Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Ижевский государственный технический университет имени М. Т. Калашникова» Кафедра «Ракетостроение»

Практические занятия и расчетно-графические работы по курсу «Электротехника и электроника» - раздел «Электротехника»

Учебно-методическое пособие для выполнения практических работ для студентов специальности:

24.05.01 – Проектирование, производство и эксплуатация ракет и ракетно-космических комплексов (квалификация «специалитет»)

15.03.05 - Конструкторско-технологическое обеспечение машиностроительных производств (квалификация «бакалавр»),

09.03.01 – Информатика и вычислительная техника, профиль «Автоматизированные системы обработки информации и управления» (квалификация «бакалавр»)

08.03.01 - Строительство, профиль «Промышленное и гражданское строительство (квалификация «бакалавриат»)».

Составитель: М.А. Святский

Издательство ВФ ИжГТУ имени М.Т. Калашникова

Воткинск 2020

УДК 621.382 (С25) ББК 32.966

Рецензент

А.Н. Шельпяков, канд. техн. наук, доцент кафедры «Технология машиностроения и приборостроения» ВФ ИжГТУ имени М.Т. Калашникова

Составитель

М.А. Святский, канд. техн. наук, доцент кафедры «Ракетостроение» ВФ ИжГТУ имени М.Т. Калашникова

Практические занятия и расчетно-графические работы по курсу «Электротехника и электроника» - раздел «Электротехника»

Методические указания по дисциплине «Электротехника и электроника» - раздел «Электротехника» представляют собой сборник практических занятий и заданий, которые изложены в восьми основных разделах изучаемой дисциплины:

- 1. Методы преобразования элементов и цепей и определение их эквивалента;
- 2. Оценка параметров эквивалентного источника и нагрузки в цепи;
- 3. Оценка параметров разветвленной цепи с источниками постоянной ЭДС;
- 4. Оценка параметров неразветвленной цепи с источником синусоидальной ЭДС;
- 5. Оценка параметров разветвленной цепи с источником синусоидальной ЭДС;
- 6. Оценка параметров трехфазных цепей с различными типами нагрузками;
- 7. Оценка потребления электрической мощности цеха и методы ее экономии;
- 8. Оценка параметров однофазного трансформатора небольшой мощности.

По каждой теме кратко изложены теоретические положения и дана методика решения 2-x-3-x примеров расчета параметров схем автоматики.

Методические указания предназначены для студентов специальности:

- 24.05.01 Проектирование, производство и эксплуатация ракет и ракетно-космических комплексов (квалификация «специалитет»).
- 15.03.05 Конструкторско-технологическое обеспечение машиностроительных производств (квалификация «бакалавр»),
- 09.03.01 Информатика и вычислительная техника, профиль «Автоматизированные системы обработки информации и управления» (квалификация «бакалавр»).
- 08.03.01 Строительство, профиль «Промышленное и гражданское строительство (квалификация «бакалавриат»)».

Учебно-методич	еское пособ	ие рас	ссмотрено на заседан	ии кафедры	«Ракетостроение»	(протокол № 2	от 24.01.2020) и
рекомендовано к из	данию в откр	рытой	печати методическим	и советом Во	Ф ИжГТУ имени N	 Т. Калашнико 	ва.
Протокол №	от «	>>	2020г.				

УДК 621 ББК 32.966

ВВЕДЕНИЕ

Методические указания к практическим занятиям и расчетно-графическим работам по дисциплине "Электротехника и электроника" – раздел "Электртехника" представляют собой сборник практических занятий и заданий и предназначены для студентов технических специальностей, обучающихся в Воткинском филиале ИжГТУ имени М.Т. Каашникова.

Цель методических указаний – обучить студентов методам и правилам расчетов, а также способствовать приобретению умений и навыков анализа электрических цепей. Освоение методов решения задач позволяет студенту успешно преодолеть трудности, возникающие при изучении дисциплины «Электротехника и электроника» - раздел «электротехника». Решение задач помогает понять физические явления, происходящие в электрических цепях, усвоить способы расчета и укрепить навыки практического применения теоретических знаний п дисциплине «Электротехника и электроника» - раздел «электротехника».

Приведенные примеры отражают приемы и методы расчета параметров электрических цепей разной сложности. Методические указания построены по принципу деления на изучаемые темы.

Здесь приведены примеры решения задач по следующим темам дисциплины «Электротехника и электроника» - раздел «электротехника».

- 1) методы преобразования цепей и элементов и определение их эквивалента;
- 2) оценка параметров эквивалентного источника и нагрузки в цепи;
- 3) оценка параметров разветвленной цепи с источниками постоянной ЭДС;
- 4) оценка параметров неразветвленной цепи с источником синусоидальной ЭДС;
- 5) оценка параметров разветвленной цепи с источником синусоидальной ЭДС;
- 6) оценка параметров трехфазных цепей с различными типами нагрузками;
- 7) оценка потребления электрической мощности цеха и методы ее экономии;
- 8) оценка параметров однофазного трансформатора небольшой мощности.

Методические указания к проведению расчетно-графических работ по курсу «Электротехника и электроника» - раздел «электротехника» можно рекомендовать к применению для специальности 24.05.01, 15.03.05, 09.03.01 и 08.03.01.

Поскольку в рабочих программах специальности 24.05.01, 15.03.05, 09.03.01 и 08.03.01 предусмотрен различный объем часов нагрузки, то для каждой специальности выполняется индивидуальный перечень занятий и заданий для решения

Обычно, на аудиторных занятиях по изучаемой теме рассматриваются 2-3 примера, где студенты знакомятся с методами расчета типовых задач, а затем они выполняют индивидуальные расчетно-графические или контрольные рабты (РГР).

По каждой теме приведено 2 дадания, каждое из которых содержит 30 вариантов индивидуальных задач. Эти задачи предполагают аналитическое ведение расчета параметров схем, построение графических зависимостей и проверку результатов расчета. Для построения и анализа схем предполагается использование программ моделирования электронных схем, (например, EWB, MC, PROTEUS).

Номер задания в РГР для студента соответствует номеру записи в журнале группы.

Номер варианта в индивидуальном задании по каждой изучаемой теме РГР соответствует номеру рисунка и текущему номеру в таблице исходных параметров.

TEMA №1

Методы преобразования цепей и определение их эквивалента (8c)

Цель занятия: приобретение умений и навыкок оценки параметров элементов в схемах, соединенных последовательно, параллельно или смешанно и методов преобразования схем, с целью их упрощения и определения эквивалентного элемента.

Преобразования основаны на упрощении схемы (модели) электрической цепи с целью получения эквивалента, параметры которого аналогичны исходной схеме.

1.1. Методы преобразования сложной цепи и определение её эквивалента

Для упрощения схемы со смешанным соединением выбирают узел или контур. Например, преобразуют схему звезда в схему треугольник или наоборот, а затем для упрощенной схемы определяют эквивалентный параметр.

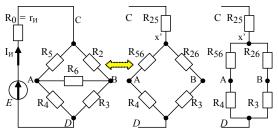
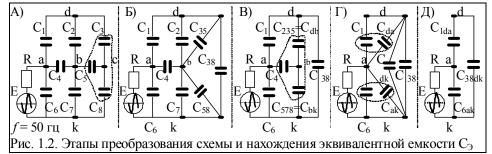


Рис.1.1. Мостовая цепь и способ ее преобразования

Пример 1.1. Для цепи (рис.1.1) требуется определить полное сопротивление $R_{9KB,CJ}$, и ток I_H

преобразовав цепь из треугольника ABC (\mathbf{R}_2 , \mathbf{R}_5 , \mathbf{R}_6) в цепь звезды (\mathbf{R}_{25} , \mathbf{R}_{26} , \mathbf{R}_{56}).

$$R_2 = R_3 = R_4 = R_5 = R_6 = 10(O_M).$$


$$R_{25} = (R_2 + R_5) + [(R_2 \cdot R_5)/R_6] = 30;$$

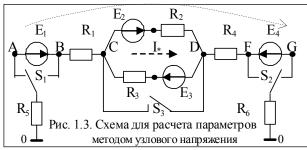
$$R_{26} = (R_2 + R_6) + [(R_2 \cdot R_6)/R_5] = 30;$$

$$R_{56} = (R_5 + R_6) + [(R_5 \cdot R_6)/R_2] = 30$$
. При $E = 5,1$ В, $I_H = E/R_{ЭКВ.СД} = 0,1$

$$R_{2KB.CJ} = R_{25} + [(R_{56} + R_4)(R_{26} + R_3)] / [(R_{56} + R_4 + R_{26} + R_3)] = 30 + 20 = 50 (OM).$$

Если в схеме 1.1 вместо резисторов включены катушки индуктивностью L, то расчет эквивалента L_{\ni} выполняют аналогично резисторам [4]. Для подобных схем содержащих конденсаторы, способ расчета приведен в примере 1.2.

Пример 1.2. Пример определения эквивалентной емкости C_3 для схемы рис. 1.3.


Решение. Рассмотрим пример преобразования из схемы звезда в схему треугольник и обратно. Например, выполним замену емкостей C_3 , C_5 , C_8 , соединенных по схеме звезда (рис. 1.3,а), в эквивалентное соединение по схеме треугольник C_{35} , C_{58} , C_{38} (рис.1.2,б). Аналогично, выполним обратное преобразование – из схемы треугольник (рис.1.2,б - C_{35} , C_{58} , C_{38}), в схему звезда (рис.1.2,а - C_3 , C_5 , C_8).

$$(Y \to \triangle) \begin{cases} C_{35} = C_3 \cdot C_5 / (C_4 + C_5 + C_8); \\ C_{58} = C_5 \cdot C_8 / (C_3 + C_5 + C_8); \\ C_{38} = C_3 \cdot C_8 / (C_3 + C_5 + C_8); \end{cases} \begin{cases} C_{35} = (C_3 + C_5) + (C_3 \cdot C_5 / C_8); \\ C_{58} = (C_5 + C_8) + (C_3 \cdot C_5 / C_8); \\ C_{38} = (C_5 + C_8) + (C_3 \cdot C_8 / C_5). \end{cases}$$

После преобразования найдем эквивалентное реактивное X_9 или полное Z_9 сопротивление всей цепи, например, при последовательном их включении.

$$X_{C.9} = 1/(2 \cdot \pi \cdot f_{(\Gamma II)} \cdot C_{(\Phi)}), (OM); X_{L.9} = (2 \cdot \pi \cdot f_{(\Gamma II)} \cdot L(\Gamma H)), (OM); Z_3 = \sqrt{R^2 + X_3^2}, (OM);$$
Для RL или RC элементов, включенных параллельно: $Z_3 = \sqrt{R^2 \cdot X_3^2/(R^2 + X_3^2)}$ (OM).

Пример 1.3. Определить параметры цепи (схема - рис.1.3) методом узлового напряжения и построить потенциальную диаграмму для приведенной схемы.


```
R_1 = 20; R_2 = 10; R_3 = 15;

R_4 = 9; R_5 = 10; R_6 = 5 (O_M);

E_1 = 15; E_2 = 6; E_3 = 8 (B);

E_4 = 5,66 (B);
```

Положение ключей S_1 и S_2 – в положение 'A' и 'G';

ключ S_3 — отключен.

Найти: $I_A = ? I_G = ?$

 $U_{AG} = ? \rightarrow U_{Ri} = ?$

Решение. Вначале определим эквивалентное напряжение на уча-

стке CD:

$$E_{CD} = (E_2/r_2 - E_3/r_3)/[(1/r_2) + (1/r_3)] = [(6/10) - (8/20)]/[(1/10) + (1/20)];$$

 $\underline{E}_{CD} = (0,6-0,4)/0,15 = \underline{1,33} \text{ B.} \quad R_{CD} = (R_2 \cdot R_3)/(R_2 + R_3) = 6 \text{ (OM)}.$

2) Определим эквивалентное напряжение и ток <u>при направлении обхода</u>: A→G:

$$E_{3KB} = E_{I} - E_{CD} - E_{4} = 8 \text{ B.}$$
 $I = E_{3KB}/R_{3KB} = 8/(10+20+6+9+5) = 0,16 \text{ A.}$ $U_{AG} = E_{I} - (I \cdot R_{I}) - E_{CD} - (I \cdot R_{CD}) - (I \cdot R_{4}) - E_{4} = +2,4 \text{ B.}$

Определим разности потенциалов (ϕ_i - ϕ_J) между соседними точками:

$$\varphi_{0}-\varphi_{A}-I\cdot R_{5}=0; \quad \varphi_{A}=\varphi_{0}-I\cdot R_{5}; \quad \varphi_{A}=0-0.16\cdot 10. \quad \varphi_{A}=-1.6 \text{ v.} \\
\varphi_{A}-\varphi_{B}+E_{1}=0; \quad \varphi_{B}=\varphi_{A}+E_{1}. \quad \varphi_{B}=-1.6+15. \quad \varphi_{B}=+13.4 \text{ v.} \\
\varphi_{B}-\varphi_{C}-I\cdot R_{1}=0; \quad \varphi_{C}=\varphi_{B}-I\cdot R_{1}. \quad \varphi_{C}=+13.4-3.2. \quad \varphi_{C}=+10.2 \text{ v.}$$

и т. д., до точки φ_G , после чего строят потенциальную диаграмму для схемы.

Варианты задач, используемых в контрольной, при зачете или экзамене

Определить параметры цепи (рис. 1.3) методом узлового напряжения:

1)
$$R_1$$
 =2; R_2 =12; R_3 =5; R_4 =8; R_5 =15; R_6 =9 (Ом); E_1 =15; E_2 =8; E_3 =8; E_4 =16(В). Переключатели S_I и S_2 – включены в положение 'В' и 'G'; S_3 – включен.

2)
$$R_1 = 10$$
; $R_2 = 15$; $R_3 = 20$; $R_4 = 18$; $R_5 = 20$; $R_6 = 8(OM)$; $E_1 = 12$; $E_2 = 6$; $E_3 = 4$; $E_4 = 8$ (B).

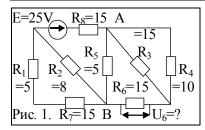
Переключатели S_1 и S_2 – включены в положение 'B' и 'G'; S_3 – отключен.

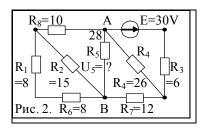
3)
$$R_1$$
 =20; R_2 =15; R_3 =10; R_4 =5; R_5 =13; R_6 =15(OM); E_1 =7; E_2 =8; E_3 =9; E_4 =10(B); Переключатели \textbf{S}_1 и \textbf{S}_2 – включены в положение 'A' и 'F'; \textbf{S}_3 – включен.

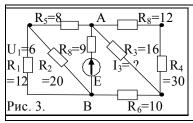
4)
$$R_1 = 22$$
; $R_2 = 11$; $R_3 = 15$; $R_4 = 9$; $R_5 = 10$; $R_6 = 5$ (OM); $E_1 = 5$; $E_2 = 12$; $E_3 = 6$; $E_4 = 6$ (B).

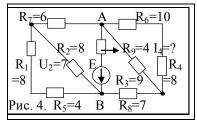
Переключатели S_1 и S_2 – включены в положение 'A' и 'F'; S_3 – отключен.

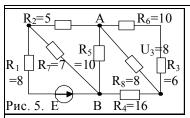
5) r_1 =12; r_2 =10; r_3 =18; r_4 = 16; r_5 =16; r_6 = 8 (Ом); E_1 = 2; E_2 = 9; E_3 = 13; E_4 = 11 (В); Переключатели S_1 и S_2 – включены в положение 'В' и 'F'; S_3 – включен.

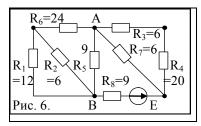

6) R_1 =4; R_2 =21; R_3 =14; R_4 =6; R_5 =20; R_6 =10(OM); E_1 =4; E_2 =10; E_3 =6; E_4 =16(B); Переключатели S_1 и S_2 – включены в положение 'B' и 'F'; S_3 – отключен.

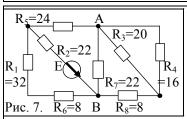

РГР № 1.1. Задачи для самостоятельного решения – для группы №1

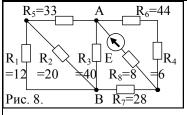

Расчет параметров разветвленной цепи с одним источником

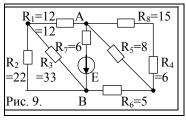

- 1. Определить величину параметра схемы, используя значение другой величины
- 2. Номер варианта задания соответствует номеру рисунка.

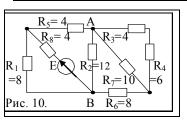

Bap	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Дано	Е	Е	U_1	U_2	U_3	U_4	U_5	U_6	Е	Е	I_1	I_2	I_4	I_2	I_2
	= 25	= 30	= 6	= 7	= 8	= 9	= 5	= 6	= 9	= 12	=2	=3	=3	= 3	= 3
Найти	U_6	U_5	I_3	I_4	I_7	E	I_6	I_5	I_5	I_6	U_6	E	U_1	U_4	U_4
Bap	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Дано	I_3	I_4	I_5	I_6	U_1	I_2	U_3	I_4	U_5	I_6	U_4	U_6	I_4	U_2	U_2
	= 4	= 2	= 1	= 0,5	= 24	= 2	= 10	= 1,5	= 12	= 3	= 15	=10	= 4	=12	= 8
Найти	U_2	U_7	U_7	U_1	E	E	I_1	I_6	U_1	I_7	E	I_3	E	I_3	I_7

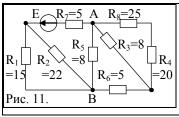


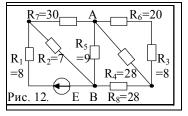


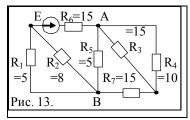


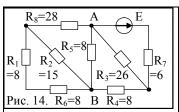


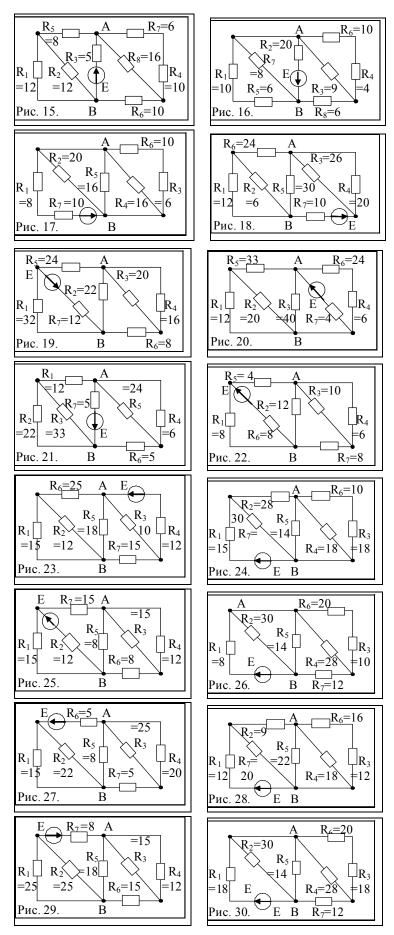












Рекомендуемая литература

- 1. Рекус Г.Г. Основы электротехники и промышленной электроники в примерах и задачах с решениями: Учебное пособие. М.: Высш. шк., 2008. 343 с.
- 2. Касаткин А.С., Немцов М.В. Электротехника. М.: Высш. шк., 2003. 540 с.
- 3. Сборник задач по электротехнике и основам электроники / Под ред. В.Г. Герасимова. М.: Высш. шк., 1987. 288 с.
- 4. Березкина Т.Ф., Гусев В.Г. Задачник по общей электротехнике с основами электроники. М.: Высш. шк., 1983. 368с.

РГР № 1.2. Задачи для самостоятельного решения - для группы №1.

Расчет эквивалентного параметра схемы методом ее преобразования.

- 1. Определить эквивалентный параметр (X или Z) схемы после преобразования ($\Delta \rightarrow$ Y или Y $\rightarrow \Delta$) отмеченного буквой (или символом) на данном участке схемы.
- 2. Показать графически последовательность преобразования исходной схемы.
- 3. Варианты задания соответствуют номерам, приведенным в рисунках.
- 4. Величины параметров элементов: $R = [O_M]; C = [M_K \Phi]; L = [\Gamma_H].$

****\\\\

Рис.17.

 $C_7 = 5$

В

Рис.16.

