Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Томский государственный архитектурно-строительный университет»

ПЕРВИЧНАЯ ОБРАБОТКА ВЫБОРОЧНЫХ ДАННЫХ

Методические указания для самостоятельной работы студентов

Составители, О.В. Иванова Н.С. Дорофеева

Томск 2014

Первичная обработка выборочных данных/Сост. О.В. Иванова, Н. С. Дорофеева – Томск: Изд-во Том. гос. архит.-строит. ун-та, 2014. – 42 с.

Рецензент Р.И. Лазарева Редактор О.А. Сергеева

Методические указания к самостоятельной работе по дисциплине Б2.Б.1 — «Математика» при изучении темы «Математическая статистика» студентами второго курса заочной формы обучения по направлению «экономика» и «менеджмент» всех профилей подготовки специалистов и бакалавров.

Печатаются по решению методического семинара кафедры высшей математики, протокол N = 3 от 9 декабря 2013 г.

> с 21.01. 2014 до 21.01.2019

Оригинал-макет подготовлен О.А. Ивановой.

Подписано в печать 30.01.14. Формат 60×84 . Бумага офсет. Гарнитура Таймс. Уч.-изд. л. 2,37. Тираж 40 экз. 3аказ 10 .

Изд-во ТГАСУ, 634003, г. Томск, пл. Соляная, 2. Отпечатано с оригинал-макета в ООП ТГАСУ. 634003, г. Томск, ул. Партизанская, 15.

1. ВВЕДЕНИЕ

Предлагаемые методические указания предназначены для самостоятельной работы студентов второго курса заочной формы обучения по направлению «экономика» и «менеджмент» в процессе выполнения курсовой работы при изучении темы «Математическая статистика». Математическое содержание данного раздела направлено на формирование у студентов общекультурных (ОК) и профессиональных компетенций (ПК):

- (ОК-1): владение культурой мышления, способностью к обобщению, анализу, восприятию информации, постановке цели и выбору путей её достижения.
- (ОК-6): стремление к саморазвитию, повышению своей квалификации и мастерства.
- (ПК-1): использование основных законов естественнонаучных дисциплин в профессиональной деятельности, применения методов математического анализа и моделирования теоретического и экспериментального исследования.
- (ПК-2): способность выявить естественнонаучную сущность проблем, возникающих в ходе профессиональной деятельности, привлечь для их решения соответствующий физикоматематический аппарат.

Теория вероятностей изучает математические модели случайных явлений. Математическая статистика, изучающая закономерности массовых случайных явлений, решает обратные задачи: разрабатывает различные методы, позволяющие по статистическим данным, которые носят случайный характер, подобрать подходящую теоретико-вероятностную модель.

2. КРАТКИЕ СВЕДЕНИЯ ИЗ ТЕОРИИ МАТЕМАТИЧЕСКОЙ СТАТИСТИКИ

2.1 Основные свойства и характеристики выборки

Пусть для изучения количественного (дискретного или непрерывного) признака X произведено n испытаний в одинаковых

условиях (из *генеральной совокупности* извлечена *выборка* $x_1, x_2, ..., x_n$ объема n).

Производить анализ с помощью выборки, если ее объем достаточно большой, неудобно, поэтому производят группировку статистического материала.

Для дискретного признака X составляют таблицу, включающую в порядке возрастания значения вариант x_i (без повтора) и соответствующие абсолютные частоты n_i (число наблюдений) этих значений (сумма всех частот равна объему выборки n). Можно составлять таблицу из значений вариант и их относительных частот $W_i = n_i / n$ (отношение частоты n_i к объему выборки n), при этом сумма всех относительных частот равна единице. Такие таблицы называются вариационными рядами или статистическим распределением.

В целях наглядности используется графическое изображение вариационного ряда — полигон частот или полигон относительных частот. Для его построения на оси OX откладывают значения вариант x_i и восстанавливают перпендикуляры, равные по длине частотам n_i или относительным частотам W_i данных вариант. Концы соседних перпендикуляров соединяют отрезками. Полученная фигура — полигон.

Для непрерывно изменяющегося признака используют *интервальную группировку*: весь интервал значений вариант разбивают на конечное число граничащих друг с другом равных интервалов. На практике число интервалов в группировке берут $8 \le k \le 25$ (точных формул для подсчета k нет, есть лишь некоторые рекомендации: $k \approx log_2 n + 1$; $k \approx 1 + 3.2 \lg n$ и другие). Совокупность расположенных в порядке возрастания интервалов вариации длины k и частот вариант k, либо относительных частот вариант k, попавших в соответствующий интервал, называется интервальным (группированным) вариационным рядом, статистической совокупностью или статистическим распределением.

Графически интервальный вариационный ряд изображается в виде *гистограммы частот* или *относительных частот* (ступенчатый график). Для гистограммы на оси абсцисс откладывают интервалы значений признака длины h и на каждом из них, как на основании, строят прямоугольник с высотой, пропорциональной частоте (n_i/h , W_i/h).

Дальнейшую обработку статистического материала проводят на основе вариационных рядов. С их помощью составляют $F^*(x)$ — статистическую функцию распределения выборки, которая называется эмпирической и задает для каждого значения x относительную частоту события (X < x): $F^*(x) = n_x / n$, где n — объем выборки, n_x — число выборочных значений величины X, меньших x.

Продолжая анализ статистического материала, можно выделить эмпирические числовые характеристики, которые представляли бы вариационный ряд в целом и отражали присущие всей совокупности закономерности. В первую очередь к ним относятся: выборочное среднее (центр распределения признака), вокруг которого концентрируются результаты наблюдений, и выборочная дисперсия, характеризующая разброс значений вокруг центра.

Bыборочной средней $\overline{x_B}$ называется среднее арифметическое значений признака выборочной совокупности. Если значения признака $x_1, x_2, ..., x_k$ имеют соответственно частоты

$$n_1, n_2, ..., n_k$$
, to
$$\overline{x_B} = \frac{x_1 n_1 + x_2 n_2 + ... + n_k x_k}{n} = \frac{1}{n} \sum_{i=1}^k x_i n_i.$$

Выборочной дисперсией D_{B} называется среднее арифметическое квадратов отклонения наблюдаемых значений выборки от их среднего значения $\overline{x_{B}}$: $D_{B} = \frac{1}{n} \sum_{i=1}^{k} n_{i} \left(x_{i} - \overline{x_{B}} \right)^{2}.$

Вычисление выборочной дисперсии можно упростить, используя следующую теорему: дисперсия равна среднему квадратов значений признака минус квадрат общей средней:

$$D_B = \frac{1}{n} \sum_{i=1}^k n_i x_i^2 - \left(\overline{x_B}\right)^2.$$

Кроме дисперсии, для характеристики рассеяния значений признака выборочной совокупности вокруг своего среднего значения пользуются сводной характеристикой — средним квадратическим отклонением, которое выражается в тех же единицах, что и значения признака и выборочной средней.

Выборочным средним квадратическим отклонением σ_{B} называется арифметический квадратный корень из выборочной дисперсии: $\sigma_{B} = \sqrt{D_{B}}$.

2.2 Математические модели случайных явлений

Напомним, что в теории вероятностей непрерывную случайную величину X можно задать с помощью функции распределения F(x), определяющую вероятность того, что случайная величина X принимает значение, меньшее x, т. е. F(x) = P(X < x). Иногда функцию F(x) называют интегральной функцией распределения.

Вероятность попадания случайной величины в заданный интервал $[\alpha,\beta)$ вычисляется формулой

$$P(\alpha \leq X < \beta) = F(\beta) - F(\alpha).$$

Непрерывную случайную величину X можно задать и с помощью *плотности распределения вероятностей* f(x) для каждой точки x, которая иначе называется дифференциальной функцией распределения и является первой производной функции распределения, т. е. f(x) = F'(x).

Вероятность попадания случайной величины в заданный интервал $[\alpha,\beta)$ через плотность распределения вероятностей

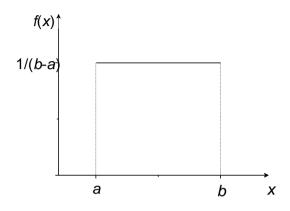
вычисляется формулой
$$P\left(\alpha \leq X < \beta\right) = \int\limits_{\alpha}^{\beta} f\left(x\right) \mathrm{d}x \; .$$

Для решения многих практических задач достаточно указать *числовые характеристики случайной величины*. Их назначение — в сжатой форме выразить наиболее важные черты распределения. К таким числовым характеристикам относятся математическое ожидание M(X), дисперсия D(X), среднее квадратическое отклонение σ_x и т. д.

Возможные значения случайной величины X могут быть сосредоточены вокруг некоторого центра, среднего значения случайной величины, математического ожидания M(X).

Дисперсия D(X) характеризует рассеивание значений случайной величины вокруг ее математического ожидания и определяется как математическое ожидание квадрата отклонения случайной величины X от ее математического ожидания M(X).

Случайная величина X, ее математическое ожидание M(X) и *среднее квадратическое отклонение* случайной величины $\sigma_x = \sqrt{D(X)}$ имеют одну и ту же размерность, тогда как дисперсия D(X) имеет размерность квадрата случайной величины.


Рассмотрим основные законы распределения непрерывных случайных величин.

Pавномерным называют распределение вероятностей непрерывной случайной величины X, если на отрезке [a,b], которому принадлежат все возможные значения X, плотность f(x) постоянна (рис.1), т. е

$$f(x) = \begin{cases} 0 & \text{при } x \notin [a,b], \\ \frac{1}{b-a} & \text{при } x \in [a,b], \end{cases}$$

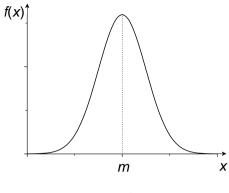
где числа a и b – параметры равномерного распределения.

Функция распределения F(x) для равномерного распределения имеет вид: $F\left(x\right) = \frac{x-a}{b-a} \quad \text{при } a \leq x \leq b \; .$

Puc. 1

Математическое ожидание M(X) равномерно распределенной на отрезке [a,b] случайной величины X совпадает с серединой отрезка [a,b] и равно M(X) = (b+a)/2.

Дисперсия D(X) равна: $D(X) = (b-a)^2/12$, откуда следует, что среднее квадратическое отклонение $\sigma_x = (b-a)/2\sqrt{3}$.


Вероятность попадания значения случайной величины, имеющей равномерное распределение, на интервал (α, β) , принадлежащий целиком отрезку [a,b], равна

$$P(\alpha < X < \beta) = F(\beta) - F(\alpha) = \frac{\beta - \alpha}{b - a}$$
.

Нормальным называют распределение вероятностей непрерывной случайной величины X, если плотность распределения f(x) имеет вид (рис. 2):

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-m)^2}{2\sigma^2}},$$

где числа m и σ – два параметра нормального распределения.

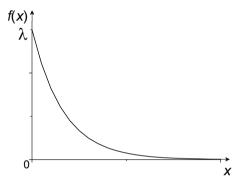
Puc. 2

Функция распределения F(x) для нормального распределения имеет вид $F(x) = \frac{1}{2} + \Phi\left(\frac{x-m}{\sigma}\right)$, где $\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{0}^{x} e^{-\frac{z^2}{2}} dz$

 функция Лапласа. Таблица значений функции Лапласа дана в прил. 1.

Математическое ожидание M(X) нормально распределенной случайной величины X равно параметру нормального распределения m, т. е. M(X) = m.

Дисперсия D(X) равна квадрату параметра нормального распределения σ , т. е. $D(X) = \sigma^2$, откуда следует, что среднее квадратическое отклонение σ_x равно параметру σ : $\sigma_x = \sigma$.


Вероятность попадания значения случайной величины, имеющей нормальное распределение, в заданный интервал (α, β) можно выразить через функцию Лапласа:

$$P(\alpha < X < \beta) = \Phi\left(\frac{\beta - m}{\sigma}\right) - \Phi\left(\frac{\alpha - m}{\sigma}\right).$$

Показательным (экспоненциальным) называют распределение вероятностей непрерывной случайной величины X, которое описывается плотностью (рис. 3)

$$f(x) = \begin{cases} 0 & npu \ x < 0, \\ \lambda e^{-\lambda x} & npu \ x \ge 0. \end{cases}$$

где λ — постоянная положительная величина. Показательное распределение определяется только одним параметром λ .

Puc. 3

Функция распределения F(x) для показательного распределения имеет вид: $F(x) = 1 - e^{-\lambda x}$ при $x \ge 0$.

Для показательного распределения математическое ожидание M(X), дисперсия D(X) и среднее квадратическое отклонение σ_x равны, соответственно:

$$M(X) = 1/\lambda$$
; $D(X) = 1/\lambda^2$; $\sigma_x = 1/\lambda$.

Таким образом, для показательного распределения характерно, что среднее квадратическое отклонение численно равно математическому ожиданию.

Вероятность попадания значения случайной величины, имеющей показательное распределение, в заданный интервал (α , β) равна $P(\alpha < X < \beta) = e^{-\lambda \alpha} - e^{-\lambda \beta}$.

1.2. Статистическая оценка параметров предполагаемого закона распределения

Пусть требуется изучить количественный признак генеральной совокупности. Изначально закон распределения генеральной совокупности неизвестен, но в результате графической обработки статистических данных можно выдвинуть гипотезу о законе распределения.

Следует сравнить полигон относительных частот изучаемой случайной величины с известными из теории вероятностей графиками f(x) основных распределений (рис. 1–3). Выбрать похожую по форме f(x) и выдвинуть гипотезу о законе распределения исследуемой непрерывной случайной величины.

Допустим, выдвинута гипотеза о том, какое именно распределение имеет признак. Естественно, возникает задача оценки параметров, которыми определяется это распределение.

Например, если наперед известно, что признак имеет равномерное распределение, то необходимо оценить параметры a и b, которыми это распределение определяется и которые выражаются через математическое ожидание M(X) и среднее квадратическое отклонение σ_x :

$$\begin{cases} a = M(X) - \sqrt{3}\sigma_x, \\ b = M(X) + \sqrt{3}\sigma_x. \end{cases}$$

Если же есть основания считать, что изучаемый признак распределен в генеральной совокупности нормально, то необходимо оценить (приближенно найти) два параметра m и σ , которые совпадают с математическим ожиданием M(X) и средним квадратическим отклонением σ_x , соответственно:

$$m = M(X); \quad \sigma = \sigma_x.$$

Если же есть основания считать, что признак имеет показательное распределение, то необходимо оценить параметр λ , которым это распределение определяется и которое выражается через математическое ожидание:

$$\lambda = 1/M(X)$$
.

Обычно в распоряжении исследователя имеются лишь данные выборки. Через эти данные и выражают оцениваемый параметр.

В результате обработки статистических данных оцениваются различные выборочные характеристики случайной величины X: выборочное среднее $\overline{x_B}$, выборочная дисперсия D_B , выборочное среднее квадратическое отклонение σ_B . Эти характеристики используются в качестве приближенных значений неизвестных числовых характеристик изучаемой случайной величины X (неизвестных генеральных характеристик). Так, выборочное среднее $\overline{x_B}$ используется как приближенное значение математического ожидания M(X) (генеральной средней), а выборочная дисперсия D_B – как приближенное значение генеральной дисперсии D(X).

В общем случае выборочная характеристика, используемая в качестве приближенного значения неизвестной генеральной характеристики θ , называется ее точечной статистической оценкой θ^* .

Оказывается, что выборочная средняя x_B является несмещенной ($M\left(\theta^*\right) = \theta$.) оценкой генеральной средней M(X).

Выборочная дисперсия D_B , как можно доказать, является смещенной оценкой генеральной дисперсии D(X). Легко «исправить» выборочную дисперсию D_B , умножив ее на дробь

n/(n-1). Сделав это, получим «исправленную дисперсию», которую обычно обозначают через s^2 : $s^2 = \frac{n}{n-1} D_B$.

