МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ

Д.Н.Яманов

ОСНОВЫ ЭЛЕКТРОДИНАМИКИ И РАСПРОСТРАНЕНИЕ РАДИОВОЛН

ПОСОБИЕ

к выполнению контрольной работы для студентов 3 курса специальности 201300 заочного обучения

МИНИСТЕРСТВО ТРАНСПОРТА РФ ГОСУДАРСТВЕННАЯ СЛУЖБА ГРАЖДАНСКОЙ АВИАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ

Кафедра радиотехнических устройств

Д.Н.Яманов

ОСНОВЫ ЭЛЕКТРОДИНАМИКИ И РАСПРОСТРАНЕНИЕ РАДИОВОЛН

ПОСОБИЕ

к выполнению контрольной работы для студентов 3 курса специальности 201300 заочного обучения

- --

ББК 6Ф2.19

Я 54

Рецензент д-р техн. наук, проф.А.И.Логвин Яманов Д.Н.

Основы электродинамики и распространение радиоволн: Пособие к выполнению контрольной работы. -М.: МГТУ Γ A, 2003. - 30 с.

Данное пособие издается в соответствии с учебной программой для студентов 3 курса специальности 201300 заочного обучения.

Рассмотрено и одобрено на заседаниях кафедры и методического совета факультета.

вводные указания к выполнению контрольной работы

Контрольная работа состоит из трех задач. Варианты заданий берутся из табл. 1 и 2. Задание выбирается в соответствии с двумя последними цифрами студенческого билета (XY).

В таблицах заданы для первой задачи: вид поляризации волны, значения угла падения θ , напряженности электрического поля E, частоты f, удельной объемной проводимости $^{\gamma}$; для второй задачи: форма сечения волновода и тип волны, напряженность поля E, длина линии l, полоса рабочих частот $^{\Delta f} = f_{\text{мин}} - f_{\text{макс}}$; для третьей задачи: форма и тип резонатора, поле E, относительная диэлектрическая

Нужные данные для расчета находятся из табл.1 и 2 следующим образом: из табл. 1 находятся данные в соответствии с предпоследней цифрой студенческого билета (X); из табл. 2 находятся данные в соответствии с последней цифрой студенческого билета (У). Например, N 72 (X=7,Y=2) должен использовать следующие данные для первой задачи: волна горизонтальной поляризации с углом падения θ =22°, с напряженностью электрического поля E=7·10⁻³ B/M, с частотой f=70 МГц, удельной объемной проводимостью f=8·10 МГц, удельной объемной проводимостью f=8·10 МГц, удельной объемной проводимостью f=1/1 м, полосой рабочих частот f=1/1 м, полосой рабочих

Расчеты по каждому пункту следует начинать с названия искомой величины. Затем выписать формулу, по которой эта величина определяется, и сделать последовательную числовую подстановку всех величин, входящих в эту формулу, в системе единиц СИ. После этого привести ответ с указанием размерности полученной величины.

Пособиями, кроме данного, при выполнении контрольной работы могут являться [1-5].

- --

Таблица 1

								.и.ца т	
Вариан т ХУ	Зада	ача N 1	Задача N 2		Задача N 3				
	Е,В/м	Υ ,1/0м⊕м	∆f,ГГц	Е,В/м	Е,В/м	R,CM	d ,см	B,CM	а,см
ОУ	10-4	106	15,15-19	85	200	28	20	10	20
1У	2⊕10-4	2⊕10 ⁷	11 - 12	20	100	26	23	12	25
2У	3⊕10-4	3⊕107	9 - 10	40	250	24	10	13	30
ЗУ	4⊕10-4	4⊕10 ⁷	8 - 9	30	150	22	31	5	10
4У	5⊕10-4	5⊕10 ⁷	7 – 8	65	300	20	22	4	9
5У	10-3	6⊕10 ⁷	4,5-5,2	50	120	18	44	6	12
6У	6⊕10-3	7⊕10 ⁷	4,7-5	45	170	15	12	8	14
7У	7⊕10-3	8⊕10 ⁷	3,8-4	30	80	12	10	10	15
8У	8⊕10-3	9⊕10 ⁷	3,1-3,5	20	70	10	20	12	24
9У	10-2	107	2,5-3	10	50	8	10	15	30

- --

Таблица 2

								Τċ	аблиц	a 2	
Bap	Вариант ХУ		XI	X2	Х3	X4	X5	Х6	X7	X8	х9
Задача № 1	f , МГц	90	85	70	60	50	45	35	30	25	15
	(°	120	170	220	270	32º	37º	420	470	57°	63°
	Поляризация	I	oendo	нталь	ная			вертикальная		I	
Задача № 2	Сечение	Г	рямоу	гольн	oe				круглое		
	Тип волны			H ₁₀					H ₁₁	E ₀ :	1
	<i>l</i> , м	0,8	1	1,1	1,2	1,3	2	2,4	2,3	3	3,5
Задача № 3	Форма	Γ	Іаралл	елепи	пед			Коаксиал ьный Цилиндр цилиндр		ндр	
						1.0		T (TEM) n=1	E0:	1.0
	Тип колебаний	H ₁	01		E_1	10		1 (11111) P-1	Δ0.	10

1.ЗАДАЧА 1.ПЛОСКИЕ ЭЛЕКТРОМАГНИТНЫЕ ВОЛНЫ

1.1 Задано

Плоская однородная волна частоты f МГц заданной поляризации c E B/м падает из воздуха c ε_0 = 8,8·10⁻¹² Φ/M и μ_0 = 12,5·10⁻⁷ Γ/M на сверхпроводящую плоскость (рис.1).