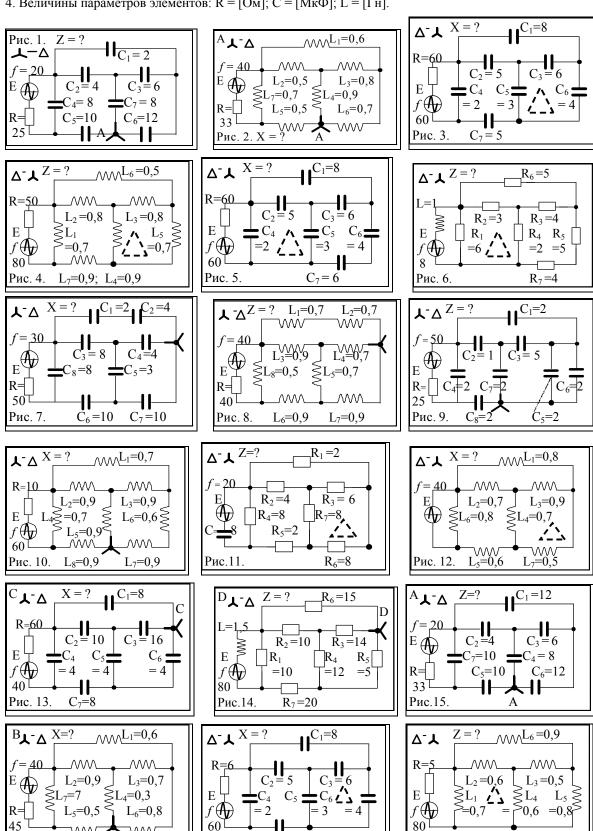
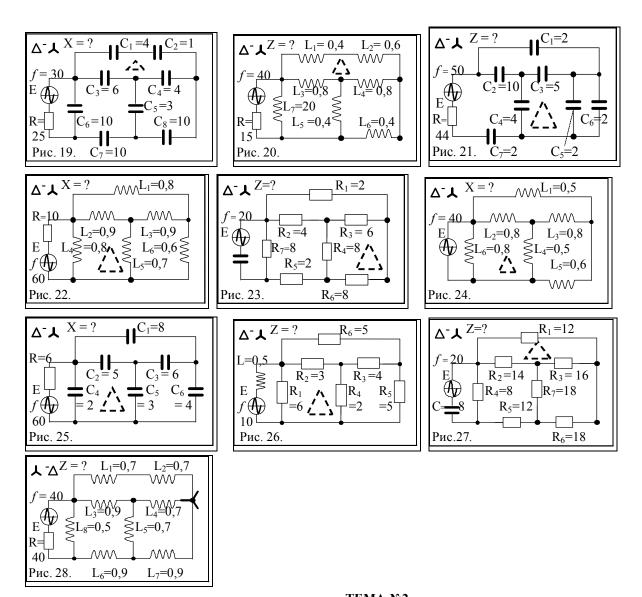



Рис. 18.

TEMA №2

Оценка параметров эквивалентного источника и нагрузки в цепи (9)

Цель занятия: приобретение умений и навыкок преобразования параметров электрической цепи с целью определения параметров эквивалентного генератора и анализа его работы в режиме холостого хода, а также короткого замыкания. **Пример 2.1**. Определить ток в диагонали моста методом эквивалентного генератора для моста Уитстона: E = 6 (B); $R_1 = R_2 = 10$; $R_3 = 40$; $R_4 = 20$; $R_5 = 21,7$ (кОм);

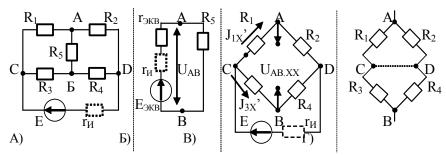


Рис. 2.1. Схема моста (A), ее эквивалент (Б), и условия определения R моста.

Решение. В соответствии с теоремой об эквивалентном генераторе - воздействие всей цепи на рассматриваемую ветвь с (r_5) можно заменить воздействием эквивалентного генератора (рис. 2.1,6), у которого $E_{3KB} = U_{AB,XX}$; $r_{3KB} = r_{AB,XX} = r_{BbIX}$. Для определения $U_{AB,XX}$ разомкнем ветвь с резистором (r_5) : (рис. 2.1.в)

 $U_{AB,XX} = r_3 \cdot I_{3,X} - r_1 \cdot I_{1,X} = [r_3/(r_3 + r_4)] E - [r_1/(r_1 + r_2)] E = [40/(40 + 20)] 6 - [10/(10 + 10)] 6 = 1 B.$

Эквивалентное сопротивление $r_{3KB} = r_{AB,XX} = r_{BMX}$ определим по схеме (рис. 2.1.г):

 $r_{\text{3KB}} = r_{\text{AB.XX}} = [r_1 \cdot r_2/(r_1 + r_2)] + [r_3 \cdot r_4/(r_3 + r_4)] = [10 \cdot 10/(10 + 10)] + [40 \cdot 20/(40 + 20)] = 18,3 \text{ (Om)}.$

Ток (I_5) в диагонали моста (A-Б): $I_5 = E_{3KB}/(r_{3KB} + r_5) = 1/(18,3+21,7) = 0,025$ (A).

Определим входное сопротивление схемы моста (АВ – замкнут; СD разомкнут):

 $r_{\rm M} = r_{\rm BX} = (r_1 + r_2) \cdot (r_3 + r_4) / (r_1 + r_2 + r_3 + r_4) = (10 + 10) \cdot (40 + 20) / (10 + 10 + 40 + 20) = 15 \text{ (OM)}.$

Определим ток от источника ЭДС через цепь моста (когда r_5 отключен):

 $I_{\rm H} = E / r_{\rm M} = 6/15 = 0.4$ (A).

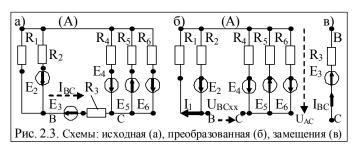
Пример задачи, используемой на контрольной, при зачете или экзамене

 R_1 R_2 R_3 R_4 R_4 R_5 R_4 R_4

Рис.2.2.Схема моста

Определить параметры цепи мостовой схемы, приведенной на рис. 2.2:

A) $R_1 = R_4 = 40$; $R_3 = 60$; $R_5 = R_6 = 30$; (Ом); $R_1 = r_X$. $G_1 =$ источник ЭДС E = 5 B; $G_2 =$ амперметр.


B) $R_1 = R_4 = 80$; $R_3 = 90$; $R_5 = R_6 = 100$; (Ом); $R_2 = r_X$. $G_2 =$ источник ЭДС E = 14 B; $G_1 =$ амперметр.

C) $R_5 = R_2 = 80;$ $R_1 = 90;$ $R_5 = 5;$ $R_6 = 1;$ Om); $R_3 = r_X.$ $G_1 =$ источник ЭДС E = 12 B; $G_2 =$ амперметр.

D) $R_5 = R_2 = 80$; $R_1 = 20$; $R_3 = 90$; $R_6 = 100$; (Ом); $R_4 = r_X$. $G_2 = E = 16$ B; $G_1 =$ амперметр.

* Направление источника ЭДС можно выбрать индивидуально.

2.2. Расчет параметров цепи методом эквивалентного генератора

Пример 2.2. Для схемы на (рис. 2.3) требуется опреде-лить эквивалентные параметры: напряже-ние холостого хода $U_{BC.XX}$ и ток I между клеммами B—C при включении цепи E_1R_3 .

<u>Maho</u>: $E_2 = E_3 = E_4 = 20$; $E_5 = 15$; $E_6 = 10$ (B); $R_1 = R_2 = R_3 = 2$; $R_4 = 10$; $R_5 = R_6 = 5$ (OM).

<u>Решение.</u> Определим ток эквивалентной цепи: $I = (U_{BC.xx} \pm E)/(r_2 + r_3)$.

где: r_3 – эквив. сопротивление схемы со стороны зажимов выделенной ветви; r_3 – сопротивление ветви, в которой необходимо определить ток; знак (+) ставят, если направление ЭДС совпадает с направлением тока.

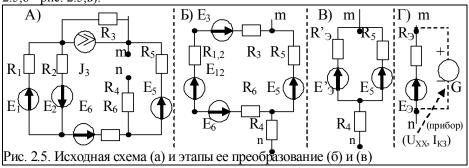
- 1) $I_1 = E_2/(r_1 + r_2) = 20/(2+2) = 5A$ (BC pasopb.)
- 2) $U_{AC} = [g_4 \cdot E_4 g_5 \cdot E_5 + g_6 \cdot E_6]/[g_4 + g_5 + g_6] =$ = $[20 \cdot 0, 1 - 15 \cdot 0, 2 + 10 \cdot 0, 2)]/[0, 1 + 0, 2 + 0, 2] = +1/0, 5 = +2V.$
- 3) $U_{XXBC} = [r_1 \cdot I_1 + U_{AC}] = 2.5 + 2 = 12$ (B).
- 4) $r_9 = [(r_1 \cdot r_2)/(r_1 + r_2)] + [1/(g_4 + g_5 + g_6)] = 3 \text{ Om.}$
- 5) $I_4 = (E_4 U_{AC})/r_4 = (20 2)/10 = 1,8 \text{ A};$ $I_5 = (E_5 + U_{AC})/r_5 = (15 + 2)/5 = 3,4 \text{ A};$ $I_6 = (E_6 - U_{AC})/r_6 = (10 - 2)/5 = 1,6 \text{ A}.$

6) $I_{BC} = (U_{XX,BC} - E_3)/(r_2 + r_3) = (12-20)/(3+2) = -1,6$ A. [по Кирхг.: $I_1 = 5,8$; $I_2 = 4,2$; $I_3 = 1,6$].

Выводы: истинный ток I_{BC} направлен в противоположную сторону, т.е. от С к В.

2.3. Расчет параметров эквивалентного источника

Для электрической схемы, содержащей несколько источников ЭДС и, или источников тока необходимо определить эквивалентный источник $E_{\mathfrak{I}}$ и его внутреннее сопротивление $r_{\mathfrak{I}}$. Для определения напряжения $E_{\mathfrak{I}}$ эквивалентного источника находят напряжение U_{XX} в разрыве цепи (кл. m-n). Аналогично, для определения тока эквивалентного источника $J_{\mathfrak{I}}$ находят ток $I_{K\mathfrak{I}}$ через замкнутые зажимы m-n.


Пример 2.3. Определить параметры эквивалентного источника напряжения, позволяющего оценить ток в сопротивлении R_4 для схемы (рис. 2.5,a).

 $E_1=2; E_2=4; E_5=2; E_6=1,5(B); J_3=3A; R_1=R_5=3; R_2=9; R_3=2; R_4=1,5; R_6=1,75(O_M).$

Решение. Сопротивление R_3 эквивалентного источника определяют к какому-либо участку цепи, например, по отношению к клеммам m-n с сопротивлением R_4 .

Необходимо вначале выполнить замену источников тока J на источники напряжения E с внутренним сопротивлением r, например: $E_3 = (J_3 \cdot r_3) = 3 \cdot 2 = 6$ (B).

В результате преобразований схему приводится к реальной, с источниками напряжения с параметрами E_{II} , r_{II} (рис. 2.5,б - рис. 2.5,в).

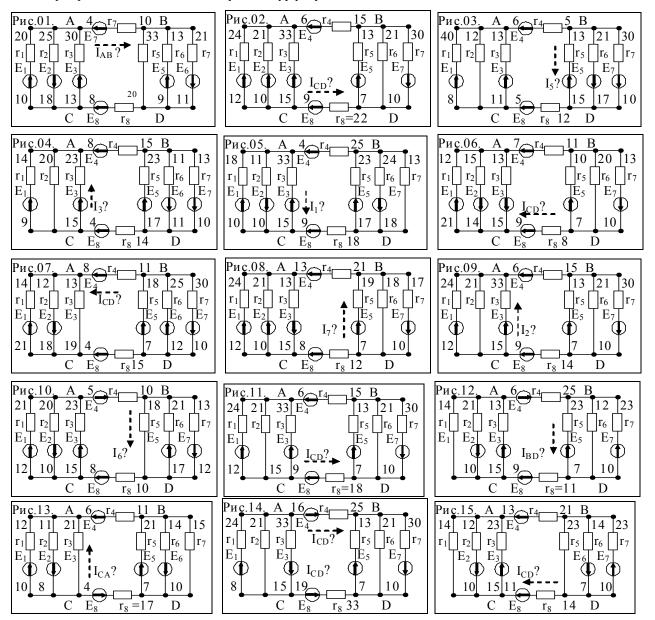
Используя метод эквивалентных преобразований заменяют параллельно включенные источники напряжения E_1 , E_2 одним источником с параметрами:

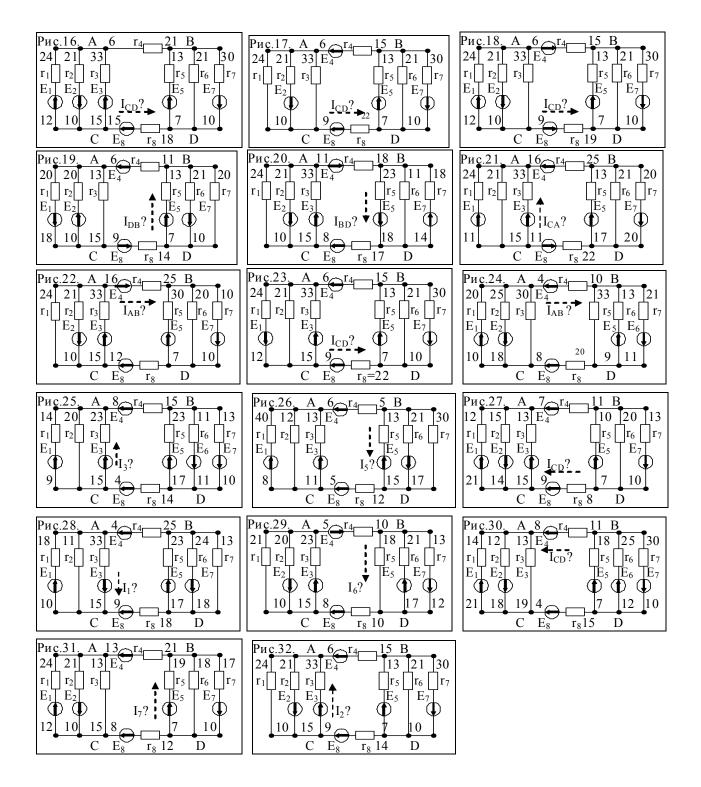
$$E_{12} = (E_1/r_1 \pm E_2/r_2)/(1/r_1 + 1/r_2) = 2.5$$
 (B). $r_{12} = r_1 r_2/(r_1 + r_2) = 2.25$ (OM).

Свойство. Знак (+) ставят, если // включенные источники ЭДС направлены в одну сторону. Затем объединяют последовательно включенные источники E_{12} , E_{3} , E_{6} и находят эквивалентный источник E_{3} :

$$E'_{9} = E_{3} - E_{12} - E_{6} = (6-2,5-1,5) = 2 \text{ B};$$
 $r_{9} = r_{3} + r_{6} + r_{12} = 2+1,75+2,25 = 6 \text{ Om}.$

Объединяют \parallel соединенные источники E_3 , E_5 и находят эквивалентный источник:

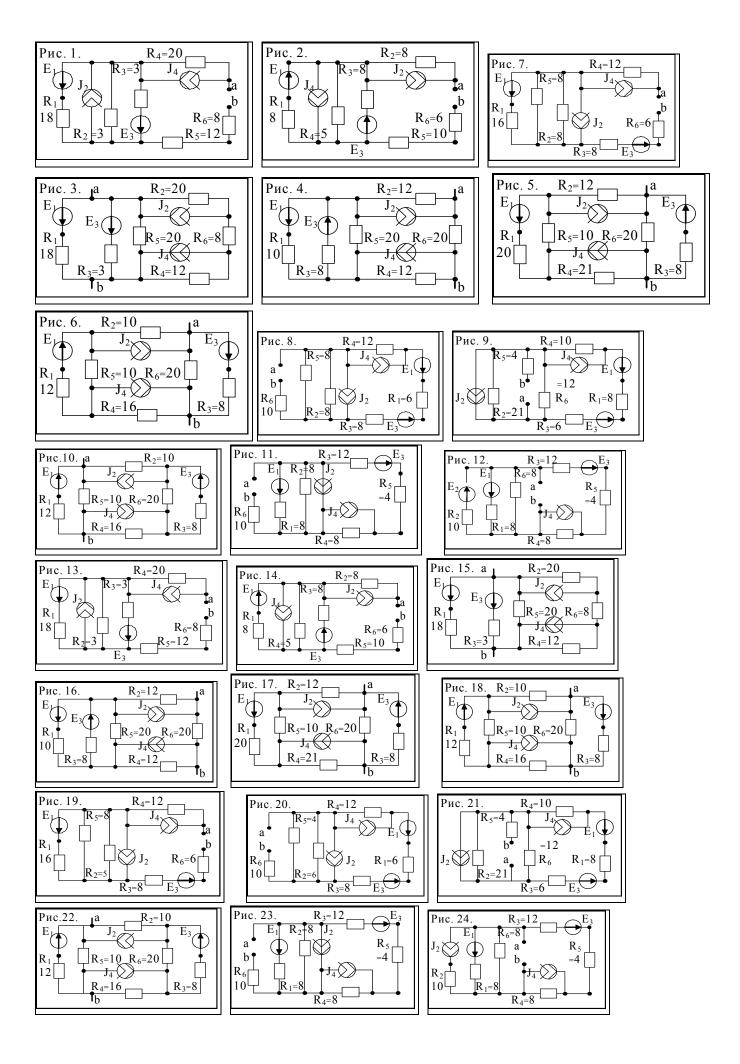

E₃= (E'₃/r₃+ E₅/r₅)/(1/r₃+1/r₅) = 2 (B).
$$r_3$$
 = [$r'_3 r_5/(r'_3 + r_5)$] + r_4 = 3 (O_M). I_{MH} = E₃/ r_3 = 2/3 = 0,66 (A).

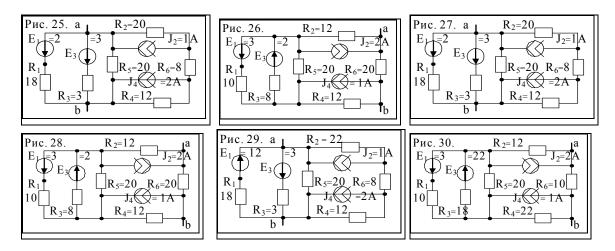

Рекомендуемая литература

- 1. Рекус Г.Г. Основы электротехники и промышленной электроники в примерах и задачах с решениями: Учебное пособие. М.: Высш. шк., 2008. 343 с.
- 2. Касаткин А.С., Немцов М.В. Электротехника. М.: Высш. шк., 2003. 540 с.
- 3. Сборник задач по электротехнике и основам электроники / Под ред. В.Г. Герасимова. М.: Высш. шк., 1987. 288 с.
- 4. Березкина Т.Ф., Гусев Н.Г. Задачник по общей электротехнике с основами электроники. М.: Высш. шк., 1983. 368с.

РГР № 2.1. Задание для самостоятельного решения - для группы №1

- 1. Определить параметры цепи методом эквивалентного генератора.
- 2. Номер варианта задания соответствует номеру рисунка.

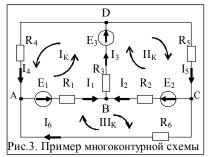



РГР № 2.2. Задание для самостоятельного решения - для группы №2

Выполнить расчет параметров схемы методом эквивалентного генератора.

- 1. Определить параметры E_3 , R_3 и I_3 для эквивалетной упрощенной схемы.
- 2. Показать последовательность преобразования схемы!
- 3. Номиналы элементов схемы обозначены на рисунке. № варианта = № рис.!

Bap.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
E_1	10	15	6	18	12	8	18	16	14	12	10	6	3	6	9
E_3	18	10	12	15	6	10	8	4	12	14	16	18	8	30	4
J_2	1	2	2	4	3	0,5	2	1	2	3	0,5	$E_3 = 4$	0,5	1	0,5
J_4	0,5	3	2	1	1	4	0,5	2	3	1	4	1	2	1	2
Bap.	16														
	10	17	18	19	20	21	22	23	24	25	26	2 <u>7</u>	2 <u>8</u>	<u> 29</u>	3 <u>0</u>
E ₁	4	8	18 20	19 7	20 5	21 3	9	23 14	24	25	26 3	2 <u>7</u> 16	2 <u>8</u> 11	29 12	3 <u>0</u> 19
			_	_	5 10								11		
E ₁	4	8	20	7	5	3	9	14	10	2	3	16	11	12	19



TEMA №3

Оценка токов разветвленной цепи с источниками постоянной ЭДС (8)

Цель занятия: приобретение умений и навыков определения токов в разветвленной цепи с несколькими источниками постоянной ЭДС.

Пример 1.а. В схеме рис. 3. определить токи в ветвях цепи *узловым методом*.

Для определения параметров электрической схемы данным методом, необходимо:

1) составить уравнения для токов в узлах, используя первый закон Кирхгофа: (кол. уравнений равно кол-ву узлов минус 1):

Узел A)
$$I_4 + I_6 - I_1 = 0;$$
 (1)
Узел B) $I_1 + I_2 + I_3 = 0;$ (2)
Узел C) $I_5 - I_2 - I_6 = 0.$ (3)

2) составить уравнения для контуров, используя второй закон Кирхгофа: (кол-во уравнений равно кол-ву контуров):

Контур I:
$$E_1+E_3-I_1\cdot R_1-I_3\cdot R_3-I_4\cdot R_4=0$$
; $I_1\cdot R_1+I_3\cdot R_3+I_4\cdot R_4=E_1+E_3$; (4) Контур II: $E_2+E_3-I_2\cdot R_2-I_3\cdot R_3-I_5\cdot R_5=0$; $I_2\cdot R_2+I_3\cdot R_3+I_5\cdot R_5=E_2+E_3$; (5) Контур III: $E_1-E_2-I_1\cdot R_1+I_2\cdot R_2-I_6\cdot R_6=0$; $I_1\cdot R_1-I_2\cdot R_2+I_6\cdot R_6=E_1-E_2$. (6)

Используя матричный метод расчета, определяем искомые токи $I_1 \div I_6$. Если ток получил знак (–), то направление его вектора необходимо поменять.

Пример 1.b. Определить токи в ветвях схемы методом контурных токов.