Для оценки же среднего квадратнческого отклонения генеральной совокупности используют «исправленное» среднее квадратическое отклонение, которое равно квадратному корню из исправленной дисперсии: $\sigma_{\rm x} = s$.

Для записи гипотетических функций распределения необходимо заменить в соответствующих аналитических формулах предполагаемого распределения параметры распределения их точечными оценками.

С помощью формул, соответствующих гипотетическому закону распределения, можно вычислить теоретические вероятности попадания случайного признака в каждый интервал.

Построив на одном графике полигон относительных частот статистического распределения и гипотетическую теоретическую плотность распределения, можно сравнить эти кривые.

1.3. Статистическая проверка гипотезы о законе распределения генеральной совокупности

Допустим, что для данного статистического распределения подобрана некоторая гипотетическая теоретическая кривая f(x). Для ответа на вопрос хорошо или плохо описывает подобранная нами кривая данное статистическое распределение служат так называемые «критерии согласия».

 $\mathit{Hyлевой}\ (\mathit{основной})$ называют выдвинутую гипотезу H_0 .

Ошибка первого рода состоит в том, что будет отвергнута правильная гипотеза. Вероятность ошибки первого рода называют уровнем значимости и обозначают через α (наиболее часто уровень значимости принимают равным 0,05 или 0,01).

Статистическим критерием (или просто критерием) называют случайную величину K, которая служит для проверки

нулевой гипотезы. *Наблюдаемым значением* $K_{\text{набл}}$ называют то значение критерия, которое вычислено по выборкам.

Критической областью называют совокупность значений критерия, при которых нулевую гипотезу отвергают.

Областью принятия гипотезы (областью допустимых значений) называют совокупность значений критерия, при которых нулевую гипотезу принимают.

Основной принцип проверки статистических гипотез можно сформулировать так: если наблюдаемое значение критерия принадлежит критической области — гипотезу отвергают, если наблюдаемое значение критерия принадлежит области принятия гипотезы — гипотезу принимают.

 $\mathit{Критическими}\ \mathit{mочками}\ ($ границами) $\mathit{k}_{_{\mathrm{кp}}}$ называют точки, отделяющие критическую область от области принятия гипотезы.

Рассмотрим критерий Пирсона проверки гипотезы о предполагаемом законе неизвестного распределения. С этой целью будем сравнивать эмпирические (наблюдаемые) и теоретические (вычисленные в предположении гипотетического распределения) частоты.

Возможно, что расхождение частот случайно (незначимо) и объясняется малым числом наблюдений либо способом их группировки, либо другими причинами. Возможно, что расхождение частот неслучайно (значимо) и объясняется тем, что теоретические частоты вычислены, исходя из неверной гипотезы о предполагаемом распределении генеральной совокупности.

Критерий Пирсона отвечает на поставленный выше вопрос. Правда, как и любой критерий, он не доказывает справедливость гипотезы, а лишь устанавливает, на принятом уровне значимости, ее согласие или несогласие с данными наблюдений.

В критерии Пирсона в качестве меры расхождения между теоретическим и статистическим распределениями берут сумму квадратов отклонений эмпирических (n_i) и теоретических (n_i') абсолютных частот с соответствующим коэффициентом пропорциональности. Эта величина обозначается χ^2 , а сам критерий

называется критерием согласия «хи квадрат». Этот параметр, вычисленный по статистическому материалу, обозначается $\chi^2_{\text{наб}}$, т. е. «наблюдаемое хи в квадрате».

$$\chi^2_{\text{Haf}} = \sum_{i=1}^k \frac{(n_i - n_i')^2}{n_i'}.$$

Это теоретическое значение χ^2 является критической точкой, которая отделяет критическую область от области принятия гипотезы и обозначается χ^2_{KD} .

При уровне значимости α и степени свободы r=k-q-1, где k — число интервалов, q — число параметров распределения, $\chi^2_{\rm kp}$ можно найти по таблице распределения Пирсона (прил. 2).

Критическая область критерия Пирсона определяется неравенством $\chi^2_{\text{наб}} > \chi^2_{\text{кр}}$. Поэтому, если мера расхождения $\chi^2_{\text{наб}}$ попадает в критическую область, то гипотеза отклоняется; если же $\chi^2_{\text{наб}} < \chi^2_{\text{кр}}$, то нет оснований отвергнуть проверяемую гипотезу.

Заметим, что наблюдаемое значение критерия может оказаться большим $\chi^2_{\rm kp}$ не потому, что нулевая гипотеза ложна, а по другим причинам (малый объем выборки, недостатки методики эксперимента).

Также заметим, что при пользовании критерием χ^2 достаточно большим должен быть не только общий объем выборки (несколько сотен), но и абсолютная частота в отдельных интервалах должна быть не менее 5. Если это требование нарушается, то имеет смысл объединить некоторые интервалы в один.

2. ЦЕЛЬ И ПОСЛЕДОВАТЕЛЬНОСТЬ ВЫПОЛНЕ-НИЯ РАБОТЫ

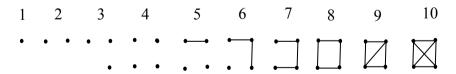
Произвести первичную обработку статистической выборки (n = 280) из непрерывной генеральной совокупности, по-

строить статистическое распределение, эмпирическую функцию распределения и найти числовые характеристики выборки. По результатам обработки статистических данных выдвинуть гипотезу о законе распределения генеральной совокупности, оценить параметры предполагаемого распределения и провести статистическую проверку этой гипотезы.

3. МЕТОДИЧЕСКИЕ УКАЗАНИЯ. ПРИМЕР

Дана выборка. Требуется:

І. Построить интервальный вариационный ряд


Индивидуальное задание (пример, стр. 28) содержит n=280 выборочных данных из непрерывной генеральной совокупности. Для составления интервального вариационного ряда необходимо разбить ее на 10 равных интервалов. Делается это следующим образом:

- 1. Найти среди выборки $x_{\min}=-3,483$; $x_{\max}=5,717$. Записать размах выборки: $\Delta=x_{\max}-x_{\min}=5,717-(-3,483)=9,2$. Определить длину интервала $h=\Delta/k=9,2/10=0,92$, где k=10- число интервалов.
- 2. Записать 10 интервалов (табл. 1), считая каждый из них закрытым слева, а последний интервал закрыт и слева, и справа. Границы интервалов, следовательно, будут $x_1 = x_{\min}$, $x_2 = x_1 + h$, $x_3 = x_2 + h$, ..., $x_{11} = x_{\max}$.
- 3. Подсчитать для каждого интервала абсолютные частоты n_i (т. е. число выборочных данных, попадающих в каждый интервал), просматривая результаты наблюдений. При этом в интервал включают значения случайной величины, большие или равные нижней границе и меньшие верхней границы (в последний интервал включают и нижнюю, и верхнюю границы). Подсчет частот для каждого интервала удобно проводить методом «конвертиков». Суть этого метода состоит в том, что попадание

Таблица 1

№	Интервал	Рабочее поле	$n_{\rm i}$
1	[-3,483; -2,563)	• •	2
2	[-2,563; -1,643)	☒ .	11
3	[-1,643; -0,723)		24
4	[-0,723; 0,197)		31
5	[-0,197; 1,117)		45
6	[-0,117; 2,037)		68
7	[2,037; 2,957)		50
8	[2,957; 3,877)		31
9	[3,877; 4,797)		14
10	[4,797; 5,717]	• •	4

значения случайной величины в тот или иной интервал отмечается точкой или черточкой. В результате каждому десятку будет соответствовать фигура, похожая на конверт:

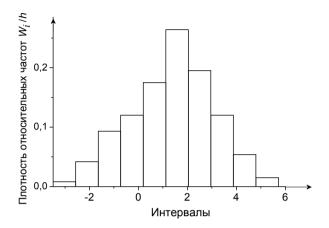
Составить интервальный вариационный ряд абсолютных частот (табл. 1). Убедиться, что сумма всех частот равна 280.

4. Найти центры каждого интервала: $x_i^* = (x_{i+1} + x_i)/2$, где x_i – левый, а x_{i+1} – правый конец интервала.

$$x_1^* = (-2,563-3,483)/2 = -3,023;$$
 $x_2^* = -1,643-2,563/2 = -2,103;$ $x_3^* = (-0,723-1,643)/2 = -1,183;$ $x_4^* = (0,197-0,723)/2 = -0,263;$ $x_5^* = (1,117+0,197)/2 = 0,657;$ $x_6^* = (2,037+1,117)/2 = 1,577;$ $x_7^* = (2,957+2,037)/2 = 2,497;$ $x_8^* = (3,877+2,957)/2 = 3,417;$ $x_9^* = (4,797+3,877)/2 = 4,337;$ $x_{10}^* = (5,717+4,797)/2 = 5,257.$ Данные вычислений занесем в табл. 2.

5. Составить вариационный ряд относительных частот.

Вычислим для каждого интервала относительные частоты $W_i = n_i / n$ и плотность относительных частот W_i / h . Убедимся, что сумма всех относительных частот равна единице (табл. 2).


Таблииа 2

					i aosiaya 2
<u>№</u>	Интервал	x_i^*	$n_{\rm i}$	$W_i = n_i / n$	W_i/h
1	[-3,483; -2,563)	-3,023	2	0,007	0,008
2	[-2,563;-1,643)	-2,103	11	0,039	0,042
3	[-1,643;-0,723)	-1,183	24	0,085	0,092
4	[-0,723;0,197)	-0,263	31	0,111	0,12
5	[-0,197; 1,117)	0,657	45	0,161	0,175
6	[-0,117; 2,037)	1,577	68	0,243	0,264
7	[2,037; 2,957)	2,497	50	0,179	0,195
8	[2,957; 3,877)	3,417	31	0,111	0,12
9	[3,877; 4,797)	4,337	14	0,050	0,054
10	[4,797; 5,717]	5,257	4	0,014	0,015

6. В целях наглядности использовать графическое изображение вариационного ряда: гистограмму относительных частот (рис. 4) и полигон относительных частот (рис. 5).

Чтобы построить гистограмму относительных частот, нужно на оси OX отложить все 10 интервалов и на каждом из них

построить прямоугольники с высотой, равной плотности относительных частот $H_i = W_i \, / \, h$.

Puc. 4

Чтобы построить полигон относительных частот, нужно соединить отрезками точки с координатами (x_i^* , $H_i = W_i / h$).

Puc. 5

II. Записать выборочную функцию распределения $F^*(x)$ и построить ее график

Выборочная функция распределения $F^*(x)$ — это сумма относительных частот, стоящих слева от x в вариационном ряду.

$$x \le -3,483 \qquad F^*(x) = 0;$$

$$x \in (-3,483; -2,563] \qquad F^*(x) = W_1 = 0,007;$$

$$x \in (-2,563; -1,643] \qquad F^*(x) = W_1 + W_2 = 0,046;$$

$$x \in (-1,643; -0,723] \qquad F^*(x) = W_1 + W_2 + W_3 = 0,132;$$

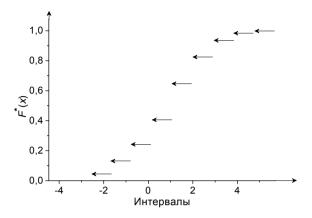
$$x \in (-0,723; 0,197] \qquad F^*(x) = W_1 + W_2 + W_3 + W_4 = 0,243;$$

$$x \in (0,197; 1,117] \qquad F^*(x)) = W_1 + W_2 + W_3 + W_4 + W_5 = 0,404;$$

$$x \in (1,117; 2,037] \qquad F^*(x) = W_1 + W_2 + W_3 + W_4 + W_5 + W_6 = 0,646;$$

$$x \in (2,037; 2,957] \qquad F^*(x) = W_1 + W_2 + W_3 + W_4 + W_5 + W_6 + W_7 = 0.825;$$

$$x \in (2,957; 3,877] \qquad F^*(x) = W_1 + W_2 + W_3 + W_4 + W_5 + W_6 + W_7 + W_8 = 0.935;$$


$$x \in (3,877; 4,797] \qquad F^*(x) = \sum_{i=1}^{9} W_i = 0,986;$$

$$x \in (4,797; 5,717] \qquad F^*(x) = \sum_{i=1}^{10} W_i = 0,9998;$$

$$x > 5,717 \qquad F^*(x) = 1.$$

Запишем функцию $F^*(x)$:

$$F^*(x) = \begin{cases} 0 & x \le -3,483, \\ 0,007 & -3,483 < x \le -2,563, \\ 0,046 & -2,563 < x \le -1,643, \\ 0,132 & -1,643 < x \le -0,723, \\ 0,243 & -0,723 < x \le 0,197, \\ 0,404 & 0,197 < x \le 1,117, \\ 0,646 & 1,117 < x \le 2,037, \\ 0,825 & 2,037 < x \le 2,957, \\ 0,935 & 2,957 < x \le 3,877, \\ 0,986 & 3,877 < x \le 4,797, \\ 1 & 4,797 < x \le 5,717, \\ 1 & x > 5,717. \end{cases}$$

Puc. 6

Графиком этой функции будет возрастающая ступенчатая линия, непрерывная слева (рис. 6).

ІІІ. Найти числовые характеристики вариационного ряда

1. Найти выборочное среднее по всей выборке

$$\overline{x_B} = \frac{1}{n} \sum_{j=1}^{280} x_j = \frac{383,989}{280} = 1,371$$

2. Найти выборочное среднее значение по сгруппированным данным, т. е. с помощью вариационного ряда

$$\overline{x_{rp}} = \frac{1}{n} \sum_{i=1}^{10} n_i \cdot x_i^* = \frac{1}{280} [2(-3,023) + 11(-2,103) + 24(-1,183) + 31(-0,263) + 45 \cdot 0,657 + 68 \cdot 1,577 + 50 \cdot 2,497 + 31 \cdot 3,417 + 14 \cdot 4,337 + 4 \cdot 5,257] = 383,600/280 = 1,370.$$

3. Вычислить выборочную дисперсию по сгруппированным данным

$$D_{\rm rp} = \left(\sum_{i=1}^n \left(x_i^*\right)^2 n_i\right) / n - \left(\overline{x}_{\rm rp}\right)^2 = \left[(-3,023)^2 2 + (-2,103)^2 11 + (-1,183)^2 24 + (-0,263)^2 31 + (0,657)^2 45 + (1,577)^2 68 + (2,497)^2 50 + (3,417)^2 31 + (4,337)^2 14 + (5,257)^2 4\right] / 280 - (1,370)^2 = 4,782 - 1,878 = 2,904.$$
 и выборочное среднее квадратическое отклонение

$$\sigma_{\rm rp} = \sqrt{D_{\rm rp}} = \sqrt{2,904} \approx 1,704.$$

4. Найти относительную погрешность в вычислении выборочного среднего за счет замены выборки вариационным рядом

$$\delta = \frac{\left|\overline{x_{\rm rp}} - \overline{x_{\rm B}}\right| 100\%}{\overline{x_{\rm B}}} = \frac{\left|1,370 - 1,371\right| 100\%}{1,371} \approx 0,005\%.$$

IV. Выдвинуть гипотезу о законе распределения генеральной совокупности.

1. Сравнивая полигон относительных частот (рис. 4) с видом графиков плотности распределения f(x) для основных непрерывных распределений (рис. 1–3), выдвигаем гипотезу, что случайная величина имеет нормальное распределение с параметрами m (математическое ожидание) и σ (среднее квадратическое отклонение).

V. Оценить параметры предполагаемого распределения и записать его закон.

1. Оценить числовые характеристики исследуемой непрерывной случайной величины:

математическое ожидание $M(X) \approx \overline{x}_{rp} = 1,370;$

«исправленную дисперсию»
$$D(X) = s^2 \approx D_{\rm rp} \cdot n / (n-1) = 2,904$$
.

