0,95892 \\ -0,92581 \\ -0,88345 \\ -0,83227 \\ -0,77276 \\ -0,70554 \\ -0,63127 \\ -0,55069 \\ -0,46460 \\ -0,37388 \\ -0,37388 \end{array}$	0,28366 0,37798 0,46852 0,55437 0,63469 0,70867 0,77557 0,83471 0,88552 0,92748	$\begin{array}{c} - 3,38052 \\ - 2,44939 \\ - 1,88564 \\ - 1,50128 \\ - 1,21754 \\ - 0,99588 \\ - 0,81394 \\ - 0,65973 \\ - 0,52467 \\ - 0,40311 \\ - 0,40311 \\ - 0,50457 \\ - 0,40311 \\ - 0,50457 \\ - 0,40311 \\ - 0,50457 \\ - 0,40311 \\ - 0,50457 \\ - 0,40311 \\ - 0,50457 \\ - 0,40311 \\ - 0,50457 \\ - 0,40311 \\ - 0,50457 \\ - 0,40311 \\ - 0,50457 \\ - 0,40311 \\ - 0,50457 \\ - 0,40311 \\ - 0,50457 \\ - 0,40311 \\ - 0,50457 \\ - 0,40311 \\ - 0,50457 \\ - 0,40311 \\ - 0,50457 \\ - 0,40311 \\ - 0,50457 \\ - 0,40311 \\ - 0,50457 \\ - 0,40311 \\ - 0,50457 \\ - 0,5057 $	148,4132 164,0219 181,2722 200,3368 221,4064 244,6919 270,4264 298,8674 330,2996 365,0375	0,00674 0,00610 0,00552 0,0.499 0,00452 0,00409 0,00375 0,00335 0,00335 0,00335	74,20321 82,00791 90,63336 100,1639 110,7009 122,3439 135,2114 149,4320 165,1483 182,5174	74,20995 82,0140.3 90,63588 10,1709 110,7055 123,3480 1.5,2150 149,4354 165,1513 182,5201	0,99991 0,99993 0,99994 0,99995 0,99995 0,99997 0,99997 0,99997 0,99998 0,99998 0,99998	286,48 292,21 297,94 303,67 309,40 315,13 320,86 326,99 3.32,32 338,05
*30	$\left \begin{array}{c} -0,27942\\ +0,01681\end{array}\right $	0,96017 0,99986	+ 0,29101 + 0,01681	403 4288 544,5719	0,00248	201,7132	272,2869	0,99999	360,96

Таблица 4. Круговые, показательные и гиперболические функции

(Аргумент в дуговых единицат и градусах)*

(Продолжение)

.

Дополнит, таблица для значений аргумента z/4, π/2, 3π/4, π, 5π/4, 3π/2, 7π/4, 2π (стр. 42).