Для определения параметров схемы методом контурных токов необходимо:

- 1) составить уравнения для контуров, используя только 2-й закон Кирхгофа;
- 2) используя правила, описать контурные и смежные сопротивления и токи:
 - * контурным ЭДС является сумма ЭДС, входящих в данный контур;
 - * контурным сопротивлением будет сумма сопротивлений данного контура;

$$R_{11} = (R_1 + R_3 + R_4);$$
 $R_{22} = (R_2 + R_3 + R_5);$ $R_{33} = (R_1 + R_2 + R_6).$

Смежным, является сопротивление, связывающее два соседних контура.

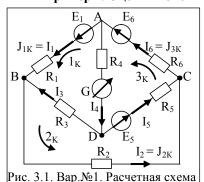
*) контурным является независимый (самостоятельный) ток данного контура;

[
$$I_{K1} = I_4$$
; $I_{K2} = I_5$; $I_{K3} = I_6$].

Смежным, является ток, протекающий между двумя соседними контурами:

$$[I_1 = I_{K1} + I_{K3}; I_2 = I_{K2} - I_{K3}; I_3 = I_{K1} + I_{K2}].$$

*(Если направления обходов соседних контуров совпадают, то при описании смежных токов контурные токи суммируют, а если нет, то токи вычитают).


- 1) $I_{K1} \cdot R_{11} + I_{K2} \cdot R_{12} + I_{K3} \cdot R_{13} = E_1 + E_3$; (1)
- 2) $I_{K1} \cdot R_{21} + I_{K2} \cdot R_{22} I_{K3} \cdot R_{23} = E_2 + E_3$; (2)
- 3) $I_{K1} \cdot R_{31} I_{K2} \cdot R_{32} + I_{K3} \cdot R_{33} = E_1 E_2;$ (3)

В результате решения матрицы можно определить контурные токи $I_{K1} \div I_{K3}$.

Оставшиеся искомые токи определяют как смежные токи.

Для проверки результатов используют уравнение баланса мощностей.

Пример 2. Оценки токов в ветвях цепи несколькими методами:

- 1. Методом контурных токов;
- 2. Узловым методом;
- 3. Методом эквивалентного генератора.

$$E_1 = 100V$$
; $E_2 = 20V$; $E_3 = 150V$; $R_1 = 10 \text{ Om}$; $R_2 = 4 \text{ Om}$; $R_3 = 25 \text{ Om}$; $R_4 = 8 \text{ Om}$; $R_5 = 5 \text{ Om}$; $R_6 = 10 \text{ Om}$.

Определим: I_4 в цепи с прибором G (рис. 3.1). *Решение:*

1. Для определения токов (J_1, \dots, J_6) в цепи «методом контурных токов», необходимо использовать только 2-ой закон Кирхгофа.

Для решения необходимо иметь понятия: «контурное напряжение», «контурные и

межконтурные сопротивления», «контурные и межконтурные токи».

$$\begin{cases}
+(R_1+R_3+R_4)\cdot J_I - R_3\cdot J_{II} - R_4\cdot J_{III} = E_I; \\
-R_3\cdot J_I + (R_2+R_3+R_5)\cdot J_{II} - R_5\cdot J_{III} = -E_{II}; \\
-R_4\cdot J_I - R_5\cdot J_{II} + (R_4+R_5+R_6)\cdot J_{III} = E_{III};
\end{cases}$$

$$43\cdot J_I - 25\cdot J_{II} - 8\cdot J_{III} = 100; \\
-25\cdot J_I + 34\cdot J_{II} - 5\cdot J_{III} = -20; \\
-8\cdot J_I - 5\cdot J_{III} + 23\cdot J_{III} = 20+50.
\end{cases}$$

Вид	заполі	нения	ма	трицы								
R_{II}	R_{12}	R_{13}	=	E_I								
R_{21}	R_{22}	R_{23}	=	E_{II}								
R_{31}	R ₃₂	R_{33}	=	E_{III}								
Суче	том з	наков	по	лучим:								
$+R_{II}$	- R ₃	- R ₄	=	E_I								
$-R_3$	$+R_{22}$	$-R_5$	=	-E5								
$-R_4$	$-R_5$	$+R_{33}$	=	E_5+E_6								
Прим	Пример матрицы											

Решая матрицу по «Крамеру» или «Сайрусу», получим:

$$J_I = I_I = 6,513~A;$$
 $J_{II} = I_2 = 5,146~A;$
 $J_{III} = I_6 = 6,427~A;$
 $I_3 = J_{II} - J_I = -1,367~A;$
 $I_4 = J_{III} - J_I = -0,0857~A$ (искомый ответ);
 $I_5 = J_{III} - J_{II} = 1,281~A;$

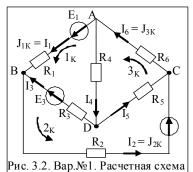
Выводы: В схеме токи J_3 и J_4 имеют отрицательный знак и, следовательно, в схеме необходимо поменять их направление на противоположное.

Проверка: Для проверки результатов используют уравнение баланса мощностей:

$$\sum_{i=1}^{M}\!S_{iH} = \sum_{i=1}^{Hn} P_{H}; \qquad E_{1} \cdot I_{1} + E_{5} \cdot I_{5} + E_{6} \cdot I_{6} = I_{1}^{2} \cdot R_{1} + I_{2}^{2} \cdot R_{2} + I_{3}^{2} \cdot R_{3} + I_{4}^{2} \cdot R_{4} + I_{5}^{2} \cdot R_{5} + I_{6}^{2} \cdot R_{6}.$$

2. Для определения токов $(J_1, ..., J_6)$ в цепи «<u>узловым методом</u>», необходимо использовать вначале 1-й закон Кирхгофа, а затем 2-ой закон Кирхгофа.

0	0	-1	0	1	=	0				
-1	1	0	0	0	=	0				
1	0	0	1	-1	=	0				
0	-R3	$-R_4$	0	0	=	E_I				
R_2	R_3	0	$-R_5$	0	=	$-E_5$				
0	0	R_4	R_5	R_6	=	E_5+E_6				
Іример матрицы										
	0	0 0	$0 0 R_4$	$0 0 R_4 R_5$	$0 0 R_4 R_5 R_6$	$0 \ 0 \ R_4 \ R_5 \ R_6 =$				


Решая матрицу методом «Крамера» или «Сайруса», получим:

$$I_1 = 6,513A$$
; $I_2 = 5,146A$; $I_3 = -1,3671A$; $I_4 = -0,0857A$; $I_5 = 1,28A$; $I_6 = 6,43A$.

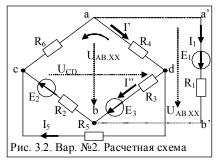
Выводы: расчетные токи совпали по величине, следовательно, решение верное.

Пример №3. Рис. 3.2.
$$E_1 = 100V$$
; $E_2 = 50V$; $E_3 = 20V$; $R_1 = 1 \text{ Om}$; $R_2 = 2 \text{ Om}$; $R_3 = 3 \text{ Om}$; $R_4 = 4 \text{ Om}$; $R_5 = 5 \text{ Om}$; $R_6 = 6 \text{ Om}$.

При расчете параметров схемы (рис. 3.3) методом контурных токов, получим:

 $I_6 = J_{III} = 13,743 A;$ $I_3 = J_{II} - J_I = -3,538 A;$ $I_4 = J_{III} - J_I = -11,128 A;$ $I_5 = J_{II} - J_{III} = 7,59 A.$ 3. Методом эквивалентного генератора

 $I_1 = J_1 = 24,871A$; $I_2 = J_{II} = 21,333A$;


Запишем уравнение для искомого тока:

$$I_I = (U_{AD.XX} + E_1) / (R_{AB.BH} + R_1).$$

В связи с тем, что ветви «cad», «cbd» и «cd» в схеме (рис. 3.2) соединены параллельно, то для определения напряжения U_{CD} необходимо использовать свойство *проводимости* в

данных ветвях:

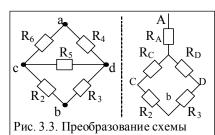
2)
$$U_{CD} = [(E_2 + E_3) \cdot (g_2 + g_3)] / [(g_2 + g_3) + (g_6 + g_4) + g_5] =$$

= $[(50+20) \cdot (1/(2+3))] / [(1/(2+3) + (1/(4+6) + (1/5))] = 28V;$

Определим ток J' для контура «dacd»:

$$0 = - J' \cdot (R_4 + R_6) + (U_{CD});$$

$$J' = (U_{CD})/(R_4 + R_6) = (28)/(4+6) = 2,8 \text{ A}.$$


Определим ток J" для контура «dcbd»:

$$(E_2 + E_3) = J'' \cdot (R_2 + R_3) + (U_{CD});$$

 $J'' = (-U_{CD} + E_2 + E_3)/(R_2 + R_3) =$
 $= (-28 + 50 + 20)/(2 + 3) = 8,4 \text{ A}.$
 $(-E_3) = (-J'' \cdot R_3 - J' \cdot R_4) + (U_{AB,XX});$

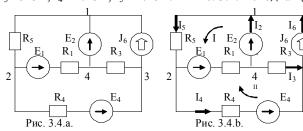
$$(U_{AB,XX}) = (J' \cdot R_4 + J'' \cdot R_3 - E_3) = (2.8 \cdot 4 + 8.4 \cdot 3 - 20) = 16.4 \text{ V}.$$

Определим сопротивление (R_{AB,BH}) цепи:

$$R_{AB.BH} = R_A + [(R_D + R_3) \cdot (R_C + R_2) / (R_C + R_3 + R_D + R_2)].$$

$$R_A = (R_4 \cdot R_6)/(R_4 + R_5 + R_6) =$$

= $(4 \cdot 6)/(4 + 5 + 6) = 1,6$ (OM);
 $R_C = (R_5 \cdot R_6)/(R_4 + R_5 + R_6) =$
= $(5 \cdot 6)/(4 + 5 + 6) = 2,0$ (OM);


$$\begin{split} R_D &= (R_4 \cdot R_5) / (R_4 + R_5 + R_6) = \\ &= (4 \cdot 5) / (4 + 5 + 6) = 1,3 \ (O_M). \end{split}$$

$$R_{AB,BH} = 1.6 + [(1.3+3)\cdot(2+2)/(3+2+2+1.3)] = 3.67 (O_M).$$

В результате $I_I = (U_{AB,XX} + E_1)/(R_{AB,BH} + R_1) = (16,4+100)/(3,67+1) = 24,83$ А.

Пример 4. Расчет параметров цепи с источниками ЭДС и источником тока.

Определим токи в ветвях схемы (рис. 3.4,а) используя законы Кирхгофа. Параметры элементов схемы: $E_1 = 40 \text{ B}$, $E_2 = 20 \text{ B}$, $E_4 = 10 \text{ B}$, $E_6 = 3 \text{ A}$, $E_1 = 5 \text{ CM}$. $E_1 = 40 \text{ B}$, $E_2 = 20 \text{ B}$, $E_3 = 10 \text{ CM}$. Puc. 3.4. Исходная (а) и расчетная (б) схемы.

Решение. Цепь образована шестью ветвями $(n_B = 6)$.

В ветвях 1, 2, 4 содержатся ист. ЭДС E_1 , E_2 , E_4 , а ветвь 6 содержит источник тока J_6 .

Рисунок 3.4. Разветвленная цепь с источниками ЭДС и источником тока

В цепи имеются четыре узла, три из которых можно считать независимыми. Выберем направления токов в ветвях (рис.

3.4,а) и составим уравнение по 1-му закону Кирхгофа для узлов 1, 2, 3:

$$-I_2 + I_5 - I_6 = 0.$$

 $I_1 + I_4 - I_5 = 0.$
 $-I_3 - I_4 + I_6 = 0.$

В схеме три независимых контура. По 2-му закону Кирхгофа можно составить 3 уравнения, однако, учитывая, что ток в ветви 6 равен току источника J_6 , достаточно составить уравнения только для 2-х контуров 1 и 2, в которые не входит ветвь с источником тока. Затем выберем направления обхода этих контуров, как показано на рис. 3.6,6, и запишем уравнения Кирхгофа:

$$R_1I_1 + R_5I_5 = E_1 + E_2.$$

 $R_1I_1 + R_3I_3 - R_4I_4 = E_1 - E_4 = 0.$

Полная система уравнений, составленная по закону Кирхгофа, имеет вид:

$$\begin{split} -I_2 + I_5 &= J_6. \\ I_1 + I_4 - I_5 &= 0. \\ I_3 - I_4 &= J_6. \\ R_1I_1 + R_5I_5 &= E_1 + E_2. \\ R_1I_1 + R_3I_3 - R_4I_4 &= E_1 - E_4. \end{split}$$

Эту систему уравнений представим в матричной форме (матричное уравнение):

0	-1	0	0	1		I_1	=	J ₆
1	0	0	1	-1		I_2	-	0
0	0	1	1	0		I_3	=	J_6
\mathbf{r}_1	0	0	0	r_5	•	I_4	Ш	E_1+E_2
r_1	0	r3	-r ₄	0		I_5	=	$E_1 - E_4$

0	-1	0	0	1	I_1	=	3
1	0	0	1	-1	I_2	=	0
0	0	1	1	0	I_3	=	3
5	0	0	0	10	I_4	=	60
5	0	5	-20	0	I_5	=	30

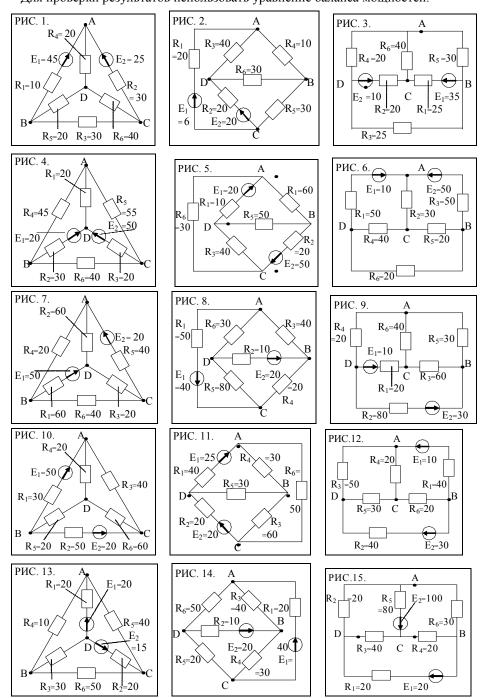
Решая матричное уравнение, находим определители Δ , Δ_1 , Δ_2 , Δ_3 , по которым вычислим значения токов: $I_1 = 3,88$; $I_2 = 1,05$; $I_3 = 2,82$; $I_4 = 0,17$; $I_5 = 4,05$ (A).

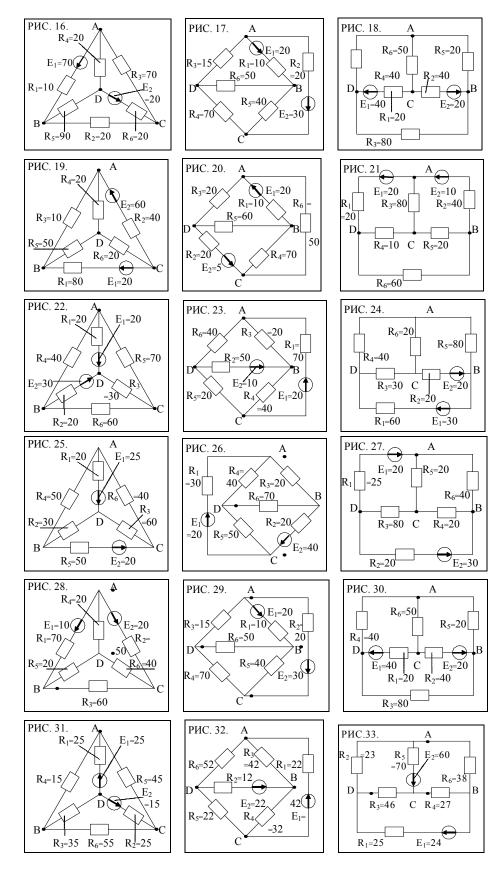
РГР № 3. Задание для самостоятельного решения

A-B A-C

Цепь С-Д

- 3.1. Определить параметры цепи методом контурных токов для группы №1
- 3.2. Определить параметры цепи узловым методом для группы №2


3.3. Определить ток методом эквивалентного генератора (смотри таблицу)


Bap.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Рис.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ток	J_1	J_2	J_3	J_3	J_5	J_3	J_1	J_1	J_3	J_4	J_5	J_6	J_1	J_2	J_3
Цепь	A-B	С-Д	Б-Д	Д-С	В-Д	A-C	Б-Д	A-C	С-Б	А-Д	Д-Б	Б-С	А-Д	Б-Д	С-Д
Bap.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Рис.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30

С-Д Б-Д С-Д Б-Д А-В А-С А-Б Б-Д

Вариант задания соответствует номеру, приведенному на рисунке. Величины элементов, обозначенные на рисунках схем: (R-Om; U-B). Для проверки результатов использовать уравнение баланса мощностей.

C-B A-C

Рекомендуемая литература

- 1. Рекус Г.Г. Основы электротехники и промышленной электроники в примерах и задачах с решениями: Учебное пособие. М.: Высш. шк., 2008. 343 с.
- 2. Касаткин А.С., Немцов М.В. Электротехника. М.: Высш. шк., 2003. 540 с.
- 3. Сборник задач по электротехнике и основам электроники / Под ред. В.Г. Герасимова. М.: Высш. шк., 1987. 288 с.
- 4. Березкина Т.Ф., Гусев Н.Г. Задачник по общей электротехнике с основами электроники. М.: Высш. шк., 1983. 368с.

Пример 1. Анализ параметров цепи в комплексной форме

Определим параметры цепи: $e_{(t)}$, $u_{R(t)}$, $u_{C(t)}$, $u_{L(t)}$, $u_{RL(t)}$, $u_{LC(t)}$, $i_{(t)}$, S, P, Qцепи в комплексной форме и построим векторную диаграмму параметров цепи.

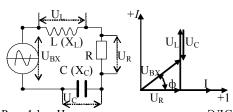


Рис. 4.1,а. Неразветвленная цепь с ист. ЭДС

Дано:
$$u_{RC(t)} = 56,4 \cdot \sin(400t - 59^{\circ});$$

$$R=8(O_M); L=0.025(\Gamma_H); C=312(мк\Phi).$$

Решение:cos-59°=0,515; sin-59=0,857.

$$X_L = j\omega L = 400.0,025 = j10 \text{ (Om)};$$

$$X_C = 1/j\omega C = 10^6/400.312 = -j8 \text{ (Om)};$$

$$Z_{II} = R + jx = 8 + j10 - j8 = (8 + j2).$$

Модуль
$$Z_{II}$$
: $Z_{II} = \sqrt{R^2 + X^2} \cdot e^{jarctgX/R} = \sqrt{8^2 + 2^2} \cdot e^{jarctg2/8} = 8,246 \cdot e^{j14,02}$ (Ом).

Определим \underline{Z}_{RC} на участке цепи RC:

$$\underline{Z}_{RC} = R + X_C = (8 - j8).$$

Определим
$$Z_{RC}$$
 на участке цепи RC: $Z_{RC} = R + X_C = (8-j8)$. Модуль $Z_{RC} = \sqrt{R^2 + (-X_C^2)} \cdot e^{j \operatorname{arctg}(-x/r)} = 11.31 \cdot e^{j \operatorname{arctg}(-1)} = 11.31 \cdot e^{-j45}$.

$$[u_{RC(t)} = U_{mRC} \cdot \sin(\omega t - \psi_U^0)]; \ U_{mRC} = 56.4 \cdot e^{-j59}$$
; $U_{RC} = U_{mRC} / \sqrt{2} = 40 \cdot e^{-j59}$ °.

$$[\bar{U}_{RC} = 40\cos -59^{\circ} + j40\sin -59^{\circ} = 40\cdot 0,515-j40\cdot 0,857 = (20,6-j34,28)].$$

Ток в показательной форме:
$$I = U_{RC}/Z_{RC} = 40 \cdot e^{-j59} \circ /11,31 \cdot e^{-j45} \approx 3,536 \cdot e^{-j14}$$
.

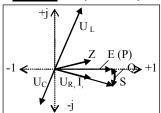
$$i_{(t)} = I_m \sin(\omega t - \psi i) = (1,41 \cdot 3,536) \cdot e^{-j14} = 5 \cdot e^{-j14}$$
. $i_{(t)} = 5 \cdot \sin(400t - 14)$.

$$U_L = I \cdot Z_L = 3,536 \cdot e^{-j14} \cdot 10e^{j9\theta} = 35,36 e^{j76}$$
 (B).

$$u_{L(t)} = (\sqrt{2 \cdot 35,35}) \cdot \sin(400t + 76^\circ) = 50 \sin(400t + 76^\circ)$$
 (B).

$$U_C = I \cdot Z_C = 3.536 \cdot e^{-j14} \cdot \cdot 8 \cdot e^{-j90} \cdot = 28.28 \cdot e^{-j104} \cdot (B).$$

$$u_{C(t)} = (\sqrt{2} \cdot 28, 28) \cdot \sin(400t - 104^\circ) = 40 \sin(400t - 104^\circ).$$


$$U_R = I \cdot Z_R = 3.536 \cdot e^{-j14} \cdot 8e^{j\theta} = 28.28 e^{-j14} (B)$$

$$u_{R(t)} = (\sqrt{2 \cdot 28,28}) \cdot \sin(400t - 14^\circ) = 40 \sin(400t - 14^\circ) (B).$$

$$E = I \cdot Z = 3,536 \cdot e^{-j14} \cdot \cdot 8,246 \cdot e^{j14} \cdot = 29,158 e^{j\theta}$$
 (B).