«исправленное» среднее квадратическое отклонение

$$\sigma \approx s = 1,704$$

2. Согласно выдвинутой гипотезе, записать параметры данного распределения с учетом точечных оценок числовых характеристик предполагаемого распределения.

Для нормального распределения — два параметра $m \approx x_{\rm rp}$, $\sigma \approx s$.

Для показательного распределения — один параметр $\lambda \approx /x_{\rm rp}$.

Для равномерного распределения – два параметра

$$a \approx \overline{x_{\rm rp}} - \sqrt{3}s$$
, $b \approx \overline{x_{\rm rp}} + \sqrt{3}s$.

Для рассматриваемого примера выдвинута гипотеза о нормальном распределении случайной величины. Следовательно,

$$m = M(X) \approx \bar{x}_{rp} = 1,370, \sigma \approx s = 1,704.$$

3. Для записи гипотетических функций плотности распределения f(x) и F(x) необходимо взять формулы для этих функций и заменить в них параметры распределения соответствующими точечными оценками.

Для рассматриваемого примера:

$$f(x) = \frac{1}{1,704\sqrt{2\pi}} e^{-\frac{(x-1,370)^2}{2(1,704)^2}}; F(x) = \frac{1}{2} + \Phi\left(\frac{x-1,370}{1,704}\right),$$

где
$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{0}^{x} e^{\frac{-z^{2}}{2}} dz$$
 — функция Лапласа.

4. С помощью формул, соответствующих гипотетическому закону распределения, можно вычислить теоретические вероятности попадания случайного признака в каждый интервал, а именно:

для показательного распределения $P_i = e^{-\lambda x_i} - e^{-\lambda x_{i+1}}$;

для равномерного закона: $P_i = (x_{i+1} - x_i)/(b-a)$;

для нормального закона:
$$P_i = \Phi\left(\frac{x_{i+1}-m}{\sigma}\right) - \Phi\left(\frac{x_i-m}{\sigma}\right)$$
.

Следует напомнить, что значения функции Лапласа $\Phi(x)$ можно взять из таблиц (см. прил. 1), предварительно вычислив аргумент x, причем $\Phi(-x) = -\Phi(x)$ и $\Phi(x > 4) \approx 0.5$.

Для рассматриваемого примера с помощью формул, соответствующих нормальному закону распределения, вычислим теоретические вероятности попадания случайного признака в каждый из 10 интервалов:

$$P_1 = \Phi\left(\frac{-2,563 - 1,370}{1,704}\right) - \Phi\left(\frac{-3,483 - 1,370}{1,704}\right) = -\Phi(2,298) + \Phi(2,818) = -0,489 + 0,497 = 0,008.$$

$$P_2 = \Phi\left(\frac{-1,643 - 1,370}{1,704}\right) - \Phi\left(\frac{-2,563 - 1,370}{1,704}\right) = -\Phi(1,762) + \Phi(2.298) = -0.461 + 0.489 = 0.028.$$

$$P_3 = \Phi\left(\frac{-0.723 - 1.370}{1.704}\right) - \Phi\left(\frac{-1.643 - 1.370}{1.704}\right) = -\Phi(1.225) +$$

$$+\Phi(1,762) = -0.388 + 0.460 = 0.072$$

$$P_4 = \Phi\left(\frac{0,197 - 1,370}{1,704}\right) - \Phi\left(\frac{-0,723 - 1,370}{1,704}\right) = -\Phi(0,689) + \Phi(0,689) + \Phi(0,6$$

$$+\Phi(1,225) = -0.254 + 0.388 = 0.133.$$

$$P_5 = \Phi\left(\frac{1,117 - 1,370}{1,704}\right) - \Phi\left(\frac{-0,197 - 1,370}{1,704}\right) = -\Phi(0,152) + \Phi\left(\frac{-0,197 - 1,370}{1,704}\right) = -\Phi\left(\frac{-0,197 - 1,$$

$$+\Phi(0,689) = -0,059 + 0,254 = 0,195.$$

$$P_6 = \Phi\left(\frac{2,037 - 1,370}{1,704}\right) - \Phi\left(\frac{1,117 - 1,370}{1,704}\right) = \Phi(0,383) + \Phi(0,152) = 0.148 + 0.0550 = 0.207$$

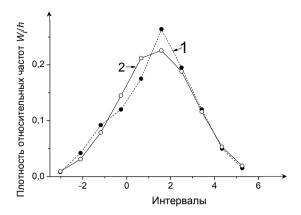
$$+\Phi(0.152) = 0.148 + 0.059 = 0.207.$$

$$P_7 = \Phi\left(\frac{2,957 - 1,370}{1,704}\right) - \Phi\left(\frac{2,037 - 1,370}{1,704}\right) = \Phi(0,920) - \Phi(0,383) = 0,321 - 0,148 = 0,173.$$

$$P_8 = \Phi\left(\frac{3,877 - 1,370}{1,704}\right) - \Phi\left(\frac{2,957 - 1,370}{1,704}\right) = \Phi(1,456) - \Phi(0,920) = 0,428 - 0,321 = 0,107.$$

$$P_9 = \Phi\left(\frac{4,797 - 1,370}{1,704}\right) - \Phi\left(\frac{3,877 - 1,370}{1,704}\right) = \Phi(1,993) - \Phi(1,993)$$

$$-\Phi(1,456) = 0,477 - 0,428 = 0,049.$$


$$P_{10} = \Phi\left(\frac{5,717 - 1,370}{1,704}\right) - \Phi\left(\frac{4,797 - 1,370}{1,704}\right) = \Phi(2,529) - \Phi(1,993) = 0,494 - 0,477 = 0,017.$$

5. По формуле $n_i' = n \cdot P_i$ вычисляются ожидаемые теоретические частоты (n = 280). Результаты вычислений P_i и n_i' оформим в виде таблицы 2 для десяти интервалов.

Таблица 2 P_i Номер x_i^* $n'_i = n \cdot P_i$ $\frac{P_i}{h}$ интервала 2,324 -3,0230,008 0.0087 1 2 -2.1030,028 7.98 0.0304 3 0,072 20,3 0.0783 -1,1834 0,133 37.3 -0.2630.1446 5 0,657 0,195 54,68 0.2120 6 58,13 0.225 1,577 0,207 7 48,49 2,497 0,173 0.1881 8 3,417 0.107 29,87 0.1163 9 4,337 0,049 13,664 0.0532 10 5,257 4,872 0.017 0.0185

6. Построим на одном графике (рис. 5) полигон относительных частот статистического распределения (кривая 1) (ломаная с вершинами в точках $\left(x_i^*, W_i/h\right)$) (рис. 4) и гипотетическую теоретическую плотность распределения, приближенно построенную по 10 точкам (кривая 2), (ломаная с вершинами в точках $\left(x_i^*, P_i/h\right)$).

Из графика видно, что теоретическая кривая распределения f(x), сохраняет в основном существенные особенности статистического распределения.

Puc. 5.

VI. Провести статистическую проверку выдвинутой гипотезы

1. Вычислить меру расхождения $\chi^2_{\text{наб}}$ между теоретическим и статистическим распределениями по критерию Пирсона для нашего примера:

$$\chi^{2}_{\text{Ha6}} = \sum_{i=1}^{10} \frac{(n_{i} - n'_{i})^{2}}{n'_{i}} = \frac{(2 - 2,324)^{2}}{2,324} + \frac{(11 - 7,98)^{2}}{7,98} + \frac{(24 - 20,3)^{2}}{20,3} + \frac{(31 - 37,3)^{2}}{37,3} + \frac{(45 - 54,68)^{2}}{54,68} + \frac{(68 - 58,13)^{2}}{58,13} + \frac{(50 - 48,49)^{2}}{48,49} + \frac{(31 - 29,87)^{2}}{29,87} + \frac{(14 - 13,664)^{2}}{13,664} + \frac{(4 - 4,872)^{2}}{4,872} = 7,162,$$

где n_i — абсолютные частоты (число выборочных данных, попадающих в каждый интервал), n_i' — ожидаемые теоретические частоты для данного закона распределения. $\chi^2_{\text{наб}} = 7,162$.

2. Найти критическую точку $\chi^2_{\rm kp}$, которая отделяет критическую область от области принятия гипотезы. Значение $\chi^2_{\rm kp}$ можно найти по таблице распределения Пирсона (прил. 3), зная

два входных параметра. Первый параметр α — уровень значимости (это вероятность отвергнуть правильную гипотезу). Второй параметр r — число степеней свободы: r = k — q —1 , где k = 10 — число интервалов выборки; q — число параметров предполагаемого распределения.

Для нашего примера уровень значимости примем $\alpha=0.06$; число степеней свободы r=k-q-1=10-2-1=7 (здесь k- число интервалов, q- число параметров предполагаемого распределения (q=2). По входным параметрам таблицы ($\alpha=0.06$; r=7) находим $\chi^2_{\rm кp}=14.07$.

3. Из сравнения $\chi^2_{\text{наб}}$ и $\chi^2_{\text{кр}}$ сделать вывод о приемлемости выдвинутой гипотезы. Если $\chi^2_{\text{наб}} < \chi^2_{\text{кр}}$, то нет оснований отвергнуть выдвинутую гипотезу, если же $\chi^2_{\text{наб}} > \chi^2_{\text{кр}}$, то выдвинутая гипотеза ставится под сомнение (она может быть ошибочной, но может быть и верной, только выборка оказалась недостаточно представительной, т. е. n- мало).

Для нашего примера из сравнения $\chi^2_{\text{наб}} = 7,162$ и $\chi^2_{\text{кр}} = 14,07$ делаем вывод о правдоподобии гипотезы. Т. к. $\chi^2_{\text{наб}} < \chi^2_{\text{кр}}$ то экспериментальные данные не противоречат выдвинутой гипотезе, что случайная величина, представленная выборкой, имеет нормальный закон распределения.

В результате выполненной работы на основе статистического материала получены закон распределения, эмпирическая функция распределения и числовые характеристики вариационного ряда.

ЗАДАНИЯ ДЛЯ КУРСОВОЙ РАБОТЫ

Студент должен выполнить вариант (стр.31-40), номер которого совпадает с последней цифрой его учебного номера (шифра).

ЗАДАНИЕ К ПРИМЕРУ

1,093	-1,953	-0,091	-0,455	1,149	2,363	3,376	-0,781
1,044	0,987	0,027	0,621	-1,259	1,881	2,069	2,456
2,490	1,891	1,998	0,713	2,831	5,154	-1,005	2,274
-1,011	1,491	-0,269	1,703	2,879	2,414	1,561	2,856
-0,101	0,320	1,332	2,074	0,940	1,294	2,575	1,786
1,578	1,910	1,910	1,709	2,075	-0,372	4,244	-0,354
3,383	-0,005	1,173	0,290	1,540	-1,752	-1,023	0,019
-0,328	0,908	1,828	3,700	5,592	0,986	1,381	1,487
-0,997	-2,780	1,583	1,622	2,691	0,276	3,464	0,834
0,133	1,254	-0,454	1,140	3,493	1,150	1,834	4,242
1,622	2,537	2,625	1,135	2,457	2,042	2,499	1,695
-1,375	3,687	-1,673	3,490	1,840	-0,417	1,667	0,574
0,502	-2,072	4,361	0,289	3,701	-1,793	3,344	1,663
3,610	1,593	1,435	1,014	1,896	0,547	3,340	2,345
0,907	2,016	2,055	0,548	1,284	4,235	0,462	1,402
1,151	3,928	2,530	1,574	3,322	1,905	-3,483	2,217
0,099	0,663	0,568	-1,426	1,269	1,988	-0,485	1,573
1,309	1,353	3,277	1,832	0,983	-0,081	4,461	2,453
1,740	3,732	1,563	2,230	0,120	-1,071	1,365	1,240
2,948	-1,068	0,536	1,651	0,939	2,051	0,834	-1,084
4,692	-1,315	3,503	1,778	0,697	-2,281	-1,125	1,065
3,330	3,326	-0,829	2,493	-0,347	2,965	4,098	1,868
-0,181	1,785	3,249	0,280	-0,535	2,622	-0,692	3,309
2,917	1,998	2,445	-0,578	3,189	0,523	2,316	-0,829
3,582	-1,105	0,865	4,000	0,884	5,100	-1,273	0,637
0,572	1,610	-0,781	1,898	0,008	2,186	1,150	-0,511
2,045	0,124	1,213	3,199	-0,181	1,415	1,192	1,710
3,158	-2,374	2,356	1,786	0,974	4,219	-1,737	3,483
0,469	-3,008	4,356	2,541	0,731	-0,970	-0,432	-2,410
1,536	3,107	-0,880	0,547	2,548	2,882	-0,683	2,215
5,717	1,704	3,955	3,487	1,682	2,208	-0,483	1,741
-2,230	3,916	2,371	2,844	-2,007	0,840	-1,225	2,750
2,252	-0,124	3,274	2,700	0,736	-0,790	3,500	0,425
-1,278	0,316	2,573	0,539	-0,229	2,353	3,900	0,948
1,736	2,970	2,375	3,243	2,355	0,701	1,182	2,303

ПРИЛОЖЕНИЕ 1

Таблица значений функции
$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{0}^{x} e^{\frac{-z^{2}}{2}} dz$$

х	0	1	2	3	4	5	6	7	8	9
0,0	0,00000	00399	00798	01197	01595	01994	02392	02790	03188	03586
0,1	03983	04380	04776	05172	05567	05962	06356	06749	07142	07535
0,2	07926	08317	08706	09095	09483	09871	10257	10642	11026	11409
0,3	11791	12172	12552	12930	13307	13683	14058	14431	14803	15173
0,4	15542	15910	16276	16640	17003	17364	17724	18082	18439	18793
0,5	19146	19497	19847	20194	20540	20884	21226	21566	21904	22240
0,6	22575	22907	23237	23565	23891	24215	24537	24857	25175	25490
0,7	25804	26115	26424	26730	27035	27337	27637	27935	28230	28524
0,8	28814	29103	29389	29673	29955	30234	30511	30785	31057	31327
0,9	31594	31859	32121	32381	32639	32894	33147	33398	33646	33891
1,0	34134	34375	34614	34850	35083	35314	35543	35769	35993	36214
1,1	36433	36650	36864	37076	37286	37493	37698	37900	38100	38298
1,2	38493	38686	38877	39065	39251	39435	39617	39796	39973	40147
1,3	40320	40490	40658	40824	40988	41149	41309	41466	41621	41774
1,4	41924	42073	42220	42364	42507	42647	42786	42922	43056	43189
1,5	43319	43448	43574	43699	43822	43943	44062	44179	44295	44408
1,6	44520	44630	44738	44845	44950	45053	45154	45254	45352	45449
1,7	45543	45637	45728	45818	45907	45994	46080	46164	46246	46327
1,8	46407	46485	46562	46638	46712	46784	46856	46926	46995	47062
1,9	47128	47193	47257	47320	47381	47441	47500	47558	47615	47670
2,0	47725	47778	47831	47882	47932	47982	48030	48077	48124	48169
2,1	48214	48257	48300	48341	48382	48422	48461	48500	48537	48574
2,2	48610	48645	48679	48713	48745	48778	48809	48840	48870	48899
2,3	48928	48956	48983	49010	49036	49061	49086	49111	49134	49158
2,4	49180	49202	49224	49245	49266	49286	49305	49324	49343	49361
2,5	49379	49396	49413	49430	49446	49461	49477	49492	49506	49520
2,6	49534	49547	49560	49573	49585	49598	49609	49621	49632	49643
2,7	49653	49664	49674	49683	49693	49702	49711	49720	49728	49736
2,8	49744	49752	49760	49767	49774	49781	49788	49795	49801	49807
2,9	49813	49819	49825	49831	49836	49841	49846	49851	49856	49861
3,0	0,498		3,1	49903	3,2	49931	3,3	49952	3,4	49966
3,5	499		3,6	49984	3,7	49989	3,8	49993	3,9	49995
4,0	499	968								
4,5	499	997	_	_	_	_	_	_	_	
5,0	4999	9997								
	l		l		l	l	l		l	

