ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ

СОДЕРЖАНИЕ ЗАДАНИЯ

В «Расчет задании стержня при растяжении сжатии» И предусматривается применение метода сечений для определения внутренних силовых факторов, расчет на прочность и определение перемещений прямого ступенчатого стержня, находящегося под действием внешних сил, направленных вдоль его оси.

Исходные данные для выполнения задания:

- схема нагружения стержня;
- числовые значения геометрических параметров;
- внешние силы;
- механические характеристики материала.

Задача. Для заданного ступенчатого стального стержня (сталь Ст. 3) требуется:

- 1. Построить эпюру продольных сил.
- 2. Построить эпюру нормальных напряжений.
- 3. Проверить прочность (предел текучести $\sigma_T = 240$ МПа, коэффициент запаса прочности по пределу текучести [n] = 1,5).
- 4. Определить перемещение свободного конца стержня ($E = 2 \cdot 10^5 \, \mathrm{M}\Pi a$).

Примечания:

- 1. Номер схемы и варианта указываются преподавателем (приложение 2).
- 2. Варианты схем нагружения даны на рис. 4.
- 3. Титульный лист пояснительной записки оформляется в соответствии с приложением 3.

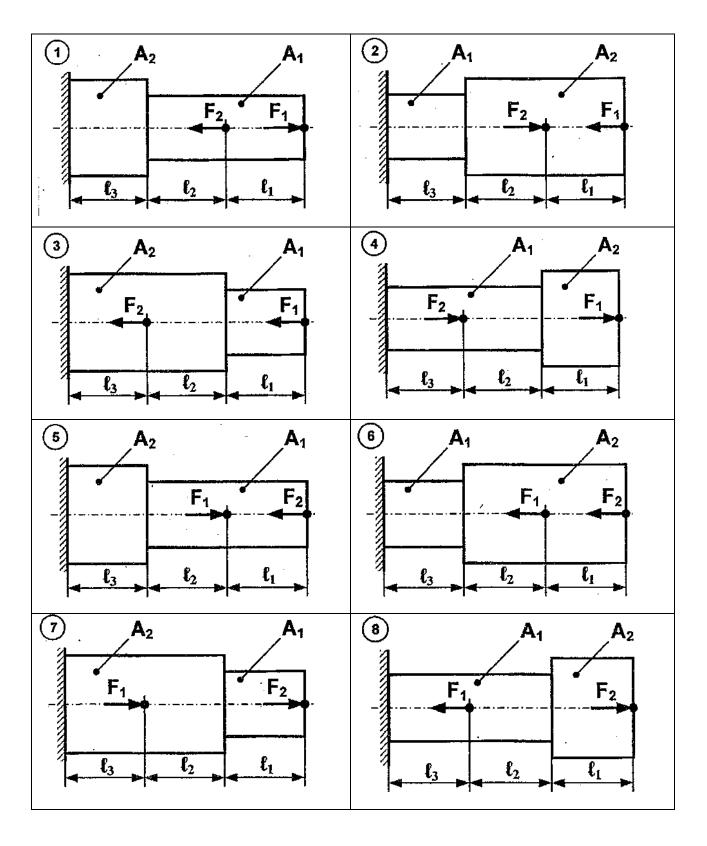


Рис.4. Расчетные схемы к заданию «Расчет стержня при растяжении и сжатии»