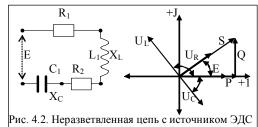
$$e_{(t)} = (2\cdot 29,158) \cdot \sin(400t \pm 0^\circ) = 41,11 \sin 400t \ (B). \ [I' - \underline{conpяженный ток}]$$

$$\underline{S = E \cdot I'} = 29,158 \ e^{j\theta} \cdot 3,53 \cdot e^{+j14} \approx 103 \cdot e^{+j14'}$$
. $20e: P = 100(Bm); \ Q = +j24,8 \ (BAp)$.

Построение векторной диаграммы (рис. 4.2,б).

Проверка правильности расчета:

1) Существует справедливость выражений:


 $P = S \cdot \cos \varphi = 103 \cdot 0,97 = 100; \ Q = S \cdot \sin \varphi = 24,8.$

1)
$$8/2 = R/X = P/Q = (100/j25) = 4/1$$
.

Рис.4.1,б.Диаграмма векторов 2)
$$S = P + Q = \bar{I} \cdot (\bar{U}_R + \bar{U}_L + \bar{U}_C) \approx (100 + j25);$$

3)
$$\vec{E} = (\vec{U}_R + \vec{U}_L + \vec{U}_C) = (27,44 - j6,84) + (8,55 + j34,3) + (-6,84 - j27,44) \approx (29,15);$$

Пример 2. Анализ параметров цепи в комплексной форме

Для схемы известны параметры:

$$R_1 = 6 \text{ OM}, R_2 = 2 \text{ OM}, L = 0.02 \Gamma H,$$

 $C = 500 \text{mK}\Phi, e_{(t)} = 70.5 \text{sin} 500 t.$

Определить следующие параметры: Z_{II} , I, U_R , U_C , U_L , P, Q, S, $cos \varphi$ и построить векторную диаграмму для электрических параметров цепи.

Решение. 1 . Определим сопротивления элементов цепи: X_L , X_C , Z_{II} .

$$X_L = j\omega \cdot L = j \cdot 500 \cdot 0,02 \ \Gamma H = j10 \ (O_M);$$

$$X_C = 1/(j\omega \cdot C) = 1/[j \cdot 500 \cdot 0,000500 (\Phi)] = 4/j = (-j) \cdot 4/[(-j) \cdot j] = -j4 (O_M);$$

$$\underline{Z}_{II} = (R_1 + R_2) + (X_L + X_C) = (6 + 2 + j10 - j4) = (8 + j6).$$

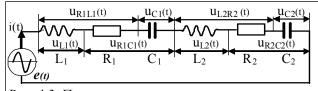
2. Ток в цепи: $\bar{I} = \bar{E}/\underline{Z}_H = (E_m/\sqrt{2})/(8+j6) = (70,5/\sqrt{2})/(8+j6)$. (алгебраич. форма зап.).

$$\bar{I} = (50 \cdot (8-j6))/[(8+j6) \cdot (8-j6)] = (400-j300)/(64+j48-j48+36) = (4-j3).$$

Модуль тока: $I = \sqrt{4^2 + (-3)^2} \cdot exp^{jarctg (-3/4)} = 5 \cdot e^{-j \cdot arctg (0.75)}$. $I = 5 \cdot e^{-j36 \cdot 52}$.

$$\bar{U}_R = \bar{I} \cdot (R_1 + R_2) = (4-j3) \cdot (6+2) = (32-j24)$$
 (алгебр. форма записи).

Модуль
$$U_R = \sqrt{(32^2 + (-24^2))^2} e^{j \arctan(6-24/32)} = 40 \cdot e^{-j \arctan(6-24/32)} = 40 \cdot e^{-j \arctan(6-24/32)}$$
 (экспонен. форма).


$$ar{U}_L = ar{I} \cdot X_L = (4-j3) \cdot j10 = (30+j40).$$
 (алгебраическая форма записи).
Модуль $U_L = \sqrt{(30^2+40^2)} \cdot e^{j \arctan (40/30) + \psi nL} = 50 \cdot e^{j \arctan (1,33) + 90 \cdot \circ} = 50 \cdot e^{j(53 \cdot \circ + 90 \cdot \circ)}.$ $ar{U}_C = ar{I} \cdot X_C = (4-j3) \cdot (-j4) = (-12-j16).$ [использ. прав. Эйлера: $(-j) \cdot (-j) = -1$].
Модуль $U_C = \sqrt{(-12^2) + (-16)^2} \cdot e^{j \arctan (-16/-12) - \psi nC} = 20 \cdot e^{j \arctan (1,33) - \psi nC} = 20 \cdot e^{j(53 \cdot \circ - 90 \cdot \circ)}.$ $\underline{S} = ar{E} \cdot ar{I}' = 50 \cdot (4+j3)' \approx 200 + j150.$ $20e: P = 200(Bm); \ Q = +j150 \ (BAp).$ $\underline{Modynb} \ S = \sqrt{200^2 + 150^2} \cdot e^{j \arctan (150/200)} = 250 \cdot e^{j \arctan (0,75)} = 250 \cdot e^{j (36 \cdot 50')} \ (BA).$ $\underline{I}_{DOBepka}$:

Существует справедливость следующих выражений:

- 1) (8/j6) = R/X = P/Q = (200/j150) = 4/j3.
- 2) $\underline{S} = \overline{I}'(\overline{U}_L + \overline{U}_C + \overline{U}_R) = (4+j3)' \cdot (\underline{30+j40} \underline{12-j16} + \underline{32-j24}) = (4+j3)' \cdot (50) = (200+j150).$
- 3) $\bar{E} = (\bar{U}_R + \bar{U}_L + \bar{U}_C) = (\underline{30 + j40} \underline{12 j16} + \underline{32 j24}) = 50.$

Рекомендуемая литература

- 1. Рекус Г.Г. Основы электротехники и промышленной электроники в примерах и задачах с решениями: Учебное пособие. М.: Высш. шк., 2008. 343 с.
- 2. Касаткин A.C., Немцов М.В. Электротехника. М.: Высш. шк., 2003. 540 с.
- 3. Сборник задач по электротехнике и основам электроники / Под ред. В.Г. Герасимова. М.: Высш. шк., 1987. 288 с.
- 4. Березкина Т.Ф., Гусев Н.Г. Задачник по общей электротехнике с основами электроники. М.: Высш. шк., 1983. 368с. РГР № 4.1. Задание для самостоятельного решения - для группы №1

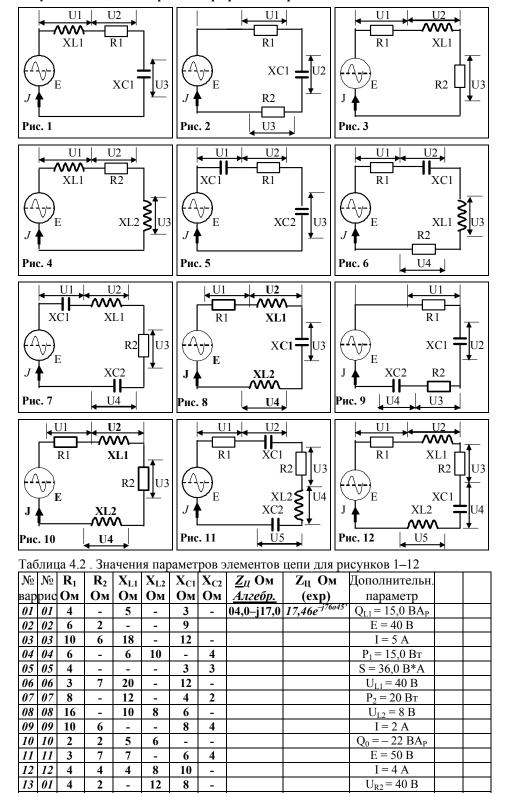
Для схемы (рис. 4.3) определить следующие параметры: $e_{(t)}$, $i_{(t)}$, $u_{R1,2(t)}$, $u_{L1,2(t)}$, $u_{C1,2(t)}$, S, Q, P, $cos \phi$ и построить их векторные диаграммы.

Таблица 4.1. Варианты заданий для РГР № 4.1.

Рис. 4.3. Пример схемы «неразветвленная цеп

	лані	ные	значен	ия пара	метров эт	тементов	схемы		
						C_2 мк Φ		Z_{II} (OM)	Напряжение или ток
1	10		0,04	0,04	2000	2000	20_i2	$20,1e^{-j5042}$	$e_{(t)} = 20\sin 100t$
2	14	_	0,03	0,03	800	800	20-j2	20,10	$i_{(t)} = 3.3\sin(100t + 25^{\circ}48')$
3	16		0,03	0,03	1250	1250			$u_{R1(t)} = 16,69\sin(100t)$
4	12	_	0,04	0,04	800	800			$u_{L1(t)} = 14,2\sin(200t+76^{\circ} 6')$
5	9	9	0,02	0,02	400	400			
6	5	5			-				$u_{C1(t)} = 41,60\sin(500t-53^{\circ}6')$
			0,014	0,014		1000			$u_{R1L1(t)} = 15\sin 200t$
7	4	4	0,03	-	2500	2500			$u_{R1C1(t)} = 27\sin(200t-45^{\circ}30')$
8	8	8	0,05	0,05	1250	-			$u_{L1C1(t)} = 80\sin(100t+53^{\circ}6')$
9	25	25	0,014		1000	1000			$e_{(t)} = 30\sin 500t$
10	8	8	0,005	0,005	625	625			$i_{(t)} = 2.9\sin(400t+14^{\circ}30')$
11	16		0,04	0,04	1250	1250			$u_{R2(t)} = 16,69\sin(200t+36^{\circ}54')$
12	15	15	0,01	0,01	500	500			$u_{C2(t)} = 31,4\sin(400t-78^{\circ}24')$
13	14	14	0,075	0,075	625	625			$u_{L2(t)} = 10.9\sin(400t+104^{\circ}30')$
14	15	15	0,01	0,01	500	500			$u_{R2L2(t)} = 31,4\sin(400t+38^\circ)$
15	15	15	0,01	0,01	500	500			$u_{R2C2(t)} = 31,4\sin(400t-38^\circ)$
16	15	15	0,01	0,01	500	500			$u_{L2C2(t)} = 31,4\sin(400t-58^{\circ}24')$
17	26	26	0,03	0,03	2500	2500			$e_{(t)} = 40\sin 200t$
18	18	18	0,04	0,04	2000	2000			$i_{(t)} = 2.15\sin(100t+6^{\circ}54')$
19	22	,	0,04	0,04	5000	5000			$u_{R1(t)} = 7.08\sin(100t+45^{\circ})$
20	10	10	0,02	-	2500	2500			$u_{L1(t)} = 17\sin(200t+53^{\circ}12')$
21	30	30	0,01	0,01	250	-			$u_{C1(t)} = 113\sin(500t-44^{\circ}30')$
22	15	-	0,01	-	500	500			$u_{R1L1(t)} = 31,4\sin(400t+78^{\circ}24')$
23	15	-	0,01	0,01	500	-			$u_{R1C1(t)} = 31,4\sin(400t-78^{\circ}24')$
24	15	15	0,01	-	500	-			$u_{L1C1(t)} = 31,4\sin(400t-28^{\circ}24')$
	26		0,03	0,03	2500	2500			$e_{(t)} = 50 \sin 1000t$
26	28	28	0,04	0,04	2000	2000			$i_{(t)} = 2,233\sin(100t + 7^\circ)$
27	-	12	0,04	0,04	5000	5000			$u_{R2(t)} = 10\sin(200t+45^\circ)$
28	30	30	-	0,03	2500	2500			$u_{L2(t)} = 31,20\sin(200t+53^{\circ})$
29	33	33	0,01	0,01	-	250			$u_{C2(t)} = 113,1\sin(500t-45^{\circ})$
30	-	15	0,2	0,01	500	500			$u_{R2L2(t)} = 31,4\sin(400t+78^{\circ}24')$
31	-	33	0,01	0,01	-	250			$u_{R2C2(t)} = 113,1\sin(500t-45^{\circ})$
32	18	15	-	0,01	200	500			$u_{L2C2(t)} = 31,4 \sin(400t-18^{\circ}24')$
* 7-					-			П	п1

^{*} Значения тригонометрических функций приведены в Приложении, таблица П1.


РГР №4.2. Задание для самостоятельного решения - для группы №2

Варианты 01-36. Цепь переменного тока содержит элементы R, L, C, включенные последовательно. Схема цепи приведена на рисунках №1...№12.

№ рисунка и значения сопротивлений элементов **R**, **L**, **C**, а также один дополнительный параметр заданы в табл. 4.2. Начертить схему цепи и векторную диаграмму и определить величины:

 $Z; E; U_R; U_L; U_C; I; P, Q u S$ с учетом их угла фазового сдвига φ .

Рисунки схем для контрольно-графической работы – РГР № 4.2

14 02

18 06

20 08

21 09

S = 120 B*A

 $P_0 = 40 \text{ B}_T$

 $U_{R1} = 16 B$ I = 4 A

 $Q_C = -54 \text{ BAp}$

S = 180 B*A

 $P_0 = 100 \text{ B}_T$

I = 5 A

22	10	4	2	12	-	4	-	$P_1 = 24 \text{ B}_T$
23	11	5	3	12	-	6	1	S = 250 B*A
24	12	3	1	3	5	-	-	$Q_{L1} = 80 \text{ BA}_P$
25	01	4	8	10	6	8	•	$Q_L = 64 \text{ BA}_P$
26	<i>02</i>	8	2	-	10	4	2	E = 40 B
27	03	6	4	12	1	2	2	$U_{L1} = 60 \text{ B}$
28	04	4	-	8	4	9	-	$Q_0 = 75 \text{ BA}_P$
29	05	2	6	8	-	4	2	$U_{R2} = 24 \text{ B}$
30	06	4	2	4	-	8	4	$Q_C = -36 \text{ BA}_P$
31	0 7	8	-	4	6	10	-	$P_2 = 80 \text{ Br}$
32	08	3	3	2	-	10	-	$Q_{C1} = -160 \text{ BA}_{P}$
33	09	2	2	-	9	3	6	$P_0 = 100 \text{ B}_T$
34	10							
35	11							
36	<i>12</i>							

Примечание. Решение типовых примеров приведено в РГР № 4 и №5.

Рекомендуемая литература

- 1. Рекус Г.Г. Основы электротехники и промышленной электроники в примерах и задачах с решениями: Учебное пособие. – М.: Высш. шк., 2008. – 343 с.
- Касаткин А.С., Немцов М.В. Электротехника. М.: Высш. шк., 2003. 540 с.
- 3. Сборник задач по электротехнике и основам электроники / Под ред. В.Г. Герасимова. М.: Высш. шк., 1987. 288 с.

TEMA № 5

Разветвленные цепи с источником синусоидальной ЭДС (6)

Цель занятия: приобретение умений и навыков анализа и оценки параметров разветвленной цепи с источником ЭДС синусоидального тока.

Пример 1. Выполним расчет параметров разветвленной цепи (рис. 5.1).

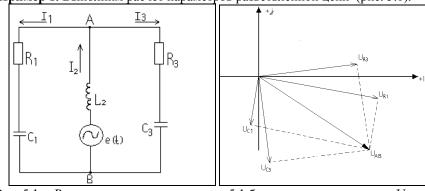


Рис. 5.1,а. Расчетная схема.

5.1,б. – векторная диаграмма U.

Дано:
$$i_{2(t)} = 5,64 \sin 400t$$
; $R_1 = 9$ (Ом); $R_2 = 0$ (Ом); $R_3 = 4$ (Ом); $L_1 = L_3 = 0$; $L_2 = 0,005$ (Гн); $C_1 = C_3 = 625 \cdot 10^{-6}$ (Ф); $C_2 = 0$.

Решение:
$$X_{L2} = \omega L_2 = 400 \cdot 5 \cdot 10^{-3} = (j2);$$
 $X_{CI} = X_{C3} = 1/\omega C_3 = 10^6/(400 \cdot 625) = (-j4);$ $Z_1 = R_1 + X_{CI} = (9-j4);$ $Z_1 = 9,85 \cdot e^{-j24} \circ .$ $Z_2 = jX_{L2} = j2;$ $Z_3 = R_3 + X_{C3} = (4-j4);$ $Z_3 = 5,65 \cdot e^{-j45} \circ .$ $Z_{L3} = \frac{Z_1 \cdot Z_3}{Z_1 + Z_2} = \frac{(9-j4)(4-j4)}{(9-j4)(4-j4)} = \frac{(20-52j)(13+8j)}{(12^2+3^2)^2} = \frac{676-516j}{222} = (2,9-j2,22) = 3,65e^{-j37,4} \circ .$

$$\underline{Z_{1,3}} = \underline{\frac{Z_1 \cdot Z_3}{Z_1 + Z_3}} = \frac{(9 - j4)(4 - j4)}{9 - j4 + 4 - j4} = \frac{(20 - 52j)(13 + 8j)}{(13^2 + j8^2)} = \frac{676 - 516j}{233} = \underbrace{(2,9 - j2,22)}_{233} = 3,65e^{-j37,43} = \underbrace{(2,9 - j2,22)}_{233} = 3,65e^{-j37,43} = \underbrace{(2,9 - j2,22)}_{233} = 3,65e^{-j37,43} = \underbrace{(2,9 - j2,22)}_{233} = \underbrace{(2,9 - j2,22)}_{233}$$

$$\underline{Z}_{II} = \underline{Z}_2 + \underline{Z}_{1,3} = j2 + (2,9 - j2,22) = \underline{(2,9 - j0,22)}.$$
 $Z_{II} = 2,908 \cdot e^{-j4,33} \cdot .$

$$\bar{I}_L = \bar{I}_2 = 5,64 / \sqrt{2} = 4 A; \ I = 4 \cdot e^{j\theta} \cdot . \ \ \bar{U}_L = \bar{U}_2 = \bar{I}_{L2} \cdot Z_2 = 4 \cdot j2 = j8; \ \ U_L = 8 \cdot e^{j9\theta} \cdot .$$

$$\bar{E} = \bar{I}_2 \cdot \underline{Z}_{II} = 4 \cdot (2, 9 - j0, 22) = \underline{(11, 6 - j0, 88)};$$
 $E = 11, 63 \cdot e^{-j4, 33} \cdot .$

$$\bar{U}_{AB} = \bar{U}_1 = \bar{U}_3 = \bar{E} - \bar{U}_L = (11,6-j0,88) - j8 = \underline{(11,6-j8,88)};$$
 $U_{AB} = 14,6 \cdot e^{-j37,43}$

$$\bar{I}_1 = \bar{U}_{AB}/\underline{Z}_1 = (11,6-j8,88)\cdot(9+j4)/[(9-j4)\cdot(9+j4)] = (1,442-j0,345).$$

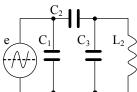
$$I_I = 1.48 \text{ A}; \quad \Psi_{II} = arctg (-0.345/1.442) = -13^{\circ}27.$$
 $I_I = 1.48 \cdot e^{-j13.27^{\circ}}.$ $I_{I_I} = 1.48 \cdot e^{-j13.27^{\circ}}.$

$$\bar{I}_3 = \bar{U}_{AB}/\underline{Z}_3 = (11.6 - j8.88) \cdot (\underline{4+j4})/[(4-j4) \cdot (\underline{4+j4})] = (2.54 + j0.345);$$

$$I_3 = 2,58 \text{ A};$$
 $\Psi_{I3} = arctg (0,34/2,54) = 7°37.$ $I_3 = 2,58 \cdot e^{j7,37}°.$

$$i_{3(t)} = 3,63\sin(400t + 7^{\circ}37);$$
 $S = E \cdot I'_{2} = 11,63 \cdot e^{-j4,33} \cdot 4e^{j\theta} = 46,52 \cdot e^{-j4,33}$.

$$\dot{S} = \bar{I}'_2 \cdot \bar{U}_2 + \bar{I}'_1 \cdot \bar{U}_{AB} + \bar{I}'_3 \cdot \bar{U}_{AB} = (4 \cdot j8) + [(1,442 - j0,345) \cdot (11,6 - j8,88)] +$$


+
$$[(2,54+j0,345)\cdot(11,6-j8,88)] = 46,38-j3,51;$$
 rge: P = 46,38 (Bt); Q = -j3,51(BAP).

$$S = \sqrt{46,38^2 + 3,51^2} \cdot e^{\text{ jarctg} - (3,51/46,38)} = 46,52 \cdot e^{-j4,33} \circ \text{ (BA)}.$$
 ($\overline{I'}$ - сопряженный ток).

^{*)} Проверка справедливости отношений: $(2,9/-j0,22)=R/X=P/Q=(46,38/-j3,51)\approx 13,2.$

Пример 2. Выполним расчета параметров резонансной схемы (рис. 5.2)

Для схемы (рис. 5.2) требуется определить резонансные частоты и построить график частотной характеристики входного сопротивления (или входной проводимости).

 $L_0 = 0.001 \text{ ГH}; \ L_3 = 0.006 \text{ ГH}; \ L_3/L_0 = 6;$

 $C_0 = 2 \text{ MK}\Phi$; $C_1 = 120 \text{ MK}\Phi$; $C_1/C_0 = 60$;

 $C_2/C_0 = 30$, $C_2 = 60$ мк Φ ;

 $C_3/C_0 = 60$, $C_3 = 120$ мк Φ .

Решение: Условие резонанса со смешанным соединением нескольких индуктивных и емкостных элементов заключается в равенстве нулю мнимой части входного сопротивления.