Значения χ^2 в зависимости от r и α

r/a	0,99	0,98	0,95	0,90	0,80	0,70	0,50	0,30	0,20	0,10	0,06	0,02	0,01	0,001
1	0,000	0,001	0,004	0,016	0,064	0,148	0,455	1,074	1,642	2,71	3,84	5,41	6,64	10,83
2	0,020	0,040	0,103	0,211	0,446	0,713	1,386	2,41	3,22	4,60	5,99	7,82	9,21	13,82
3	0,115	0,185	0,352	0,584	1,005	1,424	2,37	3,66	4,64	6,25	7,82	9,84	11,34	16,27
4	0,297	0,429	0,711	1,064	1,649	2,20	3,36	4,88	5,99	7,78	9,49	11,67	13,28	18,46
5	0,554	0,752	1,145	1,610	2,34	3,00	4,35	6,06	7,29	9,24	11,07	13,39	15,09	20,5
6	0,872	1,134	1,635	2,20	3,07	3,83	5,35	7,23	8,56	10,64	12,59	15,03	16,81	22,5
7	1,239	1,564	2,17	2,83	3,82	4,67	6,35	8,38	9,80	12,02	14,07	16,62	18,48	24,3
8	1,646	2,03	2,73	3,49	4,59	5,53	7,34	9,52	11,03	13,36	15,51	18,17	20,1	26,1
9	2,09	2,53	3,32	4,17	5,38	6,39	8,34	10,66	12,24	14,68	16,92	19,68	21,7	27,9
10	2,56	3,06	3,94	4,86	6,18	7,27	9,34	11,78	13,44	15,99	18,31	21,2	23,2	29,6
11	3,05	3,61	4,58	5,58	6,99	8,15	10,34	12,90	14,63	17,28	19,68	22,6	24,7	31,3
12	3,57	4,18	5,23	6,30	7,81	9,03	11,34	14,01	15,81	18,55	21,0	24,1	26,2	32,9
13	4,11	4,76	5,89	7,04	8,63	9,93	12,34	15,12	16,98	19,81	22,4	25,5	27,7	34,6
14	4,66	5,37	6,57	7,79	9,47	10,82	13,34	16,22	18,15	21,1	23,7	26,9	29,1	36,1
15	5,23	5,98	7,26	8,55	10,31	11,72	14,34	17,32	19,31	22,3	25,0	28,3	30,6	37,7
16	5,81	6,61	7,96	9,31	11,15	12,62	15,34	18,42	20,5	23,5	26,3	29,6	32,0	39,3
17	6,41	7,26	8,67	10,08	12,00	13,53	16,34	19,51	21,6	24,8	27,6	31,0	33,4	40,8
18	7,02	7,91	9,39	10,86	12,86	14,44	17,34	20,6	22,8	26,0	28,9	32,3	34,8	42,3
19	7,63	8,57	10,11	11,65	13,72	15,35	18,34	21,7	23,9	27,2	30,1	33,7	36,2	43,8
20	8,26	9,24	10,85	12,44	14,58	16,27	19,34	22,8	25,0	28,4	31,4	35,0	37,6	45,3
21	8,90	9,92	11,59	13,24	15,44	17,18	20,3	23,9	26,2	29,6	32,7	36,3	38,9	46,8
22	9,54	10,60	12,34	14,04	16,31	18,10	21,3	24,9	27,3	30,8	33,9	37,7	40,3	48,3
23	10,20	11,29	13,09	14,85	17,19	19,02	22,3	26,0	28,4	32,0	35,2	39,0	41,6	49,7
24	10,86	11,99	13,85	15,66	18,06	19,94	23,3	27,1	29,6	33,2	36,4	40,3	43,0	51,2
25	11,52	12,70	14,61	16,47	18,94	20,9	24,3	28,2	30,7	34,4	37,7	41,7	44,3	52,6
26	12,20	13,41	15,38	17,29	19,82	21,8	25,3	29,2	31,8	35,6	38,9	42,9	45,6	54,1
27	12,88	14,12	16,15	18,11	20,7	22,7	26,3	30,3	32,9	36,7	40,1	44,1	47,0	55,5
28	13,56	14,85	16,93	18,94	21,6	23,6	27,3	31,4	34,0	37,9	41,3	45,4	48,3	56,9
29	14,26	15,57	17,71	19,77	22,5	24,6	28,3	32,5	35,1	39,1	42,6	46,7	49,6	58,3
30	14,95	16,31	18,49	20,6	23,4	25,5	29,3	33,5	36,2	40,3	43,8	48,0	50,9	59,7

ВАРИАНТЫ ИНДИВИДУАЛЬНЫХ ЗАДАНИЙ Вариант № 1

9,097	0,871	5,407	3,931	2,228	1,130	3,046	7,767
2,421	7,602	2,447	9,580	1,177	9,460	6,577	7,151
3,670	3,479	2,776	7,306	6,773	4,025	8,992	8,354
4,340	6,618	8,335	5,321	5,665	2,256	5,427	2,667
8,061	4,691	2,952	4,162	9,505	7,839	1,871	4,627
2,273	5,516	3,713	3,210	3,507	0,684	8,407	2,904
3,660	6,394	6,073	5,968	8,743	5,627	6,209	9,962
7,326	2,192	2,731	4,079	8,208	9,900	8,278	0,447
9,727	2,192	6,241	0,106	6,615	9,333	3,937	8,341
5,352	5,615	5,381	9,052	3,956	3,322	7,076	2,860
7,146	6,086	5,273	8,631	2,806	8,537	8,137	3,101
0,700	4,579	1,245	8,298	9,373	1,380		1,441
2,170	1,343	6,451	7,014	8,311	9,204	9,865 6,792	5,685
				1,264			
9,966	6,451	3,242	9,777		0,265	8,487	9,966
0,173	9,145	8,274	2,893	9,182	2,438	6,540	4,390
5,740	5,924	1,383	7,995	8,368	0,678	5,311	3,441
9,401	7,375	8,202	4,824	0,283	3,229	6,419	3,121
0,360	3,764	6,520	2,748	5,106	6,586	6,984	6,855
4,720	9,367	6,411	1,034	9,033	9,204	1,621	0,135
9,660	5,561	4,093	7,875	5,335	3,964	8,180	3,924
1,368	2,655	9,545	8,164	9,161	9,376	7,240	6,798
6,719	0,480	7,880	0,011	6,094	9,549	5,349	5,849
8,704	7,722	4,459	0,025	4,454	2,895	2,021	6,330
5,612	0,010	3,754	7,331	1,356	9,593	0,470	0,057
3,957	6,751	1,973	6,346	2,510	7,799	2,112	2,555
5,161	6,715	3,423	8,304	5,778	8,606	4,799	8,958
5,980	2,373	0,626	1,524	8,482	9,759	4,816	8,655
2,685	2,981	8,188	0,441	8,451	8,111	2,619	8,692
8,993	6,418	0,416	3,374	8,833	0,837	2,334	5,916
7,747	9,770	2,687	9,049	6,647	5,394	4,991	7,878
6,341	8,667	6,561	1,877	5,087	8,230	5,522	2,479
5,906	5,369	8,651	5,974	9,575	2,250	3,501	6,369
4,237	5,600	3,240	7,934	7,572	3,021	7,638	2,093
2,470	4,137	8,648	8,357	2,126	3,738	4,017	3,994
5,517	9,143	7,350	2,115	9,179	8,931	8,092	2,859

Вариант № 2

7,240	6,258	10,839	8,382	9,624	7,929	1,429	10,317
4,387	6,426	3,249	4,405	10,105	2,067	7,196	6,987
4,265	2,491	8,721	8,027	7,577	10,653	9,408	9,378
6,175	4,524	2,515	8,959	7,607	5,673	5,915	5,538
1,588	8,918	10,883	3,809	1,428	10,254	10,151	4,451
7,079	5,215	3,685	8,850	5,748	4,878	5,617	3,184
1,001	1,697	10,755	1,544	6,301	2,338	4,132	2,788
3,920	9,722	2,016	10,817	5,153	1,452	7,820	2,948
2,790	6,809	1,354	6,085	1,757	9,521	4,854	5,374
8,888	8,472	4,227	5,020	7,754	3,546	8,947	5,960
9,488	8,808	9,039	10,081	5,536	10,182	2,596	5,672
3,295	9,836	2,253	3,784	10,542	4,453	4,072	10,206
9,622	9,576	7,259	2,725	7,316	7,212	8,164	8,377
1,324	8,889	6,992	10,355	9,315	1,350	10,670	9,277
1,470	7,064	10,300	8,501	2,457	6,761	6,642	8,164
3,779	6,152	2,060	7,643	2,431	4,050	2,372	1,119
6,800	4,052	7,042	5,936	5,751	6,995	1,142	8,438
1,836	6,348	7,534	6,980	4,558	3,755	2,708	6,785
4,630	6,892	4,702	6,350	5,176	6,837	6,551	10,086
10,791	7,145	3,710	6,864	10,419	1,802	8,862	9,181
4,974	4,260	2,587	2,608	5,642	4,727	3,287	10,223
3,811	7,915	4,845	1,711	8,549	8,416	5,420	1,821
2,590	5,906	5,844	7,865	2,744	7,362	1,042	10,946
5,685	8,477	2,913	10,604	5,040	1,458	8,119	7,573
10,734	1,406	9,212	4,322	6,509	8,454	2,537	8,083
6,572	7,847	1,353	6,047	7,292	5,174	7,601	7,411
4,907	8,909	10,767	1,969	5,149	7,474	7,271	9,942
5,753	2,995	8,818	2,709	7,766	8,951	3,158	9,163
6,607	3,888	5,676	7,344	8,809	8,407	5,267	6,060
5,380	7,587	2,926	6,179	7,729	6,058	6,486	6,266
7,077	7,891	9,945	2,273	3,317	8,498	10,829	5,958
4,226	10,738	4,010	1,712	1,007	2,404	5,432	6,508
1,058	7,289	4,172	2,629	3,934	7,005	6,288	7,883
1,435	5,764	8,868	2,983	7,736	5,284	7,746	10,787
10,534	2,028	7,293	7,076	9,109	3,947	5,749	7,565

Вариант № 3

11,271	9,929	5,512	11,833	9,110	3,129	5,830	2,852
9,487	5,379	11,334	6,820	5,218	9,855	9,849	7,966
2,872	9,196	2,921	3,022	7,131	10,256	6,490	4,060
3,647	8,686	11,161	10,362	6,326	10,523	5,499	4,024
9,994	2,979	10,785	8,979	4,360	11,621	10,681	8,125
10,235	6,117	4,231	8,246	3,928	11,753	5,638	7,412
10,765	8,889	9,263	4,549	3,666	7,565	3,264	5,862
7,724	9,417	10,338	7,806	6,706	4,112	8,984	11,280
2,435	2,489	3,726	6,745	2,979	3,567	7,750	4,946
10,579	7,650	6,370	2,923	5,272	2,679	4,780	10,012
5,125	6,037	5,511	3,501	9,033	8,990	10,052	8,654
3,012	5,960	10,051	2,768	5,924	5,792	6,547	7,969
5,577	7,243	10,671	2,416	11,126	5,838	2,238	4,621
2,732	4,310	3,697	10,557	4,393	3,803	5,835	8,244
10,902	8,018	3,720	9,506	4,860	7,498	6,277	3,586
4,694	6,242	7,962	2,297	9,594	7,825	5,970	11,411
2,335	3,218	11,392	7,959	5,899	7,495	7,788	8,144
4,847	7,620	5,593	5,540	7,374	8,483	5,805	4,274
8,981	9,401	11,382	6,878	3,713	8,242	9,795	11,496
3,889	5,380	5,174	8,129	4,265	4,662	3,471	8,616
11,565	3,574	9,101	10,034	5,332	9,786	6,475	6,197
11,013	6,286	4,879	6,951	11,232	2,262	10,125	9,954
6,185	11,942	11,425	4,618	9,095	8,563	6,905	2,908
7,657	5,674	6,223	6,686	7,425	2,942	3,704	6,282
8,060	8,660	10,444	9,986	8,398	6,145	8,815	9,147
11,257	6,205	7,811	8,557	3,925	2,873	2,671	6,825
5,277	4,582	7,216	6,415	5,447	7,990	2,339	8,035
8,993	6,615	9,087	9,080	7,499	11,488	9,765	10,791
2,549	6,013	5,509	3,847	5,007	2,195	3,761	7,051
11,543	10,461	4,085	8,813	4,346	10,234	5,754	6,116
4,955	3,454	5,559	10,645	8,148	8,240	9,270	6,777
6,830	4,879	5,179	11,108	3,851	11,316	3,183	8,216
11,700	10,357	7,817	2,338	6,004	5,746	8,704	9,652
3,773	9,325	6,833	10,861	2,328	6,453	10,124	8,741
9,856	11,874	6,697	10,373	3,514	3,217	9,305	8,721