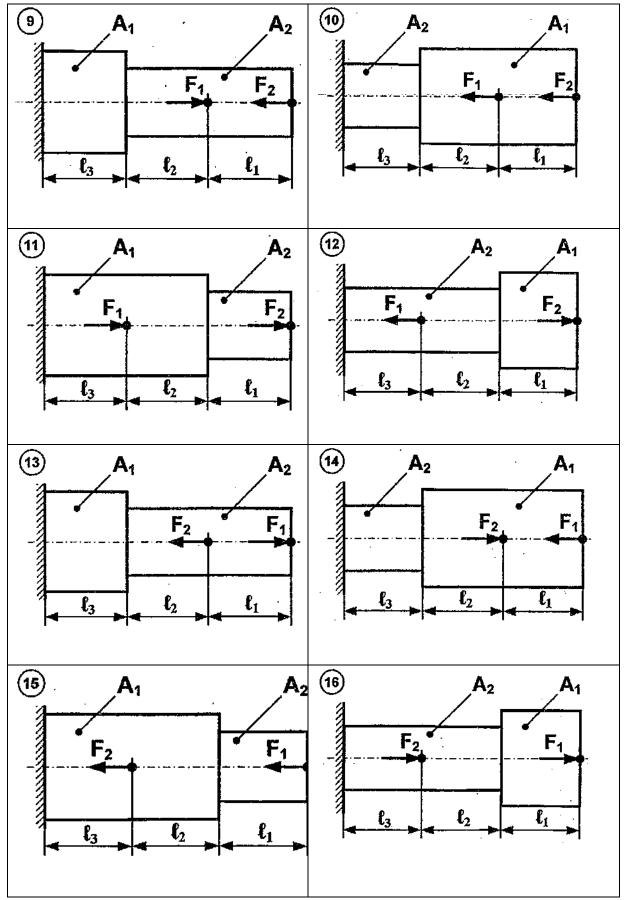


Рис. 4. Расчетные схемы к заданию

«Расчет стержня при растяжении и сжатии» (окончание)

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

Расчетно-проектировочное задание «Расчет стержня при растяжении и сжатии» выполняется в следующем порядке:

- вычерчивают расчетную схему стержня;
- разбивают схему стержня на силовые участки;
- определяют методом сечений величину продольной силы на каждом участке;
- по результатам расчета строят эпюру продольных сил;
- вычисляют нормальные напряжения в поперечных сечениях стержня;
- по результатам расчета строят эпюру нормальных напряжений;
- проверяют прочность стержня исходя из условия прочности при растяжениисжатии;
- определяют перемещение свободного конца стержня как сумму удлинений (укорочений) участков стержня, вычисленных по формуле Гука.

ПРИЛОЖЕНИЯ

Приложение 1

TT U	(EOOT.0022.04)
Нормальные линеиные р	азмеры, мм (ГОСТ 8032-84)
Troping and the property of th	usinephi, mm (1 0 0 1 0 0 5 2 0 1)

1,0	2,01	4,0	8,0	16,0	32,0	63,0	125	250	500
1,05	2,1	4,2	8,5	17,0	64,0	67,0	130	260	530
1,1	2,2	4,5	9,0	18,0	36,0	71,0	140	280	560
1,15	2,4	4,8	9,5	19,0	38,0	75,0	150	300	600
1,2	2,5	5,0	10,0	20,0	40,0	80,0	160	320	630
1,3	2,6	5,3	10,5	21,0	42,0	85,0	170	340	670
1,4	2,8	5,6	11,0	22,0	45,0	90,0	180	360	710
1,5	3,0	6,0	11,5	24,0	48,0	95,0	190	380	750
1,6	3,2	6,3	12,0	25,0	50,0	100	200	400	800
1,7	3,4	6,7	13,0	26,0	53,0	105	210	420	850
1,8	3,6	7,1	14,0	28,0	56,0	110	220	450	900
1,9	3,8	7,5	15,0	30,0	60,0	120	240	480	950

Примечания:

- 1. Стандарт устанавливает ряды линейных нормальных размеров (диаметр, длина, высота и др.) в интервале 0,001...20000 мм.
- 2. По расчетному значению размера l_p из ряда выбирают два ближайших (меньший и больший) размера l_1 и l_2 . Меньший из них l_1 проверяют на перезагрузку. Если перезагрузка составит меньше или точно 5 %, то окончательно принимают размер $l_1 = l_2$. Если же перезагрузка будет больше 5 %, то без проверки окончательно принимают размер $l_1 = l_2$.

Исходные данные к заданию «Расчет стержня при растяжении и сжатии»

Приложение 2

Номер 11, 12, 13, F₁, F₂, A_1 , A_2 , cm^2 cm^2 варианта кН кН M M M 0,5 1,5 0,5 1,5 0,5 1,5 0,5 1,5 1,5 0,5 1,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 1,5 0,5 1,5 0,5

1,5

0,5