Найдем выражение входного сопротивления цепи:

Конденсатор С₃ и катушка L₃ соединены параллельно.

Проводимость этой части цепи равна:

$$Y_3 = \frac{1}{j\omega L_3} + j\omega C_3 = \frac{1 - \omega^2 L_3 C_3}{j\omega L_3}$$
 (Сим).

Сопротивления этой части цепи равно:

$$Z_3 = \frac{1}{Y_3} = \frac{j\omega L_3}{1 - \omega^2 L_3 C_3}$$
 (OM).

Конденсатор C_2 соединен последовательно с частью цепи, сопротивление которой равно Z_3 .

Сопротивления этой части цепи равно:

$$Z_{2,3} = \frac{1}{j\omega C_2} + \frac{j\omega L_3}{1 - \omega^2 L_3 C_3} = \frac{1 - \omega^2 L_3 C_3 - \omega^2 L_3 C_2}{j\omega C_2 (1 - \omega^2 L_3 C_3)}$$
 (OM).

Проводимость этой части цепи равно

$$Y_{2,3} = \frac{j\omega C_2 (1-\omega^2 L_3 C_3)}{1-\omega^2 L_3 C_3 - \omega^2 L_3 C_2} \ \ (\text{Сим}).$$

Входная проводимость цепи равна:

$$Y_{\rm ex} = j\omega C_1 + \frac{j\omega C_2(1 - \omega^2 L_3 C_3)}{1 - \omega^2 L_3 C_3 - \omega^2 L_3 C_2} = \frac{j\omega C_1(1 - \omega^2 L_3 C_3 - \omega^2 L_3 C_2) + j\omega C_2(1 - \omega^2 L_3 C_3)}{1 - \omega^2 L_3(C_3 + C_2)} =$$

$$=\frac{j\omega(C_1-\omega^2L_3C_3C_1-\omega^2L_3C_2C_1+C_2-\omega^2L_3C_3C_2)}{1-\omega^2L_3(C_3+C_2)} \ \ (\text{Сим}).$$

Входное сопротивление цепи составит:

$$Z_{\rm ex} = \frac{1 - \omega^2 L_3 (C_3 + C_2)}{j \omega (C_1 + C_2 - \omega^2 L_3 (C_3 C_1 + C_2 C_1 + C_3 C_2)} \ ({\rm Om}). \label{eq:Zexp}$$

Если приравнять числитель к нулю, то получим резонансную частоту, соответствующую резонансу напряжений:

$$\omega_1 = \frac{1}{\sqrt{L_3(C_3 + C_2)}} = \frac{1}{\sqrt{6 \cdot 10^{-3}(60 + 120)10^{-6}}} = \frac{10^4}{\sqrt{6 \cdot 18}} = 962 \text{ (рад/с)}.$$

Если приравнять знаменатель к нулю, то получим резонансную частоту, соответствующую резонансу токов:
$$\omega_2 = \sqrt{\frac{C_1 + C_2}{L_3 (C_1 C_2 + C_1 C_3 + C_2 C_3)}} = \sqrt{\frac{(120 + 60)10^{-6}}{6 \cdot 10^{-3} (120 \cdot 120 + 60 \cdot 120 + 60 \cdot 120)10^{-12}}} = \sqrt{\frac{180 \cdot 10^9}{6 \cdot 28800}} = 1020 \text{ (рад/с)}.$$

График частотной характеристики входного сопротивления приведен на рис. 5.3.

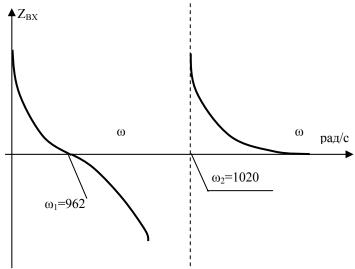


Рис. 5.3. График амплитудно-частотной характеристики входного сопротивления.

^{*} Значения тригонометрических функций приведены в Приложении, таблица П1.

Interpretation of the control of

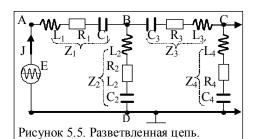
РГР № 5.1. Задание для самостоятельного решения

Из обобщенной разветвленной цепи с источником синусоидального тока (рис. 5.4) нарисовать расчетную схему и выполнить расчет следующих параметров:

 $e_{(t)}$, $i_{1(t)}$, $i_{2(t)}$, $i_{3(t)}$, $u_{R(t)}$, $u_{L(t)}$, $u_{C(t)}$, S, Q, P, $cos \varphi$;

- построить векторную диаграмму напряжений и токов;

Величины элементов схемы (данные в таблице 5.1) соответствуют: R (Ом), L (Гн), С (мкФ).


Таблица 5.1. Задание для РГР № 5 - для группы №1.

цеп	БСИ	СТОЧНИК	ом эдс							
31	аче	гния п	араме	тро	в элем	ентов	в ра	асчет	чой сх	еме для РГР № 5.1
№	R_1	L_1	C_1	R_2	L_2	C_2	R_3	L_3	C_3	Дополнительн. параметр
$N_{\underline{0}}$	Ом	Гн	мкФ	Ом	Гн	мкФ	Ом	Гн	мкФ	
1	20	0	5000	14	0	2000	23	0,040	500	$u_{C3(t)} = 40\sin(400t-36^\circ)$
2	14	0,015	0	10	0	1000	10	0,020	0	$u_{C2(t)} = 22,5\sin(400t-66^{\circ}24')$
3	23	0	1000	30	0,030	0	12	0	1000	$u_{L2(t)} = 35\sin(200t + 72^{\circ}30')$
4	10	0	625	25	0	0	10	0,020	625	$i_{1(t)} = 3 \sin(400t + 23^{\circ}36')$
5	40	0,009	0	0	0,009	500	16	0	250	$e_{(t)} = 15 \sin 500t$
6	16	0	2500	20	0,008	0	33	0,008	0	$i_{3(t)} = 5.5 \sin 100t$
7	0	0.20	1000	30	0,025	0	13	0	1000	$u_{CI(t)} = 50\sin(400t-66^{\circ}24')$
8	10	0,010	0	14	0	312,5	27	0,010	0	$u_{L1(t)} = 32,5\sin(400t+53^{\circ}6')$
9	17	0	5000	22	0	1000	30	0,060	0	$u_{L3(t)} = 45\sin(100t+53^{\circ}6')$
10	14	0,010	0	40	0,008	0	23	0	500	$i_{I(t)} = 4 \sin 500t$
11	5	0	625	0	0,005	500	14	0	625	$i_{2(t)} = 5.25 \sin 400t$
12	24	0,025	0	10	0,025	0	22	0	800	$i_{3(t)} = 6.5 \sin 250t$
13	15	0	1000	20	0	500	26	0,008	0	$e_{(t)} = 15 \sin 500t$
14	25	0	500	15	0,010	0	16	0,005	0	$u_{CI(t)} = 27,5\sin(500t-11^{\circ}36')$
15	16	0,06	250	0	0,06	100	15	0	125	$i_{2(t)} = 25 \sin(100t + 30^{\circ})$
16	10	0,010	0	16	0	250	36	0	250	$u_{LI(t)} = 40 \sin(500t + 30^{\circ})$
17	12	0	312,5	14	0	312	17	0,010	0	$i_{1(t)} = 3.5 \sin(400t+60^{\circ})$
18	16	0,1	0	15	0,050	0	0	0,018	1000	$i_{2(t)} = 4,75 \sin 500t$
19	0	0,25	1000	25	0,010	0	10	0,012	0	$i_{3(t)} = 6(\sin 200t + 84^{\circ}12')$
20	20	0	2500	13	0	2500	23	0,025	0	$u_{L3(t)} = 40 \sin(500t + 30^{\circ})$
21	26	0,012	0	24	0	200	20	0,008	0	$u_{C2(t)} = 30 \sin 1000t - 30^{\circ}$
22	13	0	2500	18	0,05	0	14	0	2500	$u_{L2(t)} = 42,5\sin(100t + 84^{\circ}12^{\circ})$
23	14	0,010	400	0	0,08	0	23	0	500	$i_{I(t)} = 4 \sin 500t$
24	10	0	600	18	0,06	0	0	0,05	250	$e_{(t)} = 25 \sin 200t$
25	12	0,15	0	16	0,25	0	13	0,025	0	$i_{3(t)} = 6,25 \sin 200t$
26	0	0,1	625	10	0,04	0	25	0	625	$i_{2(t)} = 4 \sin(400t - 30^\circ)$
27	10	0,03	0	10	0,1	0	20	0	250	$u_{LI(t)} = 60 \sin(500t + 30^{\circ})$
28	26	0,06	250	50	0	100	15	0		$u_{C2}(t) = 60 \sin 400t$
29	14	0,2	250	0	0,06	0	15	0	125	$u_{C3}(t) = 60 \sin 400t$

РГР № 5.2. Задание для самостоятельного решения - для группы №2

0

1000 0 0,15

30 0 0,12 1250 40 0,08

Для рисунка 5,5 выполнить расчет:

 $i_{2(t)} = 2 \sin(400t - 30^{\circ})$

- 1. Определить параметры цепи: Z_i , U_i , I_1 , I_2 , I_3 , I_4 , P, Q, S комплексным методом.
- 2. Построить векторную диаграмму токов и напряжений отдельных участков.
- 3. Параметры элементов приведены в таблице № 5.3. .

Таблица 5.2. Значения параметров элементов к схеме для РГР № 5.2

	Действ. парам.			Z_1				Z_2			Z_3		Z_4		
<i>№</i>	E_{H}	I_1	ω	R_1	L_{I}	C_{I}	R_2	L_2	C_2	R_3	L_3	C_3	R_4	L_4	C_4
$N_{\underline{0}}$	В	A	рад	Ом	Гн	мкФ	Ом	Гн	мкФ	Ом	Гн	мкФ	Ом	Гн	мкФ
1	40	_	150	0	0,1	666	15	0	333	28	0,15	0	10	0,04	666
2	-	3	200	15	0	800	16	0,04	0	18	0.06	500	0	0,08	400
3	50	_	250	16	0,04	0	10	0,05	400	0	0,06	800	40	0	200
4	ı	4	300	10	0,04	333	0	0,06	666	38	0	999	16	0,08	0
5	60	_	350	0	0,02	952	14	0	714	14	0,04	0	28	0,06	570
6	_	5	400	14	0	500	18	0,02	0	10	0,04	250	0	0,06	625
7	80	_	100	24	0,16	0	26	0,08	500	0	0,2	800	18	0	600

8	_	6	200	16	0,08	600	0	0,10	800	40	0	400	10	0,5	0
9	70	_	300	0	0,05	800	18	0	600	25	0.07	0	26	0,06	400
10	_	7	400	10	0	250	25	0,10	0	16	0,08	500	0	0,05	625
11	90	-	500	18	0,07	0	10	0.08	200	0	0,06	400	14	0	500
12	_	2	600	15	0,03	416	0	0,04	800	18	0	500	25	0,06	0
13	60	_	150	0	0,20	333	20	0	666	15	0,12	0	18	0,16	440
14	_	4	200	12	0	400	14	0,09	0	18	0,08	500	0	0,07	800
15	80	-	250	15	0,04	0	10	0.08	400	0	0,06	600	22	0	500
16	_	5	300	10	0,04	500	0	0,06	600	28	0	900	20	0,05	0
17	100	_	350	0	0,06	300	15	0	900	20	0,04	0	15	0,07	800
18	_	6	400	17	0	250	18	0.025	0	30	0,05	600	0	0,06	400
19	40	_	100	16	0,10	0	14	0,08	700	0	0,15	900	25	0	800
20	_	2	200	24	0,05	500	0	0,09	900	16	0	600	18	0,06	0
21	50	_	300	0	0,06	300	16	0	600	14	0.05	0	24	0,08	900
22	_	8	400	15	0	400	17	0,04	0	15	0,06	600	0	0,07	700
23	60	_	500	18	0,06	0	25	0,05	400	0	0,04	500	16	0	300
24	_	5	600	27	0,04	500	0	0,06	400	18	0	800	20	0,05	0
25	60	_	500	18	0,08	0	25	0,08	400	0	0,08	500	16	0	200
26	_	5	600	27	0,12	500	0	0,06	400	18	0	800	20	0,07	0
27	60	_	800	18	0,05	0	25	0,12	400	0	0,06	500	16	0	400
28	_	5	600	27	0,10	500	0	0,09	400	18	0	800	20	0,09	0
29	60	-	400	18	0,09	0	25	0,05	400	0	0,04	500	16	0	600
30	_	5	200	27	0,03	500	0	0,07	400	18	0	800	20	0,06	0

TEMA № 6

Оценка параметров трехфазных цепей с различными нагрузками (8)

Цель занятия: Анализ и оценка рабочих параметров трехфазной цепи с активной и реактивной нагрузкой, соединенной по схеме звезда или треугольник.

В данной теме показаны особенности оценки параметров трехфазных цепей с нагрузками, соединенными по схеме звезда или треугольник, а также с принципы построения векторных диаграмм для симметричной и несимметричной нагрузки.

Пример 1. В 4-х проводную трехфазную сеть (рис. 6.1) с линейным напряжением $U_{\mathcal{I}} = 380B$ включена звездой несимметричная нагрузка: в фазе A - конденсатор с сопротивлением $X_{C(A)} = 10$ O_M ; в фазе B - катушка индуктивности с сопротивление $R_{L(B)} = 8$ O_M и $X_{L(C)} = 6$ O_M , в фазе C - активное сопротивление $R_{C(C)} = 5$ O_M .

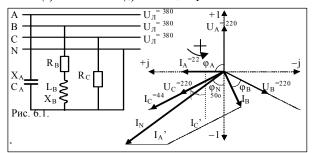


Рис. 6.1. Трехфазная цепь

Для схемы (рис. 6.1.а) определить фазные токи, начертить в масштабе векторную диаграмму цепи и найти ток в нулевом проводе.

Решение

1)
$$U_A = U_B = U_C = U_{\mathcal{I}} / \sqrt{3} = 380/1,73 = 220$$
 (B).

2. Полное сопротивление в каждой фазе:

$$Z_A = x_{C(A)} = 10 \ e^{-j90} \circ (O_M); \ Z_B \neq R_B^2 + X_B^2 \cdot e^{j \ arctg \ (x/r)} = 10 \cdot e^{j \ 36 \cdot 52}; \ Z_A = R_C = 5e^{j0} \circ (O_M).$$

3. Находим фазовые токи: $I_A = U_A/x_A = 220 \cdot e^{j\theta} \circ /10 \cdot e^{j-9\theta} \circ = 22 \cdot e^{+j9\theta} \circ (A) = j22;$

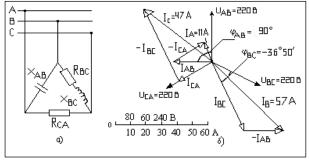
$$I_B = U_B/Z_B = 220 \cdot e^{-j12\theta} / 10 \cdot e^{j36 \cdot 52} = 22 \cdot e^{-j156 \cdot 52} (A);$$
 $\bar{I}_B = -20.23 - j8.64;$ $I_C = U_C/R_C = 220 \cdot e^{j12\theta} / 5 \cdot e^{j\theta} = 44 \cdot e^{j12\theta} (A).$ $\bar{I}_C = -22 + j38.1;$

Вектор тока I_A опережает вектор напряжения U_A на угол ϕ = 90°(свойство C эл-та).

Вектор тока I_B отстает от вектора напряжения U_B на угол φ_B (свойства L эл-та), который определяется из выражения: $\cos \varphi_B = R_B/Z_B = 8/10 = 0,8$. $\varphi_B = 36^{\circ}52^{\circ}$.

Ток I_C совпадает с вектором напряжения U_C . Ток в нулевом проводе равен алгебраической сумме всех фазных токов $\bar{I}_N = \bar{I}_A + \bar{I}_B + \bar{I}_C$

$$\bar{I}_{N} = (I_{A} \cdot \cos^{9\theta} + \underline{i}I_{A} \cdot \underline{\sin^{9\theta}}) + (I_{B} \cdot \cos^{-156 \cdot 5\theta} + jI_{B} \cdot \sin^{-156 \cdot 5\theta}) + (I_{C} \cdot \cos^{12\theta} \circ + jI_{C} \cdot \sin^{12\theta} \circ);$$


$$\bar{I}_{N} = (+j22) + [\underline{22 \cdot (-0.92) + j22 \cdot (-0.392)}] + [\underline{44 \cdot (-0.5) + j44 \cdot (0.866)}];$$

$$\bar{I}_{N} = \underline{j22 + (-20.24 - \underline{j8.64}) + (-22 + \underline{j38.1})} = (-42.24 + \underline{j51.46}) (A);$$

$$I_{N} = \sqrt{(-42.24)^{2} + \underline{j51.46^{2}}} \cdot exp^{\underline{j} \operatorname{arctg}(x/-r)} = 66.45 \cdot exp^{\underline{j-50 \cdot 3\theta}} (A).$$

Далее определяем мощности, потребляемые нагрузками: $\sum P$; $\sum Q$; $\sum S$. Мощность $S = U \cdot I'$ в 3-х фазной цепи находят по сопряженному току I'.

Активная мощность: $P = P_B + P_C = I'_B{}^2 \cdot R_B + I'_C{}^2 \cdot R_C = (-20,23+j8,64) \cdot (-20,23+j8,64) \cdot 8 + (-22-j38,1) \cdot (-22-j38,1) \cdot 5 = (2676,8-j2796,48) + (-4838+j8382) = -2161,2+j5585.5.$ $P = 5988.5 \cdot \exp^{j+69 \cdot 69}. \text{ Реактивная: } Q = Q_A + Q_B = I'_A{}^2 \cdot (-jX_A) + I'_B{}^2 \cdot X_B = (-j22) \cdot (-j22) \cdot (-j10) + (-20,23+j8,64) \cdot (-20,23+j8,64) \cdot (j6) = +j484 + (2097+j2007) = (2097+j2491).$ (50°).

Пример 2. В трехфазную сеть с $U_{Лин}$ = 220 В включена треугольником несимметричная нагрузка (рис. 6.2,а): в фазе AB — конденсатор (X_{AB} =10 Ом); в фазе ВС - катушка с (R_{BC} = 4 Ом и X_{BC} = 3 Ом); в фазе CA - (R_{CA} =10 Ом — активное).

Рис. 6.2. Трехфазная цепь.

Определить I_{Φ} и I_{J} , углы сдвига фаз и начертить векторную диаграмму цепи.

Решение. Определим фазные токи и углы сдвига фаз:

$$I_{AB} = U_{AB}/x_{AB} = 220 \cdot e^{j\theta} \circ /10 \cdot e^{j-9\theta} \circ = 22 \cdot e^{j9\theta} \circ = j22$$
 (A); (ток в С эл-те

опережает);

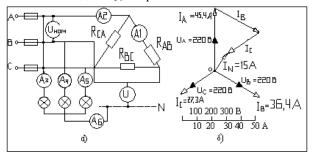
$$I_{BC} = U_{BC}/Z_{BC} = 220 \cdot e^{j-120} \, ^{\circ}/5 \cdot e^{j36 \cdot 50} = 44 \cdot e^{j-156 \cdot 50} = (-40,35 - j17,54) \, (A);$$

$$I_{CA} = U_{CA}/R_{CA} = 220 \cdot e^{j120} \cdot /10 \cdot e^{j\theta} = 22 \cdot e^{j120} = (-11 + j19,05)$$
 (A);

$$\bar{I}_A = \bar{I}_{AB} - (\bar{I}_{CA}) = j22 - (-11 + j19,05) = j22 + 11 - j19,05 = (\underline{11 + j3}) = 11,4 \cdot exp^{j15,15} \circ (A);$$

$$\bar{I}_B = \bar{I}_{BC} - (\bar{I}_{AB}) = (-40.35 - j17.54) - (j22) = (-40.35 - j39.54) = 57.06 \cdot e^{j44 \cdot 40}$$
 (A);

$$\bar{I}_C = \bar{I}_{CA} - (\bar{I}_{BC}) = (-11 + j19,05) - (-40,35 - j17,54) = (29,35 + j36,59) = 46,9 \cdot e^{-j51 \cdot o26}$$
 (A).


Проверка:
$$\sum (\bar{I}_A + \bar{I}_B + \bar{I}_C) = \theta = (\underline{11+j3}) + (-\underline{40,35-j39,54}) + (\underline{29,35+j36,59}) = 0.$$

Далее определяем мощности, потребляемые нагрузками: ΣP ; ΣQ ; ΣS . Мощность в 3-х фазной цепи $S = U \cdot I'$ находят через сопряженный ток I'.

$$S = P + Q$$
. Активная мощность: $P = P_{BC} + P_{CA} = I'_{BC}{}^2 \cdot R_{BC} + I'_{CA}{}^2 \cdot R_{CA}$ (Вт). Реактивная мощность: $Q = Q_{AB} + Q_{BC} = I'_{AB}{}^2 \cdot X_{AB} + I'_{BC}{}^2 \cdot X_{BC}$ (ВАР).

Пример 3. В трехфазную 4-х проводную сеть с напряжением $U_{\text{Лин}} = 380$ В включена печь (симметричная нагрузка с сопротивлением R, соединенная треугольником), а также включены лампы накаливания (несимметричная нагрузка по схеме звезда). Определить показания приборов, включенных в схему – рис. 6.3.

Мощность каждой фазы печи $P_{\Pi} = 10000$ Вт. Мощность лампы $P_{\Pi 1} = 200$ Вт, число ламп в фазах: $n_A = 50$; $n_B = 40$; $n_C = 30$. **Ремение.** Находим I_{Φ} , потребляемые печью:

$$I_{AB} = I_{BC} = I_{CA} = P_{\Pi}/U_{HOM} =$$

= 10·1000/380 = 26,3 (A).