Вариант № 4

2,650 1,563 2,612 3,978 0,024 0,395 1,259 0,249 2,783 1,928 0,117 1,351 0,412 0,257 0,716 1,851 0,042 2,460 0,322 0,003 0,058 1,001 1,989 0,569 0,299 0,634 0,764 0,282 0,143 1,750 0,265 1,283 0,654 2,649 1,801 1,474 0,658 0,231 0,504 0,046 0,055 0,367 0,852 1,616 2,049 0,043 2,009 0,002 4,363 0,035 1,784 1,206 0,587 0,432 2,920 0,282 1,526 2,342 0,277 0,391 1,987 2,335 0,520 0,492 2,232 0,145 0,638 0,671 0,082 0,435 1,511 0,042 1,625 0,831 0,419 0,852 1,298 0,669 0,349 3,444			1	1				1
0,042	2,650	1,563	2,612	3,978	0,024	0,395	1,259	0,249
0,299 0,634 0,764 0,282 0,143 1,750 0,265 1,283 0,654 2,649 1,801 1,474 0,658 0,231 0,504 0,046 0,055 0,367 0,852 1,616 2,049 0,043 2,009 0,002 4,363 0,035 1,784 1,206 0,587 0,432 2,920 0,282 1,526 2,342 0,277 0,391 1,987 2,335 0,520 0,492 2,232 0,145 0,638 0,671 0,082 0,435 1,511 0,042 1,625 0,831 0,419 0,852 1,298 0,669 0,349 3,444 1,343 3,352 0,827 0,274 0,155 0,947 0,548 0,474 4,343 3,352 0,827 0,274 0,155 0,947 0,548 0,474 4,343 3,352 0,827 0,274 0,155 0,947 0,548 0,349	2,783				0,412			
0,654 2,649 1,801 1,474 0,658 0,231 0,504 0,046 0,055 0,367 0,852 1,616 2,049 0,043 2,009 0,002 4,363 0,035 1,784 1,206 0,587 0,432 2,920 0,282 1,526 2,342 0,277 0,391 1,987 2,335 0,520 0,492 2,232 0,145 0,638 0,671 0,082 0,435 1,511 0,042 1,625 0,831 0,419 0,852 1,298 0,669 0,349 3,444 1,343 3,352 0,827 0,274 0,155 0,947 0,548 0,474 6,327 0,664 0,100 0,330 0,013 0,049 0,050 0,397 2,373 0,243 0,153 0,899 1,013 1,446 0,333 0,307 0,514 2,125 1,427 0,320 1,759 0,143 2,115 1,143	0,042	2,460			0,058		1,989	
0,055 0,367 0,852 1,616 2,049 0,043 2,009 0,002 4,363 0,035 1,784 1,206 0,587 0,432 2,920 0,282 1,526 2,342 0,277 0,391 1,987 2,335 0,520 0,492 2,232 0,145 0,638 0,671 0,082 0,435 1,511 0,042 1,625 0,831 0,419 0,852 1,298 0,669 0,349 3,444 1,343 3,352 0,827 0,274 0,155 0,947 0,548 0,474 6,327 0,664 0,100 0,330 0,013 0,049 0,550 0,397 2,373 0,243 0,153 0,899 1,013 1,446 0,333 0,307 0,514 2,125 1,427 0,320 1,759 0,143 2,114 1,143 0,274 1,067 0,104 1,862 0,561 1,645 0,336 2,324								1,283
4,363 0,035 1,784 1,206 0,587 0,432 2,920 0,282 1,526 2,342 0,277 0,391 1,987 2,335 0,520 0,492 2,232 0,145 0,638 0,671 0,082 0,435 1,511 0,042 1,625 0,831 0,419 0,852 1,298 0,669 0,349 3,444 1,343 3,352 0,827 0,274 0,155 0,947 0,548 0,474 6,327 0,664 0,100 0,330 0,013 0,049 0,050 0,397 2,373 0,243 0,153 0,899 1,013 1,446 0,333 0,307 0,514 2,125 1,427 0,320 1,759 0,143 2,115 1,143 0,274 1,067 0,104 1,862 0,561 1,645 0,336 2,324 1,737 0,114 0,307 0,914 0,616 1,275 0,388 5,261	0,654	2,649	1,801	1,474	0,658	0,231	0,504	0,046
1,526 2,342 0,277 0,391 1,987 2,335 0,520 0,492 2,232 0,145 0,638 0,671 0,082 0,435 1,511 0,042 1,625 0,831 0,419 0,852 1,298 0,669 0,349 3,444 1,343 3,352 0,827 0,274 0,155 0,947 0,548 0,474 6,327 0,664 0,100 0,330 0,013 0,049 0,050 0,397 2,373 0,243 0,153 0,899 1,013 1,446 0,333 0,307 0,514 2,125 1,427 0,320 1,759 0,143 2,115 1,143 0,274 1,067 0,104 1,862 0,561 1,645 0,336 2,324 1,737 0,114 0,307 0,914 0,616 1,275 0,388 5,261 1,103 0,303 1,631 0,078 2,148 0,253 0,657 1,629	0,055	0,367	0,852	1,616	2,049	0,043	2,009	0,002
2,232 0,145 0,638 0,671 0,082 0,435 1,511 0,042 1,625 0,831 0,419 0,852 1,298 0,669 0,349 3,444 1,343 3,352 0,827 0,274 0,155 0,947 0,548 0,474 6,327 0,664 0,100 0,330 0,013 0,049 0,050 0,397 2,373 0,243 0,153 0,899 1,013 1,446 0,333 0,307 0,514 2,125 1,427 0,320 1,759 0,143 2,115 1,143 0,274 1,067 0,104 1,862 0,561 1,645 0,336 2,324 1,737 0,114 0,307 0,914 0,616 1,275 0,388 5,261 1,103 0,303 1,631 0,078 2,148 0,253 0,657 1,629 0,641 1,567 1,745 1,052 0,003 0,403 1,947 0,119	4,363	0,035	1,784	1,206	0,587	0,432	2,920	
1,625 0,831 0,419 0,852 1,298 0,669 0,349 3,444 1,343 3,352 0,827 0,274 0,155 0,947 0,548 0,474 6,327 0,664 0,100 0,330 0,013 0,049 0,050 0,397 2,373 0,243 0,153 0,899 1,013 1,446 0,333 0,307 0,514 2,125 1,427 0,320 1,759 0,143 2,115 1,143 0,274 1,067 0,104 1,862 0,561 1,645 0,336 2,324 1,737 0,114 0,307 0,914 0,616 1,275 0,388 5,261 1,103 0,303 1,631 0,078 2,148 0,253 0,657 1,629 0,641 1,567 1,745 1,052 0,003 0,403 1,947 0,119 1,815 0,412 1,308 0,316 0,658 0,114 1,166 2,571	1,526	2,342	0,277	0,391	1,987	2,335	0,520	0,492
1,343 3,352 0,827 0,274 0,155 0,947 0,548 0,474 6,327 0,664 0,100 0,330 0,013 0,049 0,050 0,397 2,373 0,243 0,153 0,899 1,013 1,446 0,333 0,307 0,514 2,125 1,427 0,320 1,759 0,143 2,115 1,143 0,274 1,067 0,104 1,862 0,561 1,645 0,336 2,324 1,737 0,114 0,307 0,914 0,616 1,275 0,388 5,261 1,103 0,303 1,631 0,078 2,148 0,253 0,657 1,629 0,641 1,567 1,745 1,052 0,003 0,403 1,947 0,119 1,815 0,412 1,308 0,316 0,658 0,114 1,166 2,571 0,880 2,959 0,861 0,346 4,226 0,180 0,777 2,097	2,232	0,145	0,638	0,671		0,435	1,511	0,042
6,327 0,664 0,100 0,330 0,013 0,049 0,050 0,397 2,373 0,243 0,153 0,899 1,013 1,446 0,333 0,307 0,514 2,125 1,427 0,320 1,759 0,143 2,115 1,143 0,274 1,067 0,104 1,862 0,561 1,645 0,336 2,324 1,737 0,114 0,307 0,914 0,616 1,275 0,388 5,261 1,103 0,303 1,631 0,078 2,148 0,253 0,657 1,629 0,641 1,567 1,745 1,052 0,003 0,403 1,947 0,119 1,815 0,412 1,308 0,316 0,658 0,114 1,166 2,571 0,880 2,959 0,861 0,346 4,226 0,180 0,777 2,097 1,304 1,034 0,079 0,608 0,602 0,346 0,110 1,508	1,625	0,831	0,419	0,852	1,298	0,669	0,349	3,444
2,373 0,243 0,153 0,899 1,013 1,446 0,333 0,307 0,514 2,125 1,427 0,320 1,759 0,143 2,115 1,143 0,274 1,067 0,104 1,862 0,561 1,645 0,336 2,324 1,737 0,114 0,307 0,914 0,616 1,275 0,388 5,261 1,103 0,303 1,631 0,078 2,148 0,253 0,657 1,629 0,641 1,567 1,745 1,052 0,003 0,403 1,947 0,119 1,815 0,412 1,308 0,316 0,658 0,114 1,166 2,571 0,880 2,959 0,861 0,346 4,226 0,180 0,777 2,097 1,304 1,034 0,079 0,608 0,602 0,346 0,110 1,508 0,046 0,120 0,216 4,146 4,508 0,242 0,973 0,305	1,343	3,352	0,827	0,274	0,155	0,947	0,548	0,474
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6,327	0,664	0,100	0,330	0,013	0,049	0,050	0,397
0,274 1,067 0,104 1,862 0,561 1,645 0,336 2,324 1,737 0,114 0,307 0,914 0,616 1,275 0,388 5,261 1,103 0,303 1,631 0,078 2,148 0,253 0,657 1,629 0,641 1,567 1,745 1,052 0,003 0,403 1,947 0,119 1,815 0,412 1,308 0,316 0,658 0,114 1,166 2,571 0,880 2,959 0,861 0,346 4,226 0,180 0,777 2,097 1,304 1,034 0,079 0,608 0,602 0,346 0,110 1,508 0,046 0,120 0,216 4,146 4,508 0,242 0,973 0,305 0,339 0,739 0,509 1,646 0,493 0,632 2,795 0,860 0,014 0,622 0,729 2,366 0,327 0,517 0,194 0,678	2,373	0,243	0,153	0,899	1,013	1,446	0,333	0,307
1,737 0,114 0,307 0,914 0,616 1,275 0,388 5,261 1,103 0,303 1,631 0,078 2,148 0,253 0,657 1,629 0,641 1,567 1,745 1,052 0,003 0,403 1,947 0,119 1,815 0,412 1,308 0,316 0,658 0,114 1,166 2,571 0,880 2,959 0,861 0,346 4,226 0,180 0,777 2,097 1,304 1,034 0,079 0,608 0,602 0,346 0,110 1,508 0,046 0,120 0,216 4,146 4,508 0,242 0,973 0,305 0,339 0,739 0,509 1,646 0,493 0,632 2,795 0,860 0,014 0,622 0,729 2,366 0,327 0,517 0,194 0,678 0,048 0,017 0,262 1,554 2,153 0,379 0,037 0,415	0,514	2,125	1,427	0,320	1,759	0,143	2,115	1,143
1,103 0,303 1,631 0,078 2,148 0,253 0,657 1,629 0,641 1,567 1,745 1,052 0,003 0,403 1,947 0,119 1,815 0,412 1,308 0,316 0,658 0,114 1,166 2,571 0,880 2,959 0,861 0,346 4,226 0,180 0,777 2,097 1,304 1,034 0,079 0,608 0,602 0,346 0,110 1,508 0,046 0,120 0,216 4,146 4,508 0,242 0,973 0,305 0,339 0,739 0,509 1,646 0,493 0,632 2,795 0,860 0,014 0,622 0,729 2,366 0,327 0,517 0,194 0,678 0,048 0,017 0,262 1,554 2,153 0,379 0,037 0,415 0,804 2,879 0,197 0,088 0,556 1,198 1,289 0,183		1,067	0,104	1,862	0,561	1,645	0,336	2,324
0,641 1,567 1,745 1,052 0,003 0,403 1,947 0,119 1,815 0,412 1,308 0,316 0,658 0,114 1,166 2,571 0,880 2,959 0,861 0,346 4,226 0,180 0,777 2,097 1,304 1,034 0,079 0,608 0,602 0,346 0,110 1,508 0,046 0,120 0,216 4,146 4,508 0,242 0,973 0,305 0,339 0,739 0,509 1,646 0,493 0,632 2,795 0,860 0,014 0,622 0,729 2,366 0,327 0,517 0,194 0,678 0,048 0,017 0,262 1,554 2,153 0,379 0,037 0,415 0,804 2,879 0,197 0,088 0,556 1,198 1,289 0,183 1,392 0,003 1,230 0,316 0,156 0,976 0,695 0,028	1,737	0,114	0,307	0,914	0,616	1,275	0,388	5,261
1,815 0,412 1,308 0,316 0,658 0,114 1,166 2,571 0,880 2,959 0,861 0,346 4,226 0,180 0,777 2,097 1,304 1,034 0,079 0,608 0,602 0,346 0,110 1,508 0,046 0,120 0,216 4,146 4,508 0,242 0,973 0,305 0,339 0,739 0,509 1,646 0,493 0,632 2,795 0,860 0,014 0,622 0,729 2,366 0,327 0,517 0,194 0,678 0,048 0,017 0,262 1,554 2,153 0,379 0,037 0,415 0,804 2,879 0,197 0,088 0,556 1,198 1,289 0,183 1,392 0,003 1,230 0,316 0,156 0,976 0,695 0,028 0,285 0,497 0,256 0,727 2,737 0,277 0,956 0,493	1,103	0,303	1,631	0,078	2,148	0,253	0,657	1,629
0,880 2,959 0,861 0,346 4,226 0,180 0,777 2,097 1,304 1,034 0,079 0,608 0,602 0,346 0,110 1,508 0,046 0,120 0,216 4,146 4,508 0,242 0,973 0,305 0,339 0,739 0,509 1,646 0,493 0,632 2,795 0,860 0,014 0,622 0,729 2,366 0,327 0,517 0,194 0,678 0,048 0,017 0,262 1,554 2,153 0,379 0,037 0,415 0,804 2,879 0,197 0,088 0,556 1,198 1,289 0,183 1,392 0,003 1,230 0,316 0,156 0,976 0,695 0,028 0,285 0,497 0,256 0,727 2,737 0,277 0,956 0,493 4,289 0,374 0,218 1,072 0,981 0,541 0,387 1,102	0,641	1,567	1,745	1,052	0,003	0,403	1,947	0,119
1,304 1,034 0,079 0,608 0,602 0,346 0,110 1,508 0,046 0,120 0,216 4,146 4,508 0,242 0,973 0,305 0,339 0,739 0,509 1,646 0,493 0,632 2,795 0,860 0,014 0,622 0,729 2,366 0,327 0,517 0,194 0,678 0,048 0,017 0,262 1,554 2,153 0,379 0,037 0,415 0,804 2,879 0,197 0,088 0,556 1,198 1,289 0,183 1,392 0,003 1,230 0,316 0,156 0,976 0,695 0,028 0,285 0,497 0,256 0,727 2,737 0,277 0,956 0,493 4,289 0,374 0,218 1,072 0,981 0,541 0,387 1,102 1,810 1,087 1,373 0,349 1,998 0,647 2,040 2,201	1,815	0,412	1,308	0,316	0,658	0,114	1,166	2,571
0,046 0,120 0,216 4,146 4,508 0,242 0,973 0,305 0,339 0,739 0,509 1,646 0,493 0,632 2,795 0,860 0,014 0,622 0,729 2,366 0,327 0,517 0,194 0,678 0,048 0,017 0,262 1,554 2,153 0,379 0,037 0,415 0,804 2,879 0,197 0,088 0,556 1,198 1,289 0,183 1,392 0,003 1,230 0,316 0,156 0,976 0,695 0,028 0,285 0,497 0,256 0,727 2,737 0,277 0,956 0,493 4,289 0,374 0,218 1,072 0,981 0,541 0,387 1,102 1,810 1,087 1,373 0,349 1,998 0,647 2,040 2,201 1,596 1,928 2,441 0,012 1,042 0,091 5,320 0,643	0,880	2,959	0,861	0,346	4,226	0,180	0,777	2,097
0,339 0,739 0,509 1,646 0,493 0,632 2,795 0,860 0,014 0,622 0,729 2,366 0,327 0,517 0,194 0,678 0,048 0,017 0,262 1,554 2,153 0,379 0,037 0,415 0,804 2,879 0,197 0,088 0,556 1,198 1,289 0,183 1,392 0,003 1,230 0,316 0,156 0,976 0,695 0,028 0,285 0,497 0,256 0,727 2,737 0,277 0,956 0,493 4,289 0,374 0,218 1,072 0,981 0,541 0,387 1,102 1,810 1,087 1,373 0,349 1,998 0,647 2,040 2,201 1,596 1,928 2,441 0,012 1,042 0,091 5,320 0,643 1,777 1,401 0,687 1,314 0,608 0,310 0,463 0,161	1,304	1,034	0,079	0,608	0,602	0,346	0,110	1,508
0,014 0,622 0,729 2,366 0,327 0,517 0,194 0,678 0,048 0,017 0,262 1,554 2,153 0,379 0,037 0,415 0,804 2,879 0,197 0,088 0,556 1,198 1,289 0,183 1,392 0,003 1,230 0,316 0,156 0,976 0,695 0,028 0,285 0,497 0,256 0,727 2,737 0,277 0,956 0,493 4,289 0,374 0,218 1,072 0,981 0,541 0,387 1,102 1,810 1,087 1,373 0,349 1,998 0,647 2,040 2,201 1,596 1,928 2,441 0,012 1,042 0,091 5,320 0,643 1,777 1,401 0,687 1,314 0,608 0,310 0,463 0,161 0,384 1,370 0,814 0,197 0,029 0,705 0,170 3,780	0,046	0,120	0,216	4,146	4,508	0,242	0,973	0,305
0,048 0,017 0,262 1,554 2,153 0,379 0,037 0,415 0,804 2,879 0,197 0,088 0,556 1,198 1,289 0,183 1,392 0,003 1,230 0,316 0,156 0,976 0,695 0,028 0,285 0,497 0,256 0,727 2,737 0,277 0,956 0,493 4,289 0,374 0,218 1,072 0,981 0,541 0,387 1,102 1,810 1,087 1,373 0,349 1,998 0,647 2,040 2,201 1,596 1,928 2,441 0,012 1,042 0,091 5,320 0,643 1,777 1,401 0,687 1,314 0,608 0,310 0,463 0,161 0,384 1,370 0,814 0,197 0,029 0,705 0,170 3,780 0,156 2,659 0,738 0,666 1,413 0,027 2,544 0,746	0,339	0,739	0,509	1,646	0,493	0,632	2,795	0,860
0,804 2,879 0,197 0,088 0,556 1,198 1,289 0,183 1,392 0,003 1,230 0,316 0,156 0,976 0,695 0,028 0,285 0,497 0,256 0,727 2,737 0,277 0,956 0,493 4,289 0,374 0,218 1,072 0,981 0,541 0,387 1,102 1,810 1,087 1,373 0,349 1,998 0,647 2,040 2,201 1,596 1,928 2,441 0,012 1,042 0,091 5,320 0,643 1,777 1,401 0,687 1,314 0,608 0,310 0,463 0,161 0,384 1,370 0,814 0,197 0,029 0,705 0,170 3,780 0,156 2,659 0,738 0,666 1,413 0,027 2,544 0,746	0,014	0,622	0,729	2,366	0,327	0,517	0,194	0,678
1,392 0,003 1,230 0,316 0,156 0,976 0,695 0,028 0,285 0,497 0,256 0,727 2,737 0,277 0,956 0,493 4,289 0,374 0,218 1,072 0,981 0,541 0,387 1,102 1,810 1,087 1,373 0,349 1,998 0,647 2,040 2,201 1,596 1,928 2,441 0,012 1,042 0,091 5,320 0,643 1,777 1,401 0,687 1,314 0,608 0,310 0,463 0,161 0,384 1,370 0,814 0,197 0,029 0,705 0,170 3,780 0,156 2,659 0,738 0,666 1,413 0,027 2,544 0,746	0,048	0,017	0,262	1,554	2,153	0,379	0,037	0,415
0,285 0,497 0,256 0,727 2,737 0,277 0,956 0,493 4,289 0,374 0,218 1,072 0,981 0,541 0,387 1,102 1,810 1,087 1,373 0,349 1,998 0,647 2,040 2,201 1,596 1,928 2,441 0,012 1,042 0,091 5,320 0,643 1,777 1,401 0,687 1,314 0,608 0,310 0,463 0,161 0,384 1,370 0,814 0,197 0,029 0,705 0,170 3,780 0,156 2,659 0,738 0,666 1,413 0,027 2,544 0,746	0,804	2,879	0,197	0,088	0,556	1,198	1,289	0,183
4,289 0,374 0,218 1,072 0,981 0,541 0,387 1,102 1,810 1,087 1,373 0,349 1,998 0,647 2,040 2,201 1,596 1,928 2,441 0,012 1,042 0,091 5,320 0,643 1,777 1,401 0,687 1,314 0,608 0,310 0,463 0,161 0,384 1,370 0,814 0,197 0,029 0,705 0,170 3,780 0,156 2,659 0,738 0,666 1,413 0,027 2,544 0,746	1,392	0,003	1,230	0,316	0,156	0,976	0,695	0,028
1,810 1,087 1,373 0,349 1,998 0,647 2,040 2,201 1,596 1,928 2,441 0,012 1,042 0,091 5,320 0,643 1,777 1,401 0,687 1,314 0,608 0,310 0,463 0,161 0,384 1,370 0,814 0,197 0,029 0,705 0,170 3,780 0,156 2,659 0,738 0,666 1,413 0,027 2,544 0,746	0,285	0,497	0,256	0,727	2,737	0,277	0,956	0,493
1,596 1,928 2,441 0,012 1,042 0,091 5,320 0,643 1,777 1,401 0,687 1,314 0,608 0,310 0,463 0,161 0,384 1,370 0,814 0,197 0,029 0,705 0,170 3,780 0,156 2,659 0,738 0,666 1,413 0,027 2,544 0,746	4,289	0,374	0,218	1,072	0,981	0,541	0,387	1,102
1,777 1,401 0,687 1,314 0,608 0,310 0,463 0,161 0,384 1,370 0,814 0,197 0,029 0,705 0,170 3,780 0,156 2,659 0,738 0,666 1,413 0,027 2,544 0,746		1,087	1,373		1,998	0,647	2,040	2,201
0,384 1,370 0,814 0,197 0,029 0,705 0,170 3,780 0,156 2,659 0,738 0,666 1,413 0,027 2,544 0,746	1,596	1,928	2,441	0,012	1,042	0,091	5,320	0,643
0,384 1,370 0,814 0,197 0,029 0,705 0,170 3,780 0,156 2,659 0,738 0,666 1,413 0,027 2,544 0,746	1,777	1,401	0,687	1,314	0,608	0,310	0,463	0,161
0,156 2,659 0,738 0,666 1,413 0,027 2,544 0,746	0,384	1,370	0,814	0,197	0,029	0,705	0,170	
	0,156	2,659	0,738	0,666		0,027	2,544	0,746
	0,508	0,566	2,635	2,432	1,215	0,172	0,220	0,157