2. Линейные токи, потреб-ляемые симметричной наг-рузкой нагревателей печи:

$$I_A = I_B = I_C = \sqrt{3.26,3} = 45,5$$
 (A).

3. Определим I_{ϕ} , потребляемые лампами, котор. соединены звездой и включены на фазные напр-ния:

Рис. 6.3. Трехфазная цепь для примера № 6.3

$$U_A = U_B = U_C = U_{Hom} / \sqrt{3} = 220$$
 (B).

Фазные токи составят: $I_A = P_{\pi} \cdot n_A / U_A = 200 \cdot 50 / 220 = 45,4$ (A).

$$I_B = P_{J} \cdot n_B / U_B = 200 \cdot 40 / 220 = 36,4 \text{ A}.$$
 $I_C = P_{J} \cdot n_C / U_C = 200 \cdot 30 / 220 = 27,3 \text{ (A)}.$

$$\bar{I}_N = (45,4) + [36,4 \cdot (-0,5) + j36,4 \cdot (-0,866)] + [27,3 \cdot (-0,5) + j27,3 \cdot (0,866)] = (13,55 - j7,87),$$

$$I_N = \sqrt{13,55^2 + (-7,87^2) \cdot \exp^{j \arctan(x/r)}} = 15,67 \cdot \exp^{j-30} \circ (A).$$

4. Активная мощность в любой фазе составит: $P_i = U_{\phi,i} \cdot I'_{\phi,i} = (U_{J,i} \cdot I_{J,i})/\sqrt{3}$.

Определяем суммарную мощность, потребляемую нагрузками.

Строим векторы линейных и фазных токов.

Пример 4. Требуется определить линейные токи в нагрузке, *соединенной треугольником*, которая подключена к симметричному трехфазному генератору с линейным напряжением $E_{\pi} = 220 \text{ B}$. Сопротивления фаз приемника имеют значения: $Z_{AB} = Z_{BC} = 50 \text{ OM}, \quad Z_{CA} = (30 + j40) \text{ OM}.$

Схема соединений источника с нагрузкой приведена на рис. 6.4, а.

Решение. Приемник - схема с неравномерной нагрузкой фаз генератора.

Вначале определяем фазные токи (они имеют двухиндексные обозначения):

$$\begin{split} \bar{I}_{AB} &= \bar{U}_{AB}/\dot{Z}_{AB} = 220/50 = 4,4 \ (A). \\ \bar{I}_{BC} &= \bar{U}_{BC}/\dot{Z}_{BC} = 220 \cdot e^{-j120} \, ^{\circ}/50 = 4,4 \cdot e^{-j120} \, ^{\circ} = 4,4 \cdot (-0,5) + j4,4 \cdot (-0,866) = -2,2 - j3,81; \\ \bar{I}_{CA} &= \bar{U}_{CA}/\dot{Z}_{CA} = 220 \cdot e^{j120} \, ^{\circ}/50 = 4,4 \cdot e^{j120} \, ^{\circ} = 4,4 \cdot (-0,5) + j4,4 \cdot (+0,866) = -2,2 + j3,81. \end{split}$$

Затем определяем линейные токи (они обозначаются одноиндексно):

$$\bar{I}_A = \bar{I}_{AB} - (\bar{I}_{CA}) = (4,4) - (-2,2 + j3,81) = (6,6 - j3,81) = 7,62 \cdot e^{-j3\theta} \circ (A);$$

$$\bar{I}_B = \bar{I}_{BC} - (\bar{I}_{AB}) = (-2.2 - j3.81) - (4.4) = (-6.6 - j3.81) = 7.62 \cdot e^{j210} \circ (A);$$

$$\bar{I}_C = \bar{I}_{CA} - (\bar{I}_{BC}) = (-2.2 + j3.81) - (-2.2 - j3.81) = +j7.62 = 7.62 \cdot e^{j90} \circ (A).$$

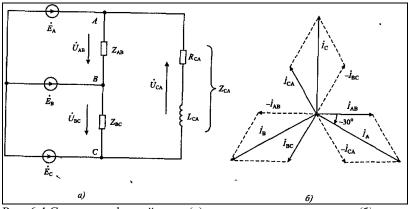
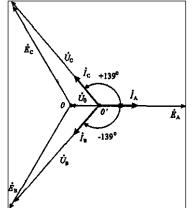



Рис. 6.4 Схема трехфазной цепи (а) и ее векторная диаграмма (б)

Сумма линейных токов в цепи составит:

<u>Условие проверки</u>: $\bar{I}_A + \bar{I}_B + \bar{I}_C = (6,6-j3,81) + (-6,6-j3,81) + (j7,62) = 0$ Далее определяют мощности P, Q, S.

Пример 5. Требуется определить токи в фазах приемника, *соединенного звездой* без нулевого провода, если $Z_A = 5$ *Ом* $Z_B = Z_C = 10$ *Ом*, фазное напряжение генератора E = 100 В. Построить векторную диаграмму для токов в цепи.

Рис. 6.5. Векторная диаграмма напряжений и токов.

Решение. Определим напряжение \bar{U}_{Nn} . Поскольку два сопротивления нагрузки имеют одно и то же значение $Z_B = Z_C$, то основную формулу (a)

$$\bar{U}_{Nn} = (\bar{E}_A Y_A + \bar{E}_B Y_B + \bar{E}_C Y_C)/(Y_A + Y_B + Y_C + Y_0)$$
, (a) можно упростить.

Учитывая, что $a^{-1} = e^{-j120} \circ = (-1-j\sqrt{3}/2)$, из форму-лы (a) получим формулу (b):

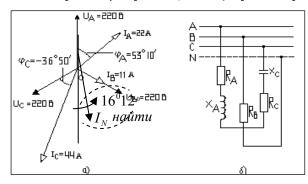
$$\bar{U}_{Nn} = \bar{E}_A(Y_B - Y_A)/(Y_B + 2Y_A) = 100(10 - 5)/(10 + 10) = 25V.$$

Найдем напряжения на фазах приемника: $\bar{U}_A = (\bar{E}_A - \bar{U}_\theta) = 100 - 25 = 75$ (B);

$$\bar{U}_B = (\bar{E}_B - \bar{U}_0) = 100a^{-1} - 25 = [100(-0.5) + j100(-0.866)] - 25 = (-75 - j86) = 115 \cdot e^{-j139} \circ (B);$$

$$\bar{U}_C = (\bar{E}_C - \bar{U}_0) = 100a - 25 = [100(-0.5) + j100(0.866)] - 25 = (-75 + j86) = 115 \cdot e^{j139} \circ (B).$$

Определим токи в фазах приемника: $\bar{I}_A = (\bar{U}_A/\dot{Z}_A) = 75/5 = 15$ (A);


$$\bar{I}_R = (\bar{U}_R/\dot{Z}_R) = (115 \cdot e^{-j139})/10 = (11.5 \cdot e^{-j139}); \quad \bar{I}_C = (\bar{U}_C/\dot{Z}_C) = (115 \cdot e^{j139})/10 = (11.5 \cdot e^{j139}).$$

Пример 6. <u>Обратная задача</u>. По векторной диаграмме для трехфазной цепи (рис. 6.6), с нагрузкой, включенной по схеме звезда (с известными фазными токами), определить характер нагрузки каждой фазы и вычислить сопротивление ветвей, а также определить алгебраическ. \underline{I} и \underline{I}_N и мощности P, Q, S. Начертить схему цепи.

Решение. На диаграмме видно, что ток в фазе A отстает от фазного напряжения U_A на угол $\varphi_A = -5 \ 3^\circ 10'$. Следовательно, в фазу A включена катушка и резистор с полным сопротивлением $Z_A = U_A/I_A = 220/22 = 10 \ Om$. (где $X_L > R$) Для цепи (рис. 6.6) определим активное и индуктивное сопротивление:

$$R_A = Z_A \cdot \cos' \varphi_A = 10\cos' (+53°10') = 10.0,6 = 6 (Ом);$$
 (сов' – сопряжен. угол).

$$X_A = jZ_A \cdot \sin' \varphi_A = j10 \sin' (+53°10') = j10 \cdot 0,8 = j8$$
 (Ом). $(\sin' - \text{сопряжен. угол})$.

В фазе \pmb{B} ток $\pmb{I_B}$ совпадает с напряжением $\pmb{U_B}$ значит в фазу \pmb{B} включен резистор

$$R_B = U_B/I_B = 220/11 = 20(O_M).$$

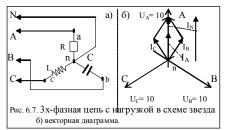
В фазе C ток I_C опережает напряжение U_C на угол $\varphi_C = 36°50'$ (вектор вращяют про тив час. стрелки); значит в фазу C включены конденсатор и актив. сопротивление.

Рис. 6.6. Обратная задача.

Полное сопротивление фазы C: (где $R > X_C$); [cos', sin' – сопряжен. углы].

$$Z_C = U_C/I_C = 220/44 = 5(O_M);$$
 $R_C = Z_C \cos^2 \varphi_C = 5 \cos^2 (-36^\circ 50') = 5.0,8 = 4(O_M);$

$$x_C = Z_C \sin \varphi_C = 5 \sin'(-36°50') = -j5.0, 6 = -j3(O_M)$$
. cos', sin' – сопряжен. угол

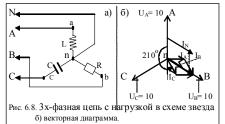

2.
$$\underline{I}_N = \underline{I}_A + \underline{I}_B + \underline{I}_C = (13, 2-j17, 6) + (-5, 5-j9, 52) + (-40, 46+j17, 29) = -32, 76-j9, 52 = 34, 11 \cdot e^{-j16 \cdot o12}$$

3. Определяем мощности, потребляемые цепью. Активная мощность составит:

$$P = P_A + P_B + P_C = I_A^2 \cdot R_A + I_B^2 \cdot R_B + I_C^2 \cdot R_C = 22^2 \cdot 6 + 11^2 \cdot 20 + 44^2 \cdot 4 = 13 \ 065 \ (Bm).$$

Реактивная мощность составит:

$$Q = Q_A + Q_C = I_A^2 \cdot X_L + I_C^2 \cdot X_C = 22^2 \cdot j8 + (44^2 \cdot -j3) = -j1936 BAP = -1,93 (\kappa BAp).$$


$$I_C = U_C/X_L = 10 \cdot e^{j12\theta} \circ / 10 \cdot e^{j9\theta} \circ = 1 \cdot e^{j3\theta} \circ$$

$\underline{I}_N = \underline{I}_A + \underline{I}_B + \underline{I}_C = 1 + (0.866 - 1)$

Поменяв местами элементы цепи $=120^{\circ}$.

Пример 7. Сравним значение тока в нулевом проводе и положение его вектора при перестановке элементов фазных нагрузок, включенных по схеме звезда. Определим параметры цепи для схемы на рис. 6.7 и рис. 6.8.

Дано: $U_{\Phi} = 10B$; R = 10; $X_L = j10$; $X_C = -j10$;

$$I_A = U_A/R_A = 10 \cdot e^{j\theta} ^{\circ}/10 \cdot e^{j\theta} ^{\circ} = 1 (A).$$

$$I_B = U_B/X_C = 10 \cdot e^{-j12\theta} ^{\circ}/10 \cdot e^{-j9\theta} ^{\circ} = 1 \cdot e^{-j3\theta} ^{\circ} (A).$$
(A).

j0,5)+(0,866+j0,5)=2,73

увидим, что вектор тока \underline{I}_N поветнется на ϕ

Дано:
$$U_{\Phi} = 10B$$
; $R = 10$; $X_L = j10$; $X_C = -j10$;

$$I_A = U_A/X_L = 10 \cdot e^{j\theta} \circ /10 \cdot e^{j9\theta} \circ = 1 \cdot e^{-j9\theta} \circ (A).$$

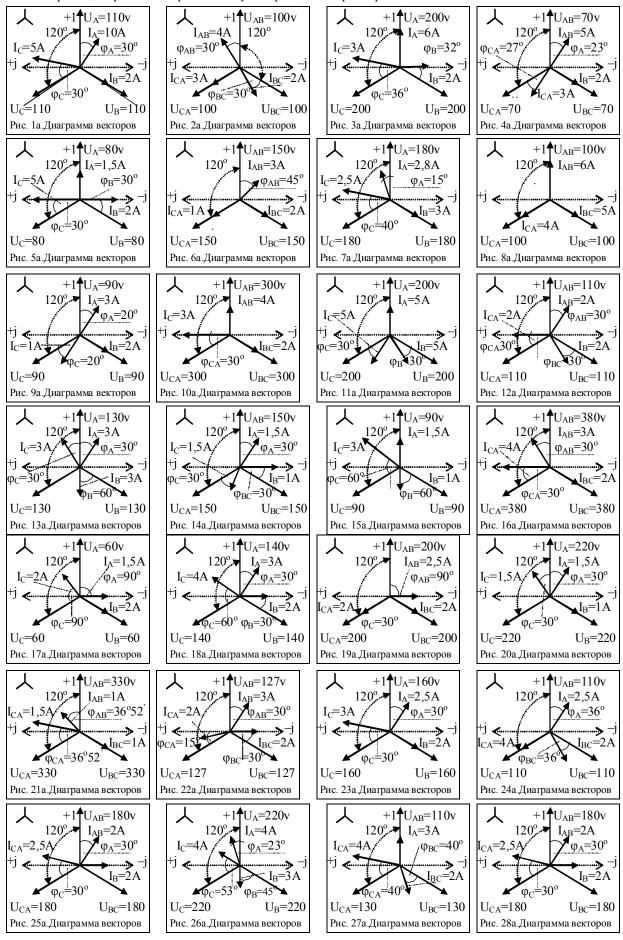
$$I_B = U_B/X_C = 10 \cdot e^{-j12\theta} \circ /10 \cdot e^{j\theta} \circ = 1 \cdot e^{-j12\theta} \circ (A).$$

$$I_C = U_C/X_C = 10 \cdot e^{j120} \cdot /10 \cdot e^{-j90} \circ = 1 \cdot e^{j210} \circ (A).$$

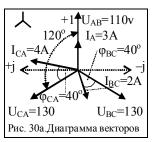
$$\underline{I}_N = \underline{I}_A + \underline{I}_B + \underline{I}_C = -jI + (-0.5 - j0.866) + (-0.866 - j0.5) = -1.366 - j2.366 = 2.73 \cdot e^{j60} \circ (A).$$

Если вновь переместить элементы R,L,C, то вектор тока I_N вновь повернется на $\phi = 120^\circ$.

РГР № 6.2. Задание для самостоятельного решения - для группы №1.


- 1. Выполнить расчет параметров трехфазной цепи с нагрузкой (рис. 6.2 и 6.3).
- 2. Показать векторные диаграммы токов и напряжений.

Варианты и параметры элементов (для рис. 6.2 и 6.3) приведены в таблице № 6.1


Таб	лица 6.1. П	араме	етры д	дя ин	дивид	цуалы	ного з	вадани	я по	геме т	грехфа	зные	цепи	
$N_{\underline{0}}$	схема вкл.	$U_{\rm JI}$ –	ω	R_{A}	$X_{A.L}$	$X_{A.C}$	$R_{\rm B}$	$X_{B.L}$	$X_{B.C}$	R_{C}	$X_{C.L}$	$X_{C.C}$		
	нагрузки	(B)	рад/с	(Ом)	(Ом)	(Ом)	(Ом)	(Ом)	(Ом)	(Ом)		(Ом)		
1	Звезда.	<u>110</u>	<u>250</u>	80		60	<u>100</u>	-	<u>25</u>	80	50	-		
2	Треугольник	110	<u>250</u>	100	50	-	=	150	<u>80</u>	100	-	50		
3	Звезда.	<u>220</u>	<u>314</u>	150	200		<u>300</u>	<u>100</u>	=		210	100		
4	Треугольник	<u>220</u>	<u>314</u>	-	40	140	<u>300</u>	<u>60</u>		200	30	-		
5	Звезда.	330	<u>380</u>	200	-	35	-	<u>100</u>	<u>30</u>	100		80		
6	Треугольник	330	<u>380</u>	250	100	-	200	Ξ	<u>60</u>		200	80		
7	Звезда.	380	<u>500</u>	150	250	-	330	Ξ	200	300		80		
8	Треугольник	380	<u>500</u>	330	-	55	330	100	Ξ		120	300		
9	Звезда.	440	<u>628</u>	100	200	-	<u>220</u>	Ξ	<u>150</u>	-	100	40		
10	Треугольник	440	<u>628</u>	90	-	30	100		<u>50</u>	110	30			
11	Звезда.	<u>110</u>	<u>250</u>	60	-	220	100	300	=	60		80		
12	Треугольник	<u>110</u>	<u>250</u>	55	100	-	<u>75</u>	Ξ	<u>600</u>	100	100	-		
13	Звезда.	<u>220</u>	<u>314</u>		200	50	<u>85</u>		<u>50</u>		40	200		
14	Треугольник	220	<u>314</u>	120	-	60	Ξ	<u>30</u>	130	200	-	60		
15	Звезда.	330	<u>380</u>	160	-	350	140	<u>60</u>		180	50	-		
16	Треугольник	330	<u>380</u>		220	100	<u>50</u>		<u>250</u>	50	33	-		
17	Звезда.	<u>380</u>	<u>500</u>	100	-	300	<u>100</u>	<u>150</u>	=	100		50		
18	Треугольник	<u>380</u>	<u>500</u>	70	350	-	=	<u>200</u>	<u>50</u>	100	220			
19	Звезда.	440	<u>628</u>	220		55	<u>140</u>	П	<u>100</u>	70	ı	44		
20	Треугольник	<u>440</u>	<u>628</u>	1	160	50	<u>40</u>	П	<u>80</u>	50	130			
21	Звезда.	<u>110</u>	<u>250</u>	300	100	-	<u>200</u>	<u>150</u>	Ξ	50	-	150		
22	Треугольник	<u>110</u>	<u>250</u>	180		110	-11	<u>190</u>	<u>100</u>	100	ı	200		
23	Звезда.	<u>220</u>	<u>314</u>	300		50	<u>600</u>	-	<u>75</u>	-	50	280		
24	Треугольник	<u>220</u>	<u>314</u>	250	80	-	11	<u>260</u>	<u>60</u>	220		44		
25	Звезда.	330	<u>380</u>	300	-	55	<u>300</u>	Ξ	<u>200</u>	•	140	66		
26	Треугольник	330	<u>380</u>	-	175	75	<u>200</u>	<u>45</u>		200	100	-		
27	Звезда.	380	<u>500</u>	300	66	-	<u>400</u>	П	<u>200</u>	100	44	44		
28	Треугольник	380	<u>500</u>	-	180	80	200	<u>30</u>	-	200	·	55		
29	Звезда.	440	<u>628</u>	300	-	100		<u>80</u>	<u>180</u>		140	60		
30	Треугольник	<u>440</u>	<u>628</u>	200	100		<u>100</u>	Ξ	<u>380</u>	230	-	80		

РГР № 6.2. Задание для самостоятельного решения - для группы №2

По векторной диаграмме построить схему и определить параметры цепи

^{*}Значения тригонометрических функций приведены в приложении, таблица П1.

TEMA №7

Оценка потребления электрической мощности и методы ее экономии (4)

Цель занятия: Оценка параметров электропотребления условным предприятием; определение величины и характера нагрузки; оценка влияния сопротивления линий передач R_0 ; способы экономии потребляемой электроэнергии за счет компенсации реактивной мощности в нагрузке и повышение коэффициента мощности до рационального значения: $Cos\phi_{PAII} = 0.96 \div 0.98$; ($tg\phi_{PAII} = 0.3 \div 0.2$); ($\phi = 16^{\circ} \div 11^{\circ}$).

Для электрической схемы условного предприятия (рис. 7.1) необходимо:

- определить параметры: Z, $e_{(t)}$, $i_{(t)}$, $u_{R(t)}$, $u_{C(t)}$, $u_{AB(t)}$, $u_{L(t)}$, P, Q, S, Cos ϕ , (tg ϕ).
- оценить зависимость нагрузки на сеть в функции угла сдвига фаз в неразветвленной ее части и построить векторную диаграмму напряжений и токов;
- оценить влияние сопротивления проводов <u>R</u>₀ на потери напряжения в линии и на экономическую эффективность всей нагрузки;
- улучшить коэффициент мощности Соѕф (tgф) до рациональных значений;
- найти экономический эффект от модернизации схемы с нагрузками.

<u>Исходные данные</u>: $R_0 = 0.175(O_M)$; $R_1 = 0.465(O_M)$; $R_2 = 4.12(O_M)$; $R_3 = 1.0(O_M)$;

$$C = 3200 \cdot 10^{-6} (\Phi); [L_{3KB} = 0.0325 \ \Gamma_H = (n_L = 50 дв. \cdot L = 1.625 \Gamma_H)]; U_{AB} = 220B; f = 50 \Gamma_H.$$

Задачу можно решать классическим или символическим методом.

1. Электрические параметры в 1-ой ветви

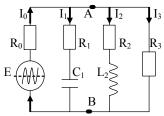


Рис. 7.1. Схема замещения цепи потребления электроэнергии условным предприятием

$$X_C = 1/\omega C = 1/(2\pi \cdot f \cdot C) = 1/(314 \cdot 3200 \cdot 10^{-6}) = 0.997.$$

$$\underline{Z}_1 = \sqrt{R_1^2 + X_C^2} = \sqrt{0.465^2 + 0.997^2} = 1.1 \text{ (Om)}.$$

$$I_1 = U_{AB}/\underline{Z}_1 = 220/1, 1 = 200 (A).$$

Коэффициент мощности в конденсаторе

Cos
$$\varphi_1 = R_1/Z_1 = 0,465/1, 1 = 0,4226$$
; $\varphi_1 = 65^{\circ}$.

$$\sin \varphi_1 = X_C/Z_1 = 0.997/1, 1 = 0.9063; \varphi_1 = 65^\circ.$$

Активная и реактивно-емкостная составляющая тока:

$$I_{1,A} = I_1 \cdot Cos \ \phi_1 = 200 \cdot 0,4226 = 84,52 \ A.$$

$$I_{1.P} = I_1$$
: Sin $\phi_1 = 200 \cdot 0,9063 = +181,26$ А. (в С – свойство опережения $+I_C$).

Скорость и темп преобразования энергии (мощности)

$$S_1 = U_{AB} \cdot I_1 = 220 \cdot 200 = 44\,000 \text{ (BA)}.$$

$$P_1 = U_{AB} \cdot I_{1A} = 220 \cdot 84,52 = 18594 \text{ (BT)}.$$

$$Q_1 = U_{AB} \cdot I'_{1.P} = 220 \cdot -j181, 26 = -j39 877 (Bap). (I'_{1.P} - сопряженный ток).$$

2. Электрические параметры во второй ветви

$$X_L = \omega L = 2\pi \cdot f \cdot L = 314 \cdot 0,0325 = 10,2$$
 (OM).

$$\underline{Z}_2 = \sqrt{R_2^2 + X_L^2} = \sqrt{4^2 + 10.2^2} = 11$$
 (OM).

$$I_2 = U/\underline{Z}_2 = 220/11 = 20$$
 (A).

Коэффициент мощности в индуктивной нагрузке

Cos
$$\varphi_2 = R_2/Z_2 = 4{,}12/11 = 0{,}3636;$$
 $\varphi_2 = 68^{\circ}$

$$\sin \varphi_2 = X_L/Z_2 = 10.2/11 = 0.9272;$$
 $\varphi_2 = 68^\circ.$

Активная и реактивно-индуктивная составляющая тока:

$$I_{2,A} = I_2 \cdot Cos\phi_2 = 20.0,3636 = 7,27 \text{ (A)}.$$

$$I_{2,P} = I_2$$
: $Sin\phi_2 = 20.0,9272 = -18,54$ (A). (в L – отставание токая – I_L).

Скорость и темп преобразования энергии (мощности)

$$S_2 = U_{AB} \cdot I'_2 = 220 \cdot 20 = 4400 \text{ (BA)}.$$

$$P_2 = S_2 \cdot Cos\phi_2 = 4400 \cdot 0,3636 = 1600 \text{ (Bt)}.$$

$$Q_2 = S_2 \cdot Sin\phi_2 = 4400 \cdot 0,9272 = +4079$$
 (ВАр). (+ Q_1 положит. – свойство L).

3. Электрические параметры в третьей ветви

$$\begin{split} \underline{Z}_3 &= R_3 = 1,0 \text{ (OM)}. \\ I_3 &= U/\underline{Z}_3 = 220/1,0 = 220 \text{ (A)}. \\ Cos & \phi_3 = R_3/Z_3 = 1,0; \quad \phi_3 = 0^\circ. \\ \text{Активная составляющая тока:} \\ I_{3.A} &= I_3 \cdot \text{Cos}\phi_3 = 220 \cdot 1 = 220 \text{ (A)}. \\ \Piолная, активная мощность} \\ S_3 &= P_3 = U_{AB} \cdot I_3 = 220 \cdot 220 = 48400 \text{ (BA)}. \end{split}$$

4. Электрические характеристики всей схемы

Активный, реактивный и полный составляющие тока в неразветвленной части цепи

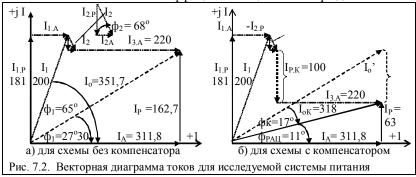
$$\begin{split} &I_A \! = I_{1.A} \! + I_{2.A} \! + I_{3.A} \! = 84,\!52 + 7,\!27 + 220 = 311,\!8 \text{ (A)}. \\ &I_P \! = I_{1.P} \! - I_{2.P} \! + I_{3.P} \! = 181,\!26 - 18,\!54 + 0 = +162,\!72 \text{ (A)}. \\ &\underline{I} = \sqrt{I_A}^2 \! + \! I_P^2 = \sqrt{311,\!8^2 \! + 162,\!72^2} \! = 351,\!71 \text{ (A)}. \end{split}$$

Коэффициенты мощности и угол сдвига фаз

$$\begin{array}{ll} Cos \ \phi = I_A/I = 311,8/351,71 = 0,8865; & (\phi_3 = 27^\circ 33). \\ Sin \ \phi = I_P/I = 162,72/351,71 = 0,4626; & (\phi_3 = 27^\circ 33); \\ tg \ \phi = I_P/I_A = 162,72/311,8 = 0,5218; & (\phi_3 = 27^\circ 33); \end{array}$$

Полная активная и реактивная мощности электропотребителя:

$$\begin{split} S &= U_{AB} \cdot I = 220 \cdot 351, 71 = 77\ 376\ (BA); \\ P &= U_{AB} \cdot I_A = 220 \cdot 311, 8 = 68596\ BT. \quad [P &= S \cdot Cos\phi = 77376 \cdot 0,8865 = 68594\ BT]; \\ Q &= U_{AB} \cdot I_P = 220 \cdot 162, 72 = 35798\ Bap. \quad [Q &= P \cdot tg\phi = 68591 \cdot 0,5218 = 35798\ Bap]. \end{split}$$


5. Проверка правильности расчета

$$\Sigma P = P_1 + P_2 + P_3 = 18594 + 1600 + 48400 = 68594 (BT);$$

 $\Sigma Q = -Q_1 + Q_2 + Q_3 = -39877 + 4079 + 0 = -35798 (BAp);$
 $\Sigma S = \sqrt{P^2 + Q^2} = \sqrt{68594^2 + 35798^2} = (77376) BA.$

6. Построение векторной диаграммы

Из векторной диаграммы видно, что цепь энергопотребителя создает активно-емкостную нагрузку. Для достижения рациональных условий работы нагрузок необходимо в схеме дополнительно установить *индуктивный компенсатор*.

Это позволит снизить коэффициент мощности потерь до значения:

 $tg\phi_{PAIL} = 0.3 - 0.2$ или $cos\phi_{PAIL} = 0.96 - 0.98$ ($\phi_{PAIL} \leq 16.5^{\circ} - 11^{\circ}$).

7. Определение экономического эффекта от установки компенсатора

Определим расчетную величину реактивного тока, который должен быть скомпенсирован ($I_{P.КОМП}$), например, из условия, $tg\phi_{PAII} \approx 0,20 \ (\phi_{PAII} \approx 11^{\circ})$.

$$tg\varphi_{KOM\Pi} = (tg\varphi - tg\varphi_{PAIL}) = (0.5218 - 0.20) \approx 0.32;$$
 $(\varphi_{KOM\Pi} \approx 17^{\circ}44');$ $I_{P.KOM\Pi} = I_{A} \cdot (tg\varphi_{KOM\Pi}) = 311.8 \cdot (0.32) \approx 100 \text{ (A)}.$

В данном случае в качестве компенсатора необходимо применить батарею дроссельных катушек с эквивалентной (суммарной) индуктивностью $L_{\text{КОМП}}$.

$$L_{KOMII.} = U_{AB}/(\omega \cdot I_{P.KOMII}) = 220/(314 \cdot 100) = 0.007 (\Gamma H) \approx (\parallel 0.7/100 \text{ mm}).$$

Примечание. В случае активно-индуктивной нагрузки необходимо установить в схему конденсаторный компенсатор емкость которого (Φ) , для расчетной реактивной составляющей тока $(I_{P,KOM\Pi})$, составит:

$$\{C_{KOMII} = I_{P,KOMII} / (\omega \cdot U_{AB}) - [100/(314 \cdot 220)] = 0.001447 (\Phi) \approx 1440 (MK\Phi)\}$$

Реактивная мощность компенсатора (ВАр) составит:

$$Q_{KOMII} = U_{AB} \cdot I_{P.KOMII} = 220 \cdot 100 = 22\ 000 \approx 22\ (\kappa BAp).$$

Общий ток потребителей в искусственных условиях компенсации, составит:

$$I_{o,KOMII} = \sqrt{\sum P^2 + (\sum -Q + Q_K)^2} / U_{AB} = \sqrt{68594^2 + (-35798 + 22000)^2} / 220 = 318 \text{ (A)}.$$

Экономия электрической энергии при обеспечении искусственного (требуемого) tg $\phi_{\text{КОМП}} = 0.32$ за год <u>при рабочем годовом времени 8760</u> (час).

$$\Delta W = R_0 \cdot (I_o^2 - I_o^2_{KOMII}) \cdot t_P = 0.175(351, 7^2 - 318^2) \cdot 8760 = 34598 \text{ (κBm/200)}.$$

Экономический денежный эффект при стоимости энергии $c_W = 2 (p/kBr^2 + q)$

$$\Delta C_1 = c_W \cdot \Delta W = 34598 \cdot 2p = 69196 p.$$

Необходимая величина напряжения (В) на входе линии электропитания и потери мощности (Вт) в проводах в естественных условиях составили:

$$E = U_{AB} + (R_0 \cdot I_0) = 220 + (0.175 \cdot 351.7) = 220 + 61.5 = 281.5 (B);$$

$$P_{\theta} = R_{\theta} \cdot I_{\theta}^{2} = 0.175 \cdot 351, 7^{2} = 21 646 (Bm/vac),$$

и в условиях искусственного коэффициента мощности:

$$E_{.KOM\Pi} = U_{AB} + (R_0 \cdot I_{o KOM\Pi}) = 220 + (0.175 \cdot 318) = 220 + 55.6 = 275.6$$
 (B) $P_{0.KOM\Pi} = R_0 \cdot I_{o KOM\Pi}^2 = 0.175 \cdot 318^2 = 17696$ (Bm/4ac).

$$P_{0 \text{ KOMII}} = R_0 \cdot I_0^2 \text{ KOMII} = 0.175 \cdot 318^2 = 17696 \text{ (Bm/yac)}$$

В результате введения компенсатора мощность потерь в проводах снизится

на величину:
$$\underline{AP_{\theta.K}} = \underline{P_{\theta}} - \underline{P_{\theta.KOM}} = 21646 - 17696 = 3,950 (кВт·ч),$$

либо за год:
$$\Delta P_{\theta.K.\Gamma OJ} = \Delta P_{\theta.K'} t_P = 3,950.8760 \approx 34.602$$
 (кВт/год)

Экономический эффект от снижения мощности потерь в проводах:

$$\Delta C_2 = c_W \cdot \Delta P_{\theta,K,\Gamma\Theta,I} = \underline{69\ 204}\ p.$$

Итого, суммарный экономический эффект от снижения всех потерь:

$$\sum C = \Delta C_1 + \Delta C_2 = \underline{69196 + 69204} = \underline{138400} p.$$

8. Расходы на компенсаторные элементы и срок окупаемости

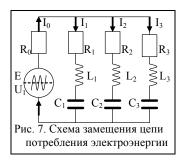
Для компенсации реактивно-емкостной мощности в схему будут установлены параллельно - дроссельные компенсаторы типа ДК-0,7 в кол-ве n = 100 шт.

Стандартные дроссельные компенсаторы ДК-0,7-400-400 имеют параметры:

J = 400 A и U = 400 B. Их целесообразно объединить: || 10 блоков по 10 шт.

Например, при стоимости $c_{W.L} = 1000$ р./1 шт. ДК-0,7 общие затраты составят:

$$\Delta C_{WL} = c_{WL} \cdot n = 1000 \cdot 100 = 100 \ 000 \ p.$$


Срок окупаемости: $T_{.OK} = \Delta C_{W.L} / \sum C = 100~000~p / 138~400~p \approx 0,72~года.$

По данной теме студенты выполняют КГР № 1

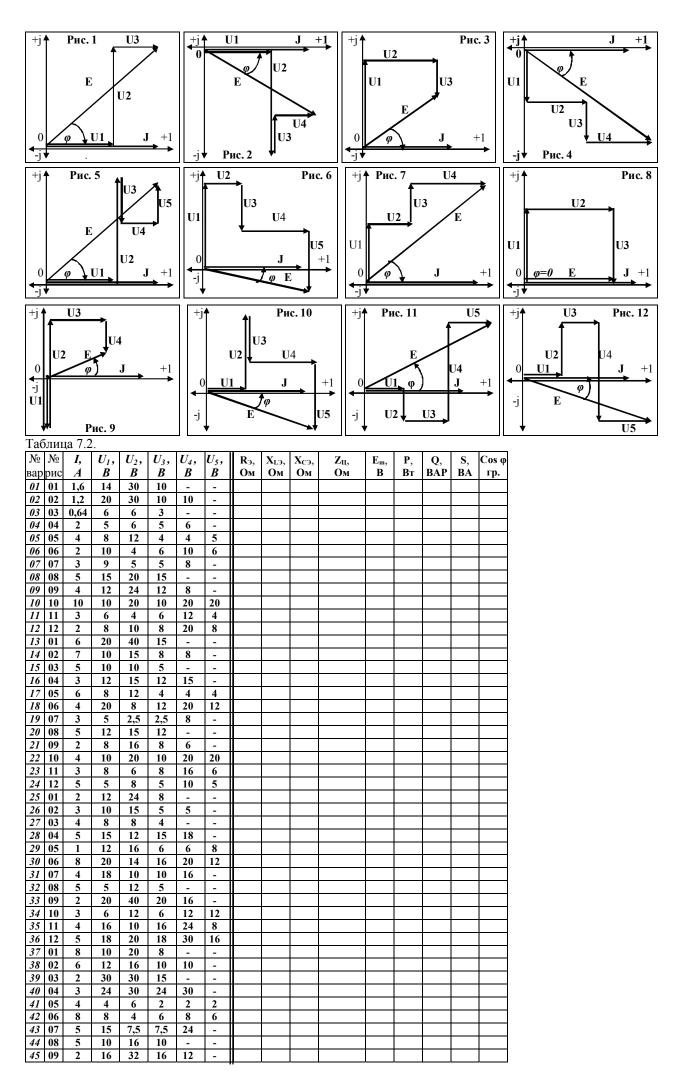
КГР 1. Выполнить расчет параметров схемы, используя данные из таблицы №7.

Таблица № 7.1. КГР 1 – Схема и параметры энергосистемы предприятия (условно)

$R_0 = O_M$	P ₀ = B _T ∗	S₀= BA *	<i>I</i> ₀ = A ∗	<i>I</i> _{0.A} = A ∗	<i>I</i> _{0.P} = A ∗
R ₁ = Ом *	<i>L</i> ₁= Гн ∗	<i>С</i> ₁=мкФ *	<i>I</i> ₁= A *	<i>I</i> _{1.A} = A ∗	$I_{1.P} = A$
<i>R</i> ₂ = Ом *	<i>L</i> ₂ = Гн ∗	<i>С</i> ₂ =мкФ *	<i>I</i> ₂ = A ∗	<i>I</i> _{2.A} = A ∗	<i>I</i> _{2.P} = A ∗
<i>R</i> ₃ = Ом *	<i>L</i> ₃ = Гн ∗	<i>С</i> ₃ =мкФ *	<i>I</i> ₃ = A ∗	$I_{3.A} = A$	$I_{3.P} = A$
<i>U</i> ₀ = B ∗	L _{Kom} =	С _{Ком} =	<i>P</i> _K = B _T ∗	Q _K = Bap	$S_{K} = BA$

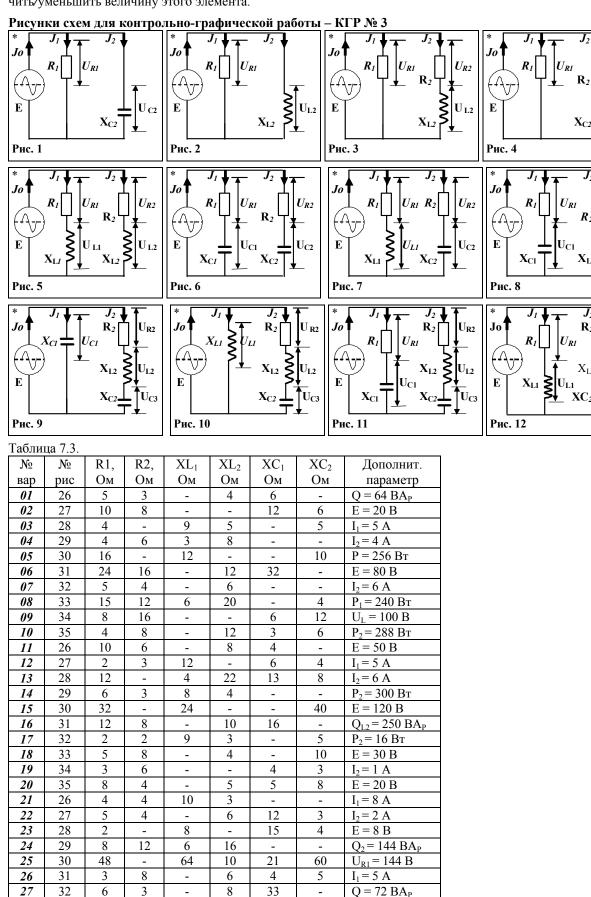
Рекомендуемая литература:

- 1. Рекус Г.Г. Основы электротехники и промышленной электроники в примерах и задачах с решениями: Учебное пособие. – М.: Высш. шк., 2008. – 343 с.
- 2. Сборник задач по электротехнике и основам электроники / Под ред. В.Г. Герасимова. М.: Высш. шк., 1987. 288 с.
- 3. Березкина Т.Ф., Гусев Н.Г. Задачник по общей электротехнике с основами электроники. М.: Высш. шк., 1983. 368 с.


Задание для контрольно-графической работы – КГР № 1

Варианты 1-48. По заданной векторной диаграмме для цепи переменного тока с последовательным соединением элементов R,L,С начертить эквивалентную схему цепи и определить следующие величины:

- 1) сопротивление каждого элемента (R, X_L, X_C) и полное сопротивление цепи Z_{II} ;
- 2) напряжение E. приложенное к цепи; 3) угол сдвига фаз φ (по величине и знаку); 4) активную, реактивную и полную мощности (Р. Q, S) цепи.


С помощью логических рассуждений пояснить характер доминирующей нагрузки в цепи и способ компенсации реактивной мощности.

Данные для своего варианта записать из таблицы №7.2.

Задание для контрольно-графической работы – КГР № 3

Вариант 01—48. Цепь переменного тока содержит элементы R,L,C, образующие *две параллельные ветви*. Схема цепи приведена на соответствующем рисунке. Значения всех сопротивлений на схемах, а также дополнительный параметр заданы в табл. 7.3. Начертить векторную диаграмму цепи и определить величины: I_0 , I_1 и I_2 ; E, P, Q и S. 1) Объяснить, каким образом в заданной цепи можно получить резонанс, т.е. добавить или изъять элемент, либо увеличить/уменьшить величину этого элемента.

 $Q = 32 BA_P$

E = 120 B

E = 220 B

Пример 1. Выполнить сопоставимый расчет параметров трансформаторов из магнитопроводом 2-х типов: ПЛВ – (листовой, витой) и ПЛ – (листовой) (рис. 8.1).

На рис. 8.1,а показан П-образный магнитопровод ПЛ из пластин горячекатанной ст.1511, с 4-мя зазорами $\delta_{B3} = 0,10$ (мм); [опт. условие: $b = \sqrt{S/2}$; h = S/b].

На рис.8.1,b показан C-образный витой ленточный магнитопровод ПЛВ из холоднокатанной ст.3412, из двух половин с 2-мя зазорами $\delta_{\rm B,3}$ = 0,02 (мм).

$w_1 = 130$	$U_1 = 220$	$I_1 = 45,5$	$P_1 = 10 \text{ KBT}$	$w_1 = 130$	$\emptyset_1 = 4,25$	$I_{1X} = 2,86$	$I_{1X.A} = 0,175$	$I_{1X.P}=2,82$
$w_2 = 26$	$U_2 = 44$	$I_2 = 225A$	P ₂ = 9,1 квт	$w_2 = 26$	$\emptyset_2 = 9,15$	$k_{3C} = 0.92$	$k_{3O} = 0.28$	Cos = 0.06
Ст. 2211	$B_{\rm m} = 1.51$	H = 5A/cM	$\Phi_{\rm m} = 0.0076$	$\eta = 0.92$	$G_C = 27,4$	$P_{Fe} = 38,5$	$P_{Cu}=$	Q _C =562вар
ПЛВ:[м]	<mark>а =0,07м</mark>	b = 0.05 м	c = 0.11 M	h = 0,2 M	$l_{\rm CP} = 0,697$	<mark>δ_{в3}=20мк</mark> м	$S_C = 0.0505$	$S_{\rm OK} = 0.014$

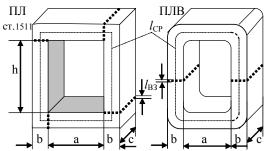


Рис. 8.1. Магнитопроводы трансформаторов ПЛ и ПЛВ

Активными сопротивлениями обмоток и полем рассеяния можно пренебречь.