Вариант № 5

1,138	1,722	1,393	1,063	0,258	1,690	0,965	0,437
0,227	1,531	0,738	5,925	0,395	0,283	2,067	0,652
0,126	1,057	1,399	0,061	0,566	0,848	2,073	0,207
2,485	0,425	0,355	0,439	0,023	2,240	0,039	0,324
0,266	0,276	0,198	0,057	0,889	0,120	1,485	1,194
0,294	0,318	0,086	0,317	1,310	0,171	0,051	0,721
1,735	0,156	0,583	3,106	0,265	0,269	3,316	0,077
0,196	0,823	0,355	0,419	0,238	0,222	0,871	0,238
0,218	1,750	0,623	0,044	1,491	0,033	0,072	1,866
0,584	0,258	1,140	1,362	0,367	0,573	0,318	0,451
1,366	1,700	0,180	0,977	0,320	1,440	0,597	0,389
0,415	0,323	1,515	0,384	1,691	1,106	0,166	0,273
1,300	1,341	0,103	0,436	2,290	0,311	1,918	0,645
0,214	0,009	0,924	1,049	0,034	0,190	0,532	0,435
1,371	0,699	0,151	0,135	1,022	1,588	2,161	0,232
0,050	3,030	0,357	0,345	0,322	1,458	0,090	1,222
0,582	0,526	0,103	0,359	5,187	0,435	1,364	0,430
0,306	0,208	1,182	1,421	1,301	0,144	0,590	1,968
0,131	0,319	0,323	2,495	0,425	1,195	2,055	3,056
0,272	0,396	0,054	1,558	2,394	1,111	2,876	0,053
0,365	0,757	0,235	1,031	3,407	0,788	0,618	0,257
2,192	1,208	0,641	0,460	0,318	2,489	0,697	0,332
0,684	0,582	0,180	0,107	0,303	1,024	0,257	1,732
0,454	0,646	1,808	2,361	3,490	0,476	0,578	0,895
1,163	0,135	1,786	1,310	1,106	2,610	2,145	2,240
1,088	1,396	0,150	0,377	0,373	2,421	2,169	0,070
0,050	1,082	0,012	0,271	0,207	0,844	2,257	0,201
0,294	1,280	0,257	0,241	0,830	1,013	0,635	2,066
0,529	0,505	0,046	0,525	2,414	0,334	0,045	0,218
1,005	1,548	0,631	3,660	0,607	0,309	0,041	0,966
0,209	1,895	1,014	0,626	1,651	0,256	0,016	0,393
0,127	1,092	0,422	1,873	1,690	0,042	0,078	0,387
1,062	3,686	0,629	0,090	0,340	0,310	0,109	0,003
0,262	0,792	0,041	0,028	0,269	2,653	0,724	0,705
1,990	0,207	1,062	0,605	1,446	0,101	1,554	1,060