Определить: активные и реактивные токи и мощность; потери в сердечнике; вес G магнитопровода; коэфф. мощности и тангенс угла потерь;

Часть 1. Пример решения для сердечника марки ПЛВ (см. табл. 8.1):

1) Коэфф. трансформации: $n = U_1/U_2 = I_2/I_1 = w_1/w_2 = 220/44 = 130/26 = 5$.

2) Определим габаритую мощность P_1 трансформатора по входным параметрам:

$$P_1 = U_1 \cdot I_1 = 220 \cdot 45.5 = 10000 \text{ (BT)}.$$
 *[грубо для P от 50 до 1000 Вт $S_C = \sqrt{P_1}$].

3) Определим мощность P_2 в нагрузке по выходным параметрам, с учетом КПД:

$$P_2 = U_2 \cdot I_2 \cdot \eta = 44.225.0,92 = 10000.0,92 = 9100 \text{ (Bt)}.$$

4) Определим площадь сечения S_C сердечника (ПЛВ) и площадь окна S_{OK} :

$$S_C = k_{TP} \cdot \sqrt{P \cdot \eta / 2 \cdot f} \cdot 0,0001 = 5,3 \sqrt{10000 \cdot 0,92/100} \cdot 0,0001 = 0,00508 \text{ (M}^2).$$

* Сечение по габар. размерам: $S_C = b \cdot c \cdot k_{3C} = 5.11.0,92 = 50,5 \text{ (см}^2) = 0,00505 \text{ (м}^2).$

$$S_{OK} = (2 \cdot w_I \cdot I_{IH})/(j \cdot K_{3.0}).$$
 $S_{OK} = (2 \cdot 130 \cdot 45)/(3,0 \cdot 10^6 \cdot 0,28) = 0.014 \text{ (M}^2) = (h*a).$

где: $k_{TP} = (5 \div 6)$ – коэфф. при воздушном охлаждении трансформатора ($k_{TP} = 5,3$).

 $k_{3,0} = (0.25 \div 0.33)$ - коэффициент заполнения окна; примем ($k_{3,0} = 0.28$).

5) При номинальных напряжениях обмоток w_1 и w_2 в магнитопроводе создается один и тот же магнитный поток, т.е. $\Phi_{m1} = \Phi_{m2}$; поэтому при $\Phi_m = U_m/(\omega \cdot w)$

получим: $\Phi_{m1} = U_{m1}/(\omega \cdot w_1) = \Phi_{m2} = U_{m2}/(\omega \cdot w_2) = \frac{\sqrt{2}}{2} \cdot U/(\frac{2 \cdot \pi}{2} \cdot f \cdot w) = U/(4,44 \cdot f \cdot w).$

$$\Phi_{m1} = U_{1.Hom}/(4,44 \cdot f \cdot w_1) = U_{2.Hom}/(4,44 \cdot f \cdot w_2) = 0,00762 \text{ (B6)}.$$

6) Магнитная индукция в магнитопроводе: $B_m = \Phi_m / S_C = 0.00762 / 0.00505 = 1.51$.

$$B_m = U_1/(4,44 \cdot f \cdot w_1 \cdot S_C) = 220/(4,44 \cdot 50 \cdot 130 \cdot 0,00505) \approx 1,51 \text{ Tm}.$$

Для марки ст. 3412 приемлема индукция в диапазоне $B_m = 1 \div 1,7$ Тл.

- * если вып. условие $w'_1 = 220$, то $B_m' = 220/(4,44.50.220.0,0050,5) = 0,89$ Тл.
- * $B_{\rm m}$ '- недостаточна, следовательно, число витков w'_1 уменьшено до w_1 = 130.
- 7) Проверим мощность вторичной обмотки ПЛВ трансформатора:

$$P_2 = (\frac{1}{2}) \cdot (B_m / \frac{\sqrt{2}}{2\pi}) \cdot 2\pi f \cdot j \cdot (S_C \cdot k_{3.C}) \cdot (S_{OK} \cdot k_{3.OK}) =$$

=
$$(\frac{1}{2})\cdot 1,51\cdot 4,44\cdot 50\cdot (3,0\cdot 10^6)\cdot (0,00505\cdot 0,92)\cdot (0,014\cdot 0,28)$$
 = 9157 (BA).

где: j - плотность тока в обмотке 3 (A/мм²) = 3.0·10⁶ (A/м²).

- 8) По кривой намагничивания (для ст.3412 при f = 50 Γ ц) находим действующее <u>значение напряженности</u> H_C магнитного поля в стали: H_C = 5 (A/cm) = 500 (A/m).
- 9) Действующее значение напряженности магнитного поля в воздушном зазоре магнитопровода составит:

$$H_B = B_m/(\mu_0 \cdot \sqrt{2}) = 1.51/(1.41 \cdot 4\pi \cdot 10^{-7}) =$$

$$= 8.10^{5} \cdot (1,51/1,41) = 8,56 \cdot 10^{5} \text{ (A/M)} = 856\,000 \text{ (A/M)} = 8560 \text{ (A/cm)}.$$

где
$$(\mu_0 = 4\pi \cdot 10^{-7}) = (0.125 \cdot 10^{-5}) (\Gamma_{\text{H/M}})$$
— магнитная проницаемость вакуума.

10) Магнитодвижущую (намагничивающую) силу ($\theta = I \cdot w$) в режиме холостого хода трансформатора находят <u>по закону полного тока</u> (для действующего тока):

$$\theta = I_{1x} \cdot w_1$$
 [A]; $H_C = I_1 \cdot w_1 / l_{CP}$. $\theta = w_1 \cdot I_1 x = H_C \cdot l_{CP} + H_{B.3} \cdot l_{B.3}$.

Где – $l_{\rm CP}$ - длина средней линии магнитопровода: $l_{\rm CP}$ = 2h + 2a + πb = 69,7 (см).

Длина по двум воздушным зазорам составит: $l_{B,3} = 2 \cdot \delta = 2 \cdot 0,002$ см = 0,004 см.

Тогда, $\theta = 5(A/e_{\text{M}}) \cdot 69,7(c_{\text{M}}^2) + 8560(A/e_{\text{M}}) \cdot 0,004(e_{\text{M}}) = 382,7 \text{ (A)}.$

- * При отсутствии зазора в магнитопроводе: $\theta' = w_1 \cdot I_{1.X} = H_C \cdot l_{CP} = 348,5$ (A').
- 11) Ток XX составит: $I_{LX} = (H_C I_{CP} + H_{B,3} I_{B,3})/w_I$; $I_{LX} = \theta/w_I = 383/130 = 2,94$ (A).
- 12) Диаметр провода обмотки w_1 и w_2 на ном. мощн., при: U_2 = 44 B; I_2 = 225 (A).

$$\emptyset_{\Pi_{p,W1}} = 0.02 \cdot \sqrt{I_1(MA)} = 0.02 \cdot \sqrt{(45000 MA)} = 4.25 (MM);$$

$$\emptyset_{\Pi p.W2} = 0.02 \cdot \sqrt{I_2(MA)} = 0.02 \cdot \sqrt{(225000 MA)} = 9.15 (MM).$$

Проводя аналогичный расчет для трансформатора ПЛ, получим:

при l_{CP} = 74 (см), $l_{B,3}$ = 0,01 (см), получим: H_C = 14,6 (A/см), θ = 1152 (A), $I_{1,X}$ = 8(A).

Часть 2. Найдем составляющие <u>активных</u> и <u>реактивных</u> токов $I_{1.X.A}$, $I_{1.X.P}$,; $\cos \varphi_0$ и углы сдвига фаз (α) между потоком и током в режиме XX.

- 1) Активная составляющая тока определяется мощностью потерь: $P_{Fe} = P_o \cdot G_C$
- а) Масса сердечника: $G_C = \gamma_C \cdot I_C \cdot S_C = 7.8 \cdot 69.7 \cdot 50.5 = 27.450$ гр. = 27.4 (кг).
- б) для индукции B_m = 1,51 Тл удельные потери P_{Fe} составят: $\underline{P_0}$ = $\underline{\textbf{1.4}}$ (Вт/кг).

Мощность потерь в сердечнике составит: $P_{Fe} = 1,4.27,4 = 38,5$ (BT).

Активная составляющая тока $I_{1.X.A}$: $I_{1.X.A.} = P_C/U = 38,5/220 = 0,175$ (A).

- 2) Реактивная намагничивающая мощность: $Q_C = \underline{Q_0} \cdot G_C = \underline{20.5} \cdot 27,4 = 562$ [BAP].
- 3) Реактивная мощность, затрачиваемая на создание поля в зазорах сердечника: $Q_{B,3} = Q_{o,B,3} \cdot V_{B,3}$.

где:
$$Q_{o.B.3} = \omega \cdot H_{B.3} \cdot B_{B.3} / 2 = \omega \cdot B^2_{B.3} / (2 \cdot \mu_o)$$
 - удельная реактивная мощность; $Q_{o.B.3} = 314 \cdot 1,51^2 / (2 \cdot 4\pi \cdot 10^{-7}) = 2,89 \cdot 10^8 \text{ [BAp/m}^3].$

 $V_{B.3}$ - объем воздушных зазоров: $V_{B.3} = S_C \cdot I_{B3} = 50,5 \cdot 0,004 = 0,202 \text{ см}^3 = 0,2 \cdot 10^{-6} \text{ (м}^3).$

Следовательно, $Q_{B3} = (2.86 \cdot 10^8) \cdot (0.2 \cdot 10^{-6}) = 57.2$ (Bap).

5) Реактивная составляющая тока холостого хода трансформатора

$$I_{LXP} = (Q_C + Q_{B.3})/U = (562+57,2)/220 = 2,82 \text{ (A)}.$$

- 6) Ток холостого хода составит: $I_{1,X} = \sqrt{I_{1,X,A}^2 \cdot I_{1,X,P}^2} = \sqrt{0,175^2 \cdot 2,82^2} = 2,86$ (A).
- 7) Коэфф. мощности: $\cos \varphi_0 = I_{1,X,A}/I_{1,X} = 0,175/2,86 = 0,061.$
- 8) Тангенс угла потерь: $tg \alpha = I_{LXA}/I_{LXP} = 0,175/2,82 = 0,062; \alpha = 3^{\circ}30'$.

Соотношение токов определяется равенством МДС обмоток в режиме XX:

$$w_1 \cdot I_{1,X} = w_2 \cdot I_{2,X}$$
, r.e. $I_{2,X} = I_{1,X} \cdot (w_1/w_2) = n \cdot I_{1,X} = 5 \cdot 2,86 = 14,4$ (A).

Аналогичный расчет для трансформатора типа - ПЛ дал: $I_{1,X}$ =8A; $\cos \varphi_0$ =0,046.

График зависимости числа витков w1 первичной обмотки трансформатора типа ШЛ и ПЛ от мощности трансформатора P_{TP} приведен на рис. 8.2.

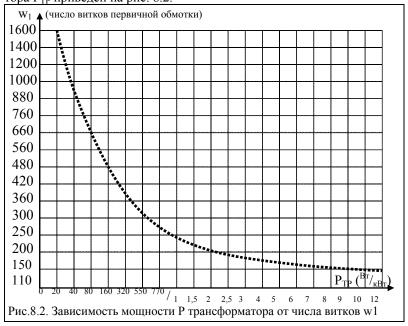
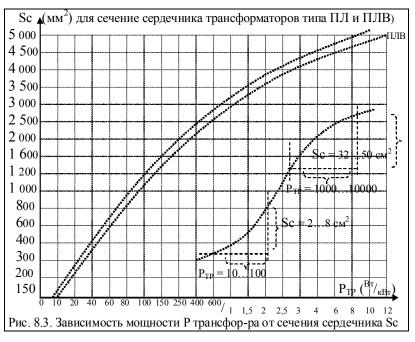
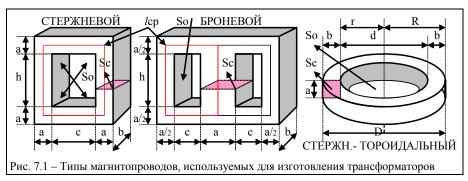



График зависимости сечения сердечника магнитопровода Sc трансформатора от мощности трансформатора P_{TP} приведен на рис. 8.3.

• По данной теме студенты выполняют КГР № 4.

При проведении КГР студенту выдается задание - карточка (таблица № 8.2), в которой, при расчете, необходимо заполнить оставшиеся свободные клетки.

Таблица №8.2. КГР – расчет параметров трансформатора (2 ч.)


КГР №	2 ФИО:			Группа:	B	ар.: Д	Ц ата:			
Вычислить параметры однофазного сетевого трансформатора с двумя обмотками										
$v_1 = 660$	$U_1 = 220$	$I_1 = 2 \text{ A}$	$P_1 =$	$\mathbf{w}_1 =$	$\varnothing_1 =$	$I_{1X}=$	$I_{1X.A}=$	$I_{1X.P}=$		
$\mathbf{w}_2 =$	$U_2 = 22$	$I_2 = 20A$	$P_2 =$	$\mathbf{w}_2 =$	$\varnothing_2 =$	$k_{3C} = 0.92$	$k_{30} = 0.28$	Cos=		
Ст. 2211	$B_m =$	H =	$\Phi_{\rm m}=$	$\eta = 0.92$	$G_C =$	P _{Fe} =	$P_{Cu}=$	$Q_C =$		
<mark>ПЛВ:[м]</mark>	a = 0.0 M	b = 0.0 M	c = 0, M	h = 0, M	$l_{\text{CP}} =$	<mark>δ_{в3}=20мк</mark> 1	$S_{C}=$	$S_{OK} =$		

^{*} При расчете можно использовать табличные (справ.) значения <u>удельных активных (P_0) и реактивных (Q_0) потерь и зависимость B = f(H) кривой намагничивания для данной стали.</u>

Рекомендуемая литература

- 1. Рекус Г.Г. Основы электротехники и промышленной электроники в примерах и задачах с решениями: Учебное пособие. М.: Высш. шк., 2008. 343 с.
- 2. Касаткин А.С., Немцов М.В. Электротехника. М.: Высш. шк., 2003. 540 с.
- 3. Алиев И.И. Электротехнический справочник. М.: Радио, 2000. 384 с.
- 4. Сборник задач по электротехнике и основам электроники / Под ред. В.Г. Герасимова. М.: Высш. шк., 1987. 288 с.
- 5. Березкина Т.Ф., Гусев Н.Г. Задачник по общей электротехнике с основами электроники. М.: Высш. шк., 1983. 368 с.

Пример 2. Расчет параметров броневого трансформатора мощностью 24 Вт

Параметры магнитопровода (ферромагнетика, железа) Ш19х30: w = 1800 вит.;

b = 12 мм - ширина окна; h = 33.5 мм - высота окна; $d_{\Pi P} = 0.8 \text{ мм}$;

 $J_m - 10,2$ см (102 мм; 0,102м) - эффективная длина магнитной линии;

$$S_C = a * c = 19*30 = 570 \text{ mm}^2 = 5.7 \text{ cm}^2;$$
 $K_{3C} = 0.26$

 $S_0 = b * h = 12x33.5 = 402 \text{ mm}^2 = 4.02 \text{ cm}^2$;

$$J = d^2/0.8 = 0.8A$$
. $S_{IIP} = 0.5 \text{ mm}^2$; $J_{PACY} = 1...3 \text{ A npu } j = 2...4 \text{ (A/mm}^2)$;

При $j = 2A/mm^2$: I = 1A (тогда $L = 1,64\Gamma H$); При $j = 4A/mm^2$: I = 2A (тогда $L = 0,82\Gamma H$).

 $P_{\Gamma} = B_m * S_C / 1,69$; пусть $B_m = 1,25$, тогда: $P_{\Gamma} = 1,25*5,7^2 / 1,69 = 24$ (Вт).

Проверка условная: $S_0 * S_C = 4,02*5,7 = 22,8$ (Вт).

 $l_{B3} = I*w/(796*Bm) = 0.8*1800/(798*1.25) = 1.44 \text{ (MM)}.$

 $L = \mu_0 *S_C *K_{3,C} *w^2/l_{B3} = 1,25*10^{-7}*5,7*0,26*1800^2/1,44 = 1,6 (\Gamma_H).$

Потокосцепление $\psi = L*I = 1,6*0,8 = 1,2825$ (.) Магнитный поток одного витка $\Phi = \psi/w = 1,2825/1800 = 0,0007125$ (вб)

 $W = (100 * S_0 * K_{30} * J)/I = (18.10)$

 $\Phi = w^*B_m^*S_C^*K_{3C}^*10^{-4}$.

Подставив 18.10 в 18.11 получим:

 $\Phi *W = (0.01 *B_m *j *S_C *S_O *K_{3C} *K_{3O})/I =$

Известно, что $\Phi *W = L*I$ Из 18.12 и 18.13 найдем индуктивность

 $L = (0.01*S_C*S_O*B_m*j*K_{3C}*K_{3O})/I^2.$

 $S_C * S_O = (100 * L * I^2)/(B_m * j * K_{3O} * K_{3C})$ (cm²) $P_{\Gamma AB} = 1,25 * S_C * S_O$.

 $l_{B3} = I*w/(798*B_m)$ (MM) (18.16)

 $I = 798*B_m*l_{B3}/W$ (A)

 $P_{\Pi O T.FE} = P_{Y /\!\!\! I} * G_C (B_m /\!\!\! B_Y)^\beta * (f/f_Y)^a.$

ПРИЛОЖЕНИЕ.П1

Справочные данные для РГР № 4 - №8

Таблица П1. Значение тригонометрических функций

$\overline{}$			для триг			Значение угла для тригонометр. функций							
	Функ	Sin (60)	Cos (60)	tg (60)	Прим.		Функ		Cos (60)	tg (60)	Прим.		
1	0,05	2°52	87°08	2°52	P		0,71	45°14	44°45	35°22'30	p		
2	0,07	4°00	86°00	4°00			0,72	46°03	43°57	35°45			
3	0,10	5°44	84°16	5°43			0,74	47°44	42°16	36°30			
4	0,12	6°53'30	83°06	6°50'30			0,75	45°35	41°24'30				
5	0,14	8°03	81°57	7°58			0,76	49°28	40°32	37°14			
6	0,15	9°12	80°48	9°05			0,78	51°16	38°44	37°57			
7	0,16	9°12	80°48	9°05			0,80	53°08	36°52	38°39			
8	0,18	10°22	79°38	10°12			0,82	55°05	34°55	39°21			
9	0,20	11°32	78°28	11°19			0,84	57°08	32°52	41°40			
10	0,22	12°42'30	77°17	12°24			0,85	58°13	31°47	40°21			
11	0,24	13°53	76°07	13°29			0,86	59°19	30°41	40°41			
12	0,25	14°29	75°31	14°02			0,866	60°00	30°00	40°53	$Sin = \sqrt{3/2}$		
	0,26	15°04	74°56	14°34				61°38'30	28°21	41°20			
	0,28	16°15'30	73°44	15°38		54	0,90	64°09'30		41°59			
15	0,30	17°27	72°32'30	16°41		55	0,92	66°55'30	23°04	42°36			
16	0,32	18°40	<u>71°20</u>	17°44		56	0,94	70°03	19°57	43°13			
17	0,34	19°52'30	70°07	18°46		57	0,95	71°48	18°12	43°31			
18	0,35	20°29	69°31	21°48		58	0,96	73°44	16°16	43°49			
19	0,36	21°06	68°54	19°47		59	0,98	78°31	11°29	44°25			
20	0,38	22°20	67°40	20°48		60	0,99	81°53	08°06'30	44°42			
21	0,40	23°35	66°25	21°48		61	1,00	90°	0 °	45°00			
22	0,42	24°50	65°10	22°44		62	1,25	_	_	51°20			
23	0,44	26°06	63°54	23° 44		63	1,50	ı	ı	56°18			
24	0,45	26°44'30	63°15	24°13		64	1,75	1	1	59°35			
25	0,46	27°23	62°37	24°42		65	2,00	_	_	63°26			
26	0,48	28°41	61°19	25°38		66	2,25	_	-	66°02			
27	0,50	30°00	60°00	26°34	$Sin = \frac{1}{2}$	67	2,50	-	-	68°11			
	0,52	31°20	58°40	27°28			2,75	_	_	70°01			
29	0,54	32°41	57°19	28°22			3,00	-	_	71°33			
30	0,55	33°22	56°38	28°48			3,50	1	_	74°03			
31	0,56	34°03	55°57	29°14		71	4,00	ı	ı	75°57			
32	0,58	35°27	54°33	30°06		72	4,5	ı	_	77°28			
33	0,60	36°52	53°08	30°58		73	5,0		_	78°41			
34	0,62	38°19	51°41	31°48		74	6,0	1	1	80°32			
35		39°47'30		32°37		75	7,0	-	1	81°52			
			49°27'30	33°01		76	8,0	_	_	82°52	_		
	0,66		48°42'00			77	9,0	-	_	83°39			
38	0,68	42°51	47°09	34°13		78	10,0	_	_	84°17			
39	0,70	44°26	45°34	34°59'30		79	15,0	_	_	86°11			
40	0,707	<u>45°00</u>	45°00	35°15'30	$\sin=\sqrt{2/2}$	80	25,0	_		87°42			

Воткинский филиал Ижевского государственного технического университета имени М.Т.Калашникова. 427430, г.Воткинск, ул.Шувалова, 1, www.vfistu.ru

E-mail: vfistu@mail.ru, тел.8-(34145) 5-15-00