Вариант № 6

0,754 0,215 0,049 0,390 0,945 1,611 0,412 0,355 0,062 0,848 0,698 0,873 0,446 0,282 0,491 0,163 0,270 0,091 2,202 0,557 0,050 0,814 0,168 0,246 0,442 0,139 0,240 0,437 0,757 0,536 1,141 0,802 0,947 0,589 1,262 0,334 2,850 0,199 1,212 1,613 0,770 0,590 0,261 0,676 1,021 0,547 0,663 0,899 3,552 0,980 2,683 1,114 0,203 1,432 1,660 0,371 0,564 0,542 0,184 3,326 0,904 0,457 0,397 0,722 1,598 3,733 0,929 0,058 0,558 0,006 1,023 0,024 1,006 3,482 0,269 1,324 0,693 1,493 0,072 0,434	0.724	0.215	0.040	0.500	0.042	1 (11	0.412	0.555
0,270 0,091 2,202 0,557 0,050 0,814 0,168 0,246 0,442 0,139 0,240 0,437 0,757 0,536 1,141 0,802 0,947 0,589 1,262 0,334 2,850 0,199 1,212 1,613 0,770 0,590 0,261 0,676 1,021 0,547 0,663 0,899 3,552 0,980 2,683 1,114 0,203 1,432 1,660 0,371 0,564 0,542 0,184 3,326 0,904 0,457 0,397 0,722 1,598 3,733 0,929 0,058 0,558 0,006 1,023 0,024 1,006 3,482 0,269 1,324 0,693 1,493 0,072 0,434 0,021 2,297 0,758 0,517 2,628 1,425 0,909 0,482 0,242 0,201 0,027 0,505 0,323 1,346 0,507 0,038	0,734	0,215	0,049	0,590	0,943	1,611	0,412	0,555
0,442 0,139 0,240 0,437 0,757 0,536 1,141 0,802 0,947 0,589 1,262 0,334 2,850 0,199 1,212 1,613 0,770 0,590 0,261 0,676 1,021 0,547 0,663 0,899 3,552 0,980 2,683 1,114 0,203 1,432 1,660 0,371 0,564 0,542 0,184 3,326 0,904 0,457 0,397 0,722 1,598 3,733 0,929 0,058 0,558 0,006 1,023 0,024 1,006 3,482 0,269 1,324 0,693 1,493 0,072 0,434 0,021 2,297 0,758 0,517 2,628 1,493 0,072 0,434 0,021 2,297 0,758 0,517 2,628 1,493 0,072 0,482 0,242 0,201 0,027 0,505 0,323 1,346 0,507 0,038			,		,			
0,947 0,589 1,262 0,334 2,850 0,199 1,212 1,613 0,770 0,590 0,261 0,676 1,021 0,547 0,663 0,899 3,552 0,980 2,683 1,114 0,203 1,432 1,660 0,371 0,564 0,542 0,184 3,326 0,904 0,457 0,397 0,722 1,598 3,733 0,929 0,058 0,558 0,006 1,023 0,024 1,006 3,482 0,269 1,324 0,693 1,493 0,072 0,434 0,021 2,297 0,758 0,517 2,628 1,425 0,909 0,482 0,242 0,201 0,027 0,505 0,323 1,346 0,507 0,038 2,614 0,429 0,614 3,024 2,106 2,030 1,654 0,781 0,177 1,141 2,047 1,793 0,264 0,074 1,662 0,428								
0,770 0,590 0,261 0,676 1,021 0,547 0,663 0,899 3,552 0,980 2,683 1,114 0,203 1,432 1,660 0,371 0,564 0,542 0,184 3,326 0,904 0,457 0,397 0,722 1,598 3,733 0,929 0,058 0,558 0,006 1,023 0,024 1,006 3,482 0,269 1,324 0,693 1,493 0,072 0,434 0,021 2,297 0,758 0,517 2,628 1,425 0,909 0,482 0,242 0,201 0,027 0,505 0,323 1,346 0,507 0,038 2,614 0,429 0,614 3,024 2,106 2,030 1,654 0,781 0,177 1,141 2,047 1,793 0,264 0,074 1,662 0,428 0,489 1,031 2,632 0,960 0,447 0,953 1,404 0,102					,			
3,552 0,980 2,683 1,114 0,203 1,432 1,660 0,371 0,564 0,542 0,184 3,326 0,904 0,457 0,397 0,722 1,598 3,733 0,929 0,058 0,558 0,006 1,023 0,024 1,006 3,482 0,269 1,324 0,693 1,493 0,072 0,434 0,021 2,297 0,758 0,517 2,628 1,425 0,909 0,482 0,242 0,201 0,027 0,505 0,323 1,346 0,507 0,038 2,614 0,429 0,614 3,024 2,106 2,030 1,654 0,781 0,177 1,141 2,047 1,793 0,264 0,074 1,662 0,428 0,489 1,031 2,632 0,960 0,447 0,953 1,404 0,102 0,206 0,942 1,992 0,777 1,385 0,234 1,706 0,601								_
0,564 0,542 0,184 3,326 0,904 0,457 0,397 0,722 1,598 3,733 0,929 0,058 0,558 0,006 1,023 0,024 1,006 3,482 0,269 1,324 0,693 1,493 0,072 0,434 0,021 2,297 0,758 0,517 2,628 1,425 0,909 0,482 0,242 0,201 0,027 0,505 0,323 1,346 0,507 0,038 2,614 0,429 0,614 3,024 2,106 2,030 1,654 0,781 0,177 1,141 2,047 1,793 0,264 0,074 1,662 0,428 0,489 1,031 2,632 0,960 0,447 0,953 1,404 0,102 0,206 0,942 1,992 0,777 1,385 0,234 1,706 0,601 0,234 1,193 1,235 1,509 1,588 0,399 0,035 0,217								_
1,598 3,733 0,929 0,058 0,558 0,006 1,023 0,024 1,006 3,482 0,269 1,324 0,693 1,493 0,072 0,434 0,021 2,297 0,758 0,517 2,628 1,425 0,909 0,482 0,242 0,201 0,027 0,505 0,323 1,346 0,507 0,038 2,614 0,429 0,614 3,024 2,106 2,030 1,654 0,781 0,177 1,141 2,047 1,793 0,264 0,074 1,662 0,428 0,489 1,031 2,632 0,960 0,447 0,953 1,404 0,102 0,206 0,942 1,992 0,777 1,385 0,234 1,706 0,601 0,234 1,193 1,235 1,509 1,588 0,399 0,035 0,217 0,305 1,149 0,154 1,666 0,013 1,193 1,657 0,914								
1,006 3,482 0,269 1,324 0,693 1,493 0,072 0,434 0,021 2,297 0,758 0,517 2,628 1,425 0,909 0,482 0,242 0,201 0,027 0,505 0,323 1,346 0,507 0,038 2,614 0,429 0,614 3,024 2,106 2,030 1,654 0,781 0,177 1,141 2,047 1,793 0,264 0,074 1,662 0,428 0,489 1,031 2,632 0,960 0,447 0,953 1,404 0,102 0,206 0,942 1,992 0,777 1,385 0,234 1,706 0,601 0,234 1,193 1,235 1,509 1,588 0,399 0,035 0,217 0,305 1,149 0,154 1,666 0,013 1,193 1,657 0,914 1,013 0,149 1,397 2,596 0,830 0,241 1,005 0,031	0,564			3,326		0,457	0,397	0,722
0,021 2,297 0,758 0,517 2,628 1,425 0,909 0,482 0,242 0,201 0,027 0,505 0,323 1,346 0,507 0,038 2,614 0,429 0,614 3,024 2,106 2,030 1,654 0,781 0,177 1,141 2,047 1,793 0,264 0,074 1,662 0,428 0,489 1,031 2,632 0,960 0,447 0,953 1,404 0,102 0,206 0,942 1,992 0,777 1,385 0,234 1,706 0,601 0,234 1,193 1,235 1,509 1,588 0,399 0,035 0,217 0,305 1,149 0,154 1,666 0,013 1,193 1,657 0,914 1,013 0,149 1,397 2,596 0,830 0,241 1,005 0,031 0,332 0,522 0,847 1,148 0,263 0,152 0,934 0,615	1,598		0,929		0,558		1,023	
0,242 0,201 0,027 0,505 0,323 1,346 0,507 0,038 2,614 0,429 0,614 3,024 2,106 2,030 1,654 0,781 0,177 1,141 2,047 1,793 0,264 0,074 1,662 0,428 0,489 1,031 2,632 0,960 0,447 0,953 1,404 0,102 0,206 0,942 1,992 0,777 1,385 0,234 1,706 0,601 0,234 1,193 1,235 1,509 1,588 0,399 0,035 0,217 0,305 1,149 0,154 1,666 0,013 1,193 1,657 0,914 1,013 0,149 1,397 2,596 0,830 0,241 1,005 0,931 0,332 0,522 0,847 1,148 0,263 0,152 0,934 0,615 0,397 0,368 0,624 3,073 1,242 0,867 0,194 0,682								
2,614 0,429 0,614 3,024 2,106 2,030 1,654 0,781 0,177 1,141 2,047 1,793 0,264 0,074 1,662 0,428 0,489 1,031 2,632 0,960 0,447 0,953 1,404 0,102 0,206 0,942 1,992 0,777 1,385 0,234 1,706 0,601 0,234 1,193 1,235 1,509 1,588 0,399 0,035 0,217 0,305 1,149 0,154 1,666 0,013 1,193 1,657 0,914 1,013 0,149 1,397 2,596 0,830 0,241 1,005 0,031 0,332 0,522 0,847 1,148 0,263 0,152 0,934 0,615 0,397 0,368 0,624 3,073 1,242 0,867 0,194 0,682 0,960 0,218 0,944 0,315 1,853 0,151 0,195 0,237	0,021	2,297	0,758	0,517	2,628		0,909	0,482
0,177 1,141 2,047 1,793 0,264 0,074 1,662 0,428 0,489 1,031 2,632 0,960 0,447 0,953 1,404 0,102 0,206 0,942 1,992 0,777 1,385 0,234 1,706 0,601 0,234 1,193 1,235 1,509 1,588 0,399 0,035 0,217 0,305 1,149 0,154 1,666 0,013 1,193 1,657 0,914 1,013 0,149 1,397 2,596 0,830 0,241 1,005 0,031 0,332 0,522 0,847 1,148 0,263 0,152 0,934 0,615 0,397 0,368 0,624 3,073 1,242 0,867 0,194 0,682 0,960 0,218 0,944 0,315 1,853 0,151 0,195 0,237 0,915 1,099 0,749 0,373 0,665 0,140 1,667 1,809		0,201	0,027	0,505	0,323	1,346	0,507	0,038
0,489 1,031 2,632 0,960 0,447 0,953 1,404 0,102 0,206 0,942 1,992 0,777 1,385 0,234 1,706 0,601 0,234 1,193 1,235 1,509 1,588 0,399 0,035 0,217 0,305 1,149 0,154 1,666 0,013 1,193 1,657 0,914 1,013 0,149 1,397 2,596 0,830 0,241 1,005 0,031 0,332 0,522 0,847 1,148 0,263 0,152 0,934 0,615 0,397 0,368 0,624 3,073 1,242 0,867 0,194 0,682 0,960 0,218 0,944 0,315 1,853 0,151 0,195 0,237 0,915 1,099 0,749 0,373 0,665 0,140 1,667 1,809 2,126 0,511 0,974 1,064 1,158 1,196 0,061 0,837	2,614	0,429	0,614	3,024	2,106	2,030	1,654	
0,206 0,942 1,992 0,777 1,385 0,234 1,706 0,601 0,234 1,193 1,235 1,509 1,588 0,399 0,035 0,217 0,305 1,149 0,154 1,666 0,013 1,193 1,657 0,914 1,013 0,149 1,397 2,596 0,830 0,241 1,005 0,031 0,332 0,522 0,847 1,148 0,263 0,152 0,934 0,615 0,397 0,368 0,624 3,073 1,242 0,867 0,194 0,682 0,960 0,218 0,944 0,315 1,853 0,151 0,195 0,237 0,915 1,099 0,749 0,373 0,665 0,140 1,667 1,809 2,126 0,511 0,974 1,064 1,158 1,196 0,061 0,837 0,463 1,206 0,649 0,227 0,079 1,080 0,548 0,290	0,177	1,141	2,047	1,793	0,264	0,074	1,662	0,428
0,234 1,193 1,235 1,509 1,588 0,399 0,035 0,217 0,305 1,149 0,154 1,666 0,013 1,193 1,657 0,914 1,013 0,149 1,397 2,596 0,830 0,241 1,005 0,031 0,332 0,522 0,847 1,148 0,263 0,152 0,934 0,615 0,397 0,368 0,624 3,073 1,242 0,867 0,194 0,682 0,960 0,218 0,944 0,315 1,853 0,151 0,195 0,237 0,915 1,099 0,749 0,373 0,665 0,140 1,667 1,809 2,126 0,511 0,974 1,064 1,158 1,196 0,061 0,837 0,463 1,206 0,649 0,227 0,079 1,080 0,548 0,290 0,382 1,036 1,121 0,349 1,933 0,404 0,171 0,213	0,489	1,031	2,632	0,960	0,447	0,953	1,404	0,102
0,305 1,149 0,154 1,666 0,013 1,193 1,657 0,914 1,013 0,149 1,397 2,596 0,830 0,241 1,005 0,031 0,332 0,522 0,847 1,148 0,263 0,152 0,934 0,615 0,397 0,368 0,624 3,073 1,242 0,867 0,194 0,682 0,960 0,218 0,944 0,315 1,853 0,151 0,195 0,237 0,915 1,099 0,749 0,373 0,665 0,140 1,667 1,809 2,126 0,511 0,974 1,064 1,158 1,196 0,061 0,837 0,463 1,206 0,649 0,227 0,079 1,080 0,548 0,290 0,382 1,036 1,121 0,349 1,933 0,404 0,171 0,213 0,773 0,117 0,401 0,605 0,022 1,332 0,004 0,394	0,206	0,942	1,992	0,777	1,385	0,234	1,706	0,601
1,013 0,149 1,397 2,596 0,830 0,241 1,005 0,031 0,332 0,522 0,847 1,148 0,263 0,152 0,934 0,615 0,397 0,368 0,624 3,073 1,242 0,867 0,194 0,682 0,960 0,218 0,944 0,315 1,853 0,151 0,195 0,237 0,915 1,099 0,749 0,373 0,665 0,140 1,667 1,809 2,126 0,511 0,974 1,064 1,158 1,196 0,061 0,837 0,463 1,206 0,649 0,227 0,079 1,080 0,548 0,290 0,382 1,036 1,121 0,349 1,933 0,404 0,171 0,213 0,773 0,117 0,401 0,605 0,022 1,332 0,004 0,394 1,646 1,529 0,216 0,007 0,091 0,450 0,126 0,149	0,234	1,193	1,235	1,509	1,588	0,399	0,035	0,217
0,332 0,522 0,847 1,148 0,263 0,152 0,934 0,615 0,397 0,368 0,624 3,073 1,242 0,867 0,194 0,682 0,960 0,218 0,944 0,315 1,853 0,151 0,195 0,237 0,915 1,099 0,749 0,373 0,665 0,140 1,667 1,809 2,126 0,511 0,974 1,064 1,158 1,196 0,061 0,837 0,463 1,206 0,649 0,227 0,079 1,080 0,548 0,290 0,382 1,036 1,121 0,349 1,933 0,404 0,171 0,213 0,773 0,117 0,401 0,605 0,022 1,332 0,004 0,394 1,143 1,414 0,172 1,915 0,191 0,007 0,461 0,490 1,646 1,529 0,216 0,007 0,091 0,450 0,126 0,149	0,305	1,149	0,154	1,666	0,013	1,193	1,657	0,914
0,397 0,368 0,624 3,073 1,242 0,867 0,194 0,682 0,960 0,218 0,944 0,315 1,853 0,151 0,195 0,237 0,915 1,099 0,749 0,373 0,665 0,140 1,667 1,809 2,126 0,511 0,974 1,064 1,158 1,196 0,061 0,837 0,463 1,206 0,649 0,227 0,079 1,080 0,548 0,290 0,382 1,036 1,121 0,349 1,933 0,404 0,171 0,213 0,773 0,117 0,401 0,605 0,022 1,332 0,004 0,394 1,143 1,414 0,172 1,915 0,191 0,007 0,461 0,490 1,646 1,529 0,216 0,007 0,091 0,450 0,126 0,149 1,377 4,244 0,303 0,734 2,541 0,280 0,222 1,041	1,013	0,149	1,397	2,596	0,830	0,241	1,005	0,031
0,960 0,218 0,944 0,315 1,853 0,151 0,195 0,237 0,915 1,099 0,749 0,373 0,665 0,140 1,667 1,809 2,126 0,511 0,974 1,064 1,158 1,196 0,061 0,837 0,463 1,206 0,649 0,227 0,079 1,080 0,548 0,290 0,382 1,036 1,121 0,349 1,933 0,404 0,171 0,213 0,773 0,117 0,401 0,605 0,022 1,332 0,004 0,394 1,143 1,414 0,172 1,915 0,191 0,007 0,461 0,490 1,646 1,529 0,216 0,007 0,091 0,450 0,126 0,149 1,377 4,244 0,303 0,734 2,541 0,280 0,222 1,041 0,180 0,366 2,130 0,698 1,416 0,383 3,146 0,242	0,332	0,522	0,847	1,148	0,263	0,152	0,934	0,615
0,915 1,099 0,749 0,373 0,665 0,140 1,667 1,809 2,126 0,511 0,974 1,064 1,158 1,196 0,061 0,837 0,463 1,206 0,649 0,227 0,079 1,080 0,548 0,290 0,382 1,036 1,121 0,349 1,933 0,404 0,171 0,213 0,773 0,117 0,401 0,605 0,022 1,332 0,004 0,394 1,143 1,414 0,172 1,915 0,191 0,007 0,461 0,490 1,646 1,529 0,216 0,007 0,091 0,450 0,126 0,149 1,377 4,244 0,303 0,734 2,541 0,280 0,222 1,041 0,180 0,366 2,130 0,698 1,416 0,383 3,146 0,242 2,584 3,310 2,007 0,173 0,567 0,909 0,245 0,727	0,397	0,368	0,624	3,073	1,242	0,867	0,194	0,682
2,126 0,511 0,974 1,064 1,158 1,196 0,061 0,837 0,463 1,206 0,649 0,227 0,079 1,080 0,548 0,290 0,382 1,036 1,121 0,349 1,933 0,404 0,171 0,213 0,773 0,117 0,401 0,605 0,022 1,332 0,004 0,394 1,143 1,414 0,172 1,915 0,191 0,007 0,461 0,490 1,646 1,529 0,216 0,007 0,091 0,450 0,126 0,149 1,377 4,244 0,303 0,734 2,541 0,280 0,222 1,041 0,180 0,366 2,130 0,698 1,416 0,383 3,146 0,242 2,584 3,310 2,007 0,173 0,567 0,909 0,245 0,727 0,691 1,062 0,896 0,184 0,023 0,293 0,797 2,189	0,960	0,218	0,944	0,315	1,853	0,151	0,195	0,237
0,463 1,206 0,649 0,227 0,079 1,080 0,548 0,290 0,382 1,036 1,121 0,349 1,933 0,404 0,171 0,213 0,773 0,117 0,401 0,605 0,022 1,332 0,004 0,394 1,143 1,414 0,172 1,915 0,191 0,007 0,461 0,490 1,646 1,529 0,216 0,007 0,091 0,450 0,126 0,149 1,377 4,244 0,303 0,734 2,541 0,280 0,222 1,041 0,180 0,366 2,130 0,698 1,416 0,383 3,146 0,242 2,584 3,310 2,007 0,173 0,567 0,909 0,245 0,727 0,691 1,062 0,896 0,184 0,023 0,293 0,797 2,189 1,654 0,144 3,407 0,201 1,628 0,607 2,511 1,595	0,915	1,099	0,749	0,373	0,665	0,140	1,667	1,809
0,463 1,206 0,649 0,227 0,079 1,080 0,548 0,290 0,382 1,036 1,121 0,349 1,933 0,404 0,171 0,213 0,773 0,117 0,401 0,605 0,022 1,332 0,004 0,394 1,143 1,414 0,172 1,915 0,191 0,007 0,461 0,490 1,646 1,529 0,216 0,007 0,091 0,450 0,126 0,149 1,377 4,244 0,303 0,734 2,541 0,280 0,222 1,041 0,180 0,366 2,130 0,698 1,416 0,383 3,146 0,242 2,584 3,310 2,007 0,173 0,567 0,909 0,245 0,727 0,691 1,062 0,896 0,184 0,023 0,293 0,797 2,189 1,654 0,144 3,407 0,201 1,628 0,607 2,511 1,595	2,126	0,511	0,974	1,064	1,158	1,196	0,061	0,837
0,773 0,117 0,401 0,605 0,022 1,332 0,004 0,394 1,143 1,414 0,172 1,915 0,191 0,007 0,461 0,490 1,646 1,529 0,216 0,007 0,091 0,450 0,126 0,149 1,377 4,244 0,303 0,734 2,541 0,280 0,222 1,041 0,180 0,366 2,130 0,698 1,416 0,383 3,146 0,242 2,584 3,310 2,007 0,173 0,567 0,909 0,245 0,727 0,691 1,062 0,896 0,184 0,023 0,293 0,797 2,189 1,654 0,144 3,407 0,201 1,628 0,607 2,511 1,595	0,463	1,206	0,649	0,227	0,079	1,080	0,548	0,290
1,143 1,414 0,172 1,915 0,191 0,007 0,461 0,490 1,646 1,529 0,216 0,007 0,091 0,450 0,126 0,149 1,377 4,244 0,303 0,734 2,541 0,280 0,222 1,041 0,180 0,366 2,130 0,698 1,416 0,383 3,146 0,242 2,584 3,310 2,007 0,173 0,567 0,909 0,245 0,727 0,691 1,062 0,896 0,184 0,023 0,293 0,797 2,189 1,654 0,144 3,407 0,201 1,628 0,607 2,511 1,595	0,382	1,036	1,121	0,349	1,933	0,404	0,171	0,213
1,143 1,414 0,172 1,915 0,191 0,007 0,461 0,490 1,646 1,529 0,216 0,007 0,091 0,450 0,126 0,149 1,377 4,244 0,303 0,734 2,541 0,280 0,222 1,041 0,180 0,366 2,130 0,698 1,416 0,383 3,146 0,242 2,584 3,310 2,007 0,173 0,567 0,909 0,245 0,727 0,691 1,062 0,896 0,184 0,023 0,293 0,797 2,189 1,654 0,144 3,407 0,201 1,628 0,607 2,511 1,595	0,773	0,117	0,401	0,605	0,022	1,332	0,004	0,394
1,377 4,244 0,303 0,734 2,541 0,280 0,222 1,041 0,180 0,366 2,130 0,698 1,416 0,383 3,146 0,242 2,584 3,310 2,007 0,173 0,567 0,909 0,245 0,727 0,691 1,062 0,896 0,184 0,023 0,293 0,797 2,189 1,654 0,144 3,407 0,201 1,628 0,607 2,511 1,595		1,414	0,172	1,915	0,191	0,007	0,461	0,490
1,377 4,244 0,303 0,734 2,541 0,280 0,222 1,041 0,180 0,366 2,130 0,698 1,416 0,383 3,146 0,242 2,584 3,310 2,007 0,173 0,567 0,909 0,245 0,727 0,691 1,062 0,896 0,184 0,023 0,293 0,797 2,189 1,654 0,144 3,407 0,201 1,628 0,607 2,511 1,595	1,646		0,216	0,007	0,091	0,450	0,126	0,149
0,180 0,366 2,130 0,698 1,416 0,383 3,146 0,242 2,584 3,310 2,007 0,173 0,567 0,909 0,245 0,727 0,691 1,062 0,896 0,184 0,023 0,293 0,797 2,189 1,654 0,144 3,407 0,201 1,628 0,607 2,511 1,595		4,244		_	2,541			1,041
2,584 3,310 2,007 0,173 0,567 0,909 0,245 0,727 0,691 1,062 0,896 0,184 0,023 0,293 0,797 2,189 1,654 0,144 3,407 0,201 1,628 0,607 2,511 1,595	0,180	0,366	_	_			,	
0,691 1,062 0,896 0,184 0,023 0,293 0,797 2,189 1,654 0,144 3,407 0,201 1,628 0,607 2,511 1,595	2,584			_				
1,654 0,144 3,407 0,201 1,628 0,607 2,511 1,595								
							,	

Вариант № 7

-1,254	0,407	-1,267	-0,142	-0,797	0,431	1,260	-0,233
-1,182	0,228	-0,698	0,352	-0,150	0,804	2,019	-0,167
-1,014	-0,779	-0,747	-0,263	-0,154	-0,907	-0,977	1,394
0,475	-0,909	-0,971	2,439	0,852	1,442	0,151	-0,688
-0,618	1,423	-0,052	-1,240	1,404	-0,129	-1,841	-1,671
0,682	-0,325	0,203	-0,124	-0,086	1,278	-0,323	-0,942
-0,777	0,179	-1,141	0,840	-0,333	-0,569	-0,792	-1,011
0,729	-0,857	0,861	0,578	0,825	-0,023	-0,866	-0,515
-1,202	0,651	-0,975	0,892	0,423	0,437	-1,291	-0,214
-0,096	-1,340	2,043	-1,542	1,374	-0,796	0,063	0,006
-1,604	0,004	-1,517	-1,171	0,463	-1,449	0,200	2,134
0,497	0,391	-1,212	-0,569	-0,650	0,623	-0,998	0,036
1,305	-1,598	0,275	-1,433	-0,427	0,561	0,221	-0,551
-1,204	1,497	0,135	1,412	-0,457	-0,104	0,490	-1,012
2,816	-0,991	-1,563	0,018	0,545	-1,235	0,311	1,143
0,090	-0,855	0,123	0,312	-1,259	-0,311	-1,934	2,278
0,217	0,989	2,011	1,097	1,167	-1,809	-0,991	0,632
0,670	-1,502	-0,208	-1,952	-0,266	0,666	1,270	0,318
-1,203	-1,494	1,034	-1,282	0,227	-0,616	0,854	-0,672
-0,177	-2,280	-1,821	1,533	0,309	0,491	1,640	0,524
1,845	-1,276	1,546	-1,205	0,516	-1,994	0,384	-0,354
0,838	0,976	0,325	0,681	0,258	0,827	0,716	1,309
1,651	-0,192	0,585	0,242	1,822	-0,278	-0,860	0,001
2,006	-0,572	0,268	-0,594	-0,632	-0,662	0,037	-1,914
-1,498	-1,080	1,192	-0,026	-0,067	0,196	-2,340	-0,195
1,614	-1,758	1,048	0,622	-0,571	0,690	0,141	0,271
0,690	1,226	-1,596	0,903	0,360	-0,909	0,483	0,474
-0,047	0,581	0,703	0,244	0,229	0,546	0,568	-0,723
-0,499	-0,110	1,262	0,945	-0,269	1,073	-0,851	1,421
0,310	-0,390	0,273	0,184	-1,442	-0,431	0,856	0,519
0,227	-0,926	-0,197	0,013	1,996	-0,196	0,195	-0,940
-1,025	0,492	0,796	-0,642	0,205	1,424	-0,454	0,410
0,155	-1,055	1,068	1,022	0,223	-2,050	0,162	-0,194
0,238	1,391	0,311	1,680	-0,041	-1,224	-1,825	-0,636
-0,426	0,665	0,094	-1,115	-0,799	-0,827	0,589	-0,927

Вариант № 8

-1,575	0,720	-1,055	0,269	3,070	-2,784	0,512	1,076
-0,048	-2,662	1,215	-0,332	2,092	0,353	1,315	-0,599
-0,118	0,089	0,725	-0,436	-0,962	0,886	-0,449	1,431
0,249	-0,560	0,850	0,014	-1,375	1,862	-2,026	-1,095
0,749	1,120	0,426	-2,363	0,072	-0,408	0,303	-0,077
2,041	1,919	0,352	-1,185	1,888	3,449	0,217	-1,851
-0,855	-0,409	0,290	2,094	2,208	0,666	-1,039	-0,793
-0,955	0,553	-0,235	-0,721	-0,449	1,443	-0,162	-0,214
-0,212	1,184	-0,738	1,840	1,244	2,638	-1,683	-1,362
1,481	1,025	-0,869	0,210	0,179	0,975	-1,472	-0,126
-0,305	-0,521	-0,417	2,282	0,107	0,739	-2,135	0,871
-1,335	-0,886	-0,407	0,414	-1,958	0,576	-0,918	-1,133
1,385	0,157	0,197	0,024	0,762	-1,002	0,398	-1,337
-1,385	1,601	1,194	-0,205	-0,493	0,977	-0,108	0,521
0,776	-1,002	0,046	1,572	-0,321	-0,753	2,108	0,168
-1,650	-0,134	1,778	0,461	1,043	-1,493	-0,649	1,991
1,485	1,683	1,374	-1,969	-0,075	-1,084	1,389	0,342
-0,712	0,690	0,286	0,115	-1,983	0,497	0,253	1,533
0,530	1,791	-0,176	-0,792	0,169	0,935	2,134	-2,560
0,646	-0,147	-1,037	-1,335	1,197	-2,222	-1,211	0,702
0,430	0,604	-0,162	-1,594	0,178	-1,665	-0,565	1,818
0,543	0,835	2,250	-0,686	1,551	0,979	1,053	-0,047
0,403	0,501	0,360	-1,168	-0,280	0,646	0,486	-0,368
-0,704	1,618	0,292	1,969	1,048	-0,167	-1,161	0,843
-0,334	-0,535	0,333	0,392	-1,437	-0,201	0,379	0,137
0,523	0,182	1,931	2,134	-0,545	0,568	-0,662	-1,673
-1,462	-0,126	0,898	1,890	-1,325	0,924	-0,292	-0,612
0,143	-2,194	-0,491	0,817	-0,160	0,616	0,944	-1,641
2,836	0,809	-0,099	1,033	-1,275	1,452	-0,935	0,041
0,673	1,273	-1,429	1,221	0,871	-2,593	-0,150	-1,904
0,778	0,251	-1,518	-0,075	1,779	1,013	1,243	-0,749
0,868	0,861	0,258	1,053	1,216	-2,829	-1,150	-2,007
0,382	-0,519	-1,114	0,673	1,007	1,438	-0,864	-0,326
-0,863	0,052	1,315	-0,883	0,643	0,639	-2,566	-1,494
1,333	-0,222	-1,044	-1,220	-0,524	1,257	-2,263	1,765

Вариант № 9

1,280	1,519	-0,273	-0,124	0,204	1,099	-0,366	2,680
-0,636	-0,775	0,000	-1,395	0,458	-0,909	0,004	0,705
0,899	-0,841	-1,557	-0,400	1,616	-1,446	-0,872	1,272
1,654	0,070	-0,514	0,073	-0,028	-1,237	0,761	-1,483
0,847	0,557	2,611	0,686	2,469	1,241	0,110	-0,373
-0,055	0,269	1,148	3,152	1,499	2,563	0,630	-1,561
-0,932	-1,292	0,278	1,832	0,107	2,755	0,828	0,641
1,784	2,422	1,432	-0,661	1,185	0,491	0,259	0,969
-0,489	-1,390	-1,309	0,535	3,878	-0,906	-0,472	1,210
1,518	1,923	2,785	-0,668	2,378	0,541	0,293	1,803
0,122	-0,740	0,297	2,692	-0,871	-0,544	1,658	0,633
0,693	0,170	2,855	-0,574	0,024	-0,088	1,380	0,238
0,048	0,854	0,342	0,998	1,207	1,035	0,664	1,805
-1,543	0,961	1,688	1,919	-2,530	-0,600	-0,633	0,371
3,236	-1,210	-2,326	1,352	0,258	1,031	1,994	1,623
-1,245	-0,309	0,530	1,908	-0,737	1,002	-0,299	0,298
0,433	-0,736	-1,661	1,250	-0,370	1,439	1,493	-0,616
1,937	0,158	-0,570	0,490	-0,849	-0,485	-0,572	0,518
0,385	-1,127	-0,016	0,589	-0,931	-0,544	-0,190	1,586
1,147	-1,042	0,833	-2,440	-0,722	0,536	0,395	1,526
-0,160	0,214	0,257	1,666	0,722	0,680	-1,210	0,325
-0,867	2,289	1,186	-0,983	0,594	0,061	0,850	-0,980
-0,856	1,083	0,403	-0,423	1,937	1,106	1,481	-0,302
1,042	-0,453	0,537	-0,042	1,644	0,088	1,439	0,696
-0,156	0,479	0,470	-0,980	0,059	0,333	-2,270	1,402
0,020	2,929	2,533	0,278	0,976	-0,986	1,609	-1,348
-0,112	-1,403	1,705	-0,108	-1,563	-0,844	-1,017	-0,067
1,216	1,833	1,219	1,075	1,935	2,434	0,807	-1,817
0,822	1,635	1,755	2,089	-0,784	-1,627	1,087	1,789
-1,026	2,454	-2,156	-0,154	0,670	0,347	-0,320	-0,212
-0,608	0,189	0,666	-0,492	3,343	-0,019	2,290	0,266
0,843	1,390	0,853	1,288	-0,673	0,749	1,274	0,362
-0,454	2,856	0,886	0,446	0,966	1,176	-1,562	3,062
-1,231	-1,162	-0,506	0,497	2,453	-0,363	-0,963	-0,797
4,031	-2,166	0,060	-1,199	1,432	0,356	0,977	1,073

Вариант № 10

0,491	1,244	2,566	2,518	-0,922	0,391	-1,550	0,609
-1,141	1,161	-0,443	0,673	1,127	-0,357	-2,698	-0,271
-0,071	-0,206	-0,418	2,989	0,924	-0,205	0,227	1,113
-0,072	0,499	1,752	2,057	1,767	0,876	1,705	1,822
1,423	-1,328	1,118	2,006	0,289	0,149	1,255	-1,246
1,616	1,245	-2,233	1,605	-0,537	2,516	3,435	2,946
0,149	1,990	0,725	0,759	0,799	2,316	-0,363	1,871
-0,901	-1,586	0,653	-0,792	0,442	1,526	-0,708	2,340
-0,918	0,863	1,053	0,434	-1,722	0,659	1,271	0,601
1,851	-2,581	-1,238	1,253	1,829	0,068	-0,922	0,542
-0,102	0,703	-0,446	2,220	0,254	-0,059	-0,941	1,984
-0,150	1,072	2,543	-0,173	2,050	0,306	-0,406	1,989
1,674	0,423	-1,121	3,405	-0,049	2,326	0,202	3,957
1,271	-0,812	1,648	1,321	3,431	1,803	-2,361	3,322
0,884	0,238	1,677	1,279	-1,603	-0,423	-2,400	-0,742
1,290	1,080	1,328	0,421	-2,103	1,524	0,416	-0,123
0,505	0,359	0,201	0,928	-0,785	0,357	3,655	1,426
1,583	-0,840	-0,967	2,217	3,374	1,630	0,824	1,293
-0,387	-0,299	-0,301	-0,358	-0,468	1,630	-0,434	-0,700
-0,076	0,142	3,913	1,396	0,088	2,985	-0,436	1,608
1,182	2,377	1,525	1,208	0,375	-2,241	-0,964	1,216
1,891	0,340	0,421	-0,853	-0,535	1,253	-0,062	1,361
1,690	-1,800	0,527	2,916	0,168	1,306	-2,436	-0,085
1,359	-0,034	-0,994	3,157	1,231	1,196	-1,255	-1,511
1,512	0,383	0,657	0,752	1,238	-2,464	-0,249	-0,167
0,003	0,535	-0,281	2,917	1,211	-0,221	0,588	0,032
1,023	1,340	1,966	-1,494	0,709	0,312	1,099	1,510
-0,500	0,958	0,012	2,212	1,731	0,463	0,966	2,627
0,599	-0,016	1,905	-3,935	-1,691	-1,203	1,007	-1,017
0,225	0,150	-0,066	0,933	1,217	-1,086	0,580	0,313
-0,683	0,428	0,524	1,119	-1,037	1,654	-1,123	1,891
2,554	0,924	0,837	-2,334	1,995	-0,107	-1,169	0,128
0,151	0,285	-0,826	1,855	-1,504	-0,654	-1,990	0,372
1,662	0,893	0,171	1,402	1,190	0,364	1,621	1,310
-0,422	1,069	0,505	-0,539	0,535	0,537	1,706	-2,435

СПИСОК РЕКОМЕНДУЕМОЙ ЛИТЕРАТУРЫ

Основная литература

- 1. Письменный, Д.Т. Конспект лекций по теории вероятностей, математической статистике и случайным процессам / Д.Т. Письменный. М.: Айрес-пресс, 2008. 287 с.
- 2. Вентцель, Е.С. Теория вероятностей / Е.С. Вентцель. М. : Высшая школа, 2006. 575 с.
- 3. Кремер, Н.Ш. Теория вероятностей / Н.Ш. Кремер. М. : Высшая школа, 2007. 174 с.
- 4. Гмурман, В.Е. Руководство к решению задач по теории вероятностей и математической статистике / В.Е. Гмурман. М. : Высшая школа, 2011.-400 с.
- 5. Гмурман, В.Е. Теория вероятностей и математическая статистика / В.Е. Гмурман. М.: Высшая школа, 2011. 480 с.

Дополнительная литература

- 6. Гусак, А.А. Справочное пособие к решению задач: теория вероятностей / А.А. Гусак. Минск : Тетра Системс, 1999. 288 с.
- 7. Калинина, В.Н. Математическая статистика / В.Н. Калинина, В.Ф. Панкин. М. : Высшая школа, 1998. 336 с.
- 8. Сборник задач по математике для втузов. В 3 ч. Ч. 3. Теория вероятностей и математическая статистика / под ред. А.В. Ефимова. М. : Наука, 1990.-400 с.
- 9. Слободской, М.И. Математическая статистика / М.И. Слободской, А.В. Ушаков. Томск: Офсетная лаборатория ТИСИ, 1987.-21 с.
- 10. Данко, П.Е. Высшая математика в упражнениях и задачах. В 2 ч. Ч. 2. / П.Е. Данко, А.Т. Попов, Т.Я. Кожевникова. М. : Высшая школа, 1986. 365 с.

ОГЛАВЛЕНИЕ

1. Введение	3
2. Краткие сведения из теории математической	3
статистики	
2.1 Основные свойства и характеристики выборки	3
2.2. Математические модели случайных явлений	6
2.3. Статистическая оценка параметров	
предполагаемого распределения	11
2.4. Статистическая проверка гипотезы	
о законе распределения генеральной совокупности	13
2. Цель и последовательность выполнения работы	16
3. Методические указания . Пример	16
Задание к примеру	28
Приложение 1. Таблица значений функции	
$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{0}^{x} e^{\frac{-z^{2}}{2}} dz$	29
Приложение 2. Значения χ^2 в зависимости от r и α	30
Приложение 3. Варианты индивидуальных заданий	31
Список рекомендуемой литературы	41
Оглавление	42