1.2 Требуется определить:

- 1. Нормальные H_x (или E_x) и касательные H_z (или E_z) (рис.1) к границе компоненты полей падающей волны. В скобках поля для вертикальной поляризации. Учесть связь между E и H.
- 2.У падающей волны: коэффициент фазы, фазовую и групповую скорости и длину волны вдоль направления падения волны: β , v_{ϕ} , v_{rp} , λ и по направлению вдоль z: β_{z} , $v_{\phi z}$, v_{rpz} , λ_{z} (рис. 2).
- 3. Модуль усредненного по времени вектора Умова-Пойнтинга падающей волны.
- 4.Эффективную поверхностную плотность тока δ_s на сверхпроводящей плоскости.
- 5.Удельное поверхностное сопротивление R_s отражающей поверхности при ее μ_0 = 12,5·10⁻⁷ $_{\Gamma/M}$, γ 1/Ом·м и глубину проникновения Δ °.
- 6.Полное сопротивление проводника с размерами $l_{\rm y}{=}50{\rm cm}$ и $l_{\rm z}{=}30{\rm cm}$.
- 7.Удельную p_t и полную мощность тепловых потерь P_T на отражающей поверхности с площадью $S=I_y\cdot I_z$.
- 8.Написать, при какой поляризации может иметь место явление полного преломления (т.е. отсутствует отраженная волна) и при каких условиях может наступить явление полного отражения (т.е. отсутствует преломленная волна) и определить угол Брюстера и критический угол падения, если ε_1 = 2, ε_2 = 1.

1.3. Методика решения задачи

1.3.1.При вертикальной поляризации(см. рис.1) нормальная к границе компонента поля $^{-E_x}$, касательные компоненты поля $^{-E_{z-N}}$ H_y = H_{nag} .

Электрическое и магнитное поля плоской однородной волны связаны между собой через волновое сопротивление . \cdot среды η

$$\dot{\eta} = \frac{\dot{E}}{\dot{H}} = \sqrt{\frac{\mu_a}{\varepsilon_a}}, \text{ OM,}$$

где μ_a = $\mu_0 \cdot \mu$ -абсолютная магнитная проницаемость среды;

 $\mu_{0=120\,\pi/c}$ — абсолютная магнитная проницаемость вакуума (магнитная постоянная);

с - скорость света в вакууме;

 μ_{-} относительная магнитная проницаемость среды;

 $arepsilon_a = arepsilon_0 \cdot arepsilon$ —абсолютная диэлектрическая проницаемость среды;

 $\varepsilon_0 = 1/(120\pi \cdot c)$ – абсолютная диэлектрическая проницаемость вакуума (электрическая постоянная);

 \mathcal{E} - относительная диэлектрическая проницаемость среды. Для воздуха или вакуума это сопротивление равно

$$\dot{\eta}_0 = \sqrt{\frac{\mu_0}{\varepsilon_0}} = 120\pi$$

и называется волновым сопротивлением свободного пространства.

Действующие значения нормальной и касательной к границе раздела напряженности электрического поля падающей волны равны:

$$E_{x nag} = E_{nag} \cdot \sin\theta ;$$

$$E_{z nag} = E_{nag} \cdot \cos\theta ;$$

$$H_{y nag} = \frac{E_{nag}}{\eta} ;$$

При горизонтальной поляризации векторы E и H на рис.1 следует поменять местами. Нормальной к границе компонентой поля будет H_x , касательными – H_z и E_y = $E_{\textit{пад}}$:

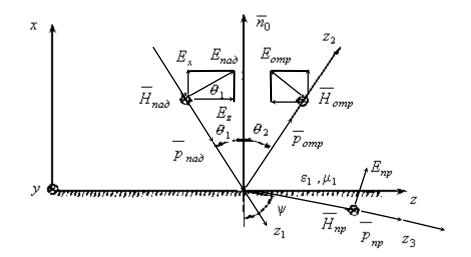


Рис.1. Отражение и преломление плоской однородной волны на плоской границе раздела двух сред при вертикальной поляризации

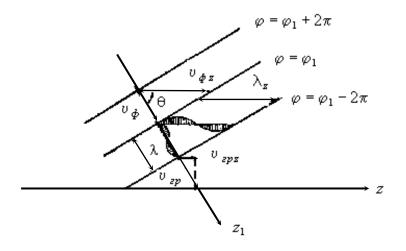


Рис.2. Фазовая, групповая скорости и длина волны

$$H_{nad} = \frac{E_{nad}}{\eta},$$

$$H_{xnad} = H_{nad} \cdot \sin\theta,$$

$$H_{znad} = H_{nad} \cdot \cos\theta$$

- 1.3.2 Коэффициент фазы, фазовая и групповая скорости, длина волны связаны друг с другом следующим образом (рис. 2):
 - 1) вдоль направления падения волны $^{\rm Z}$:

$$\beta = \omega \cdot \sqrt{\mu_a \cdot \varepsilon_a};$$

$$v_{\phi} = \frac{\omega}{\beta} = v_0;$$

$$v_{rp} = \frac{1}{d\beta} = v_0;$$

$$d\omega;$$

$$\lambda = \frac{2\pi}{\beta} = \frac{\upsilon_0}{f},$$

$$\upsilon_0 = \frac{1}{\sqrt{\varepsilon_a \cdot \mu_a}} = \frac{c}{\sqrt{\varepsilon \cdot \mu}}$$

 $v_0 = \frac{1}{\sqrt{\varepsilon_a \cdot \mu_a}} = \frac{c}{\sqrt{\varepsilon \cdot \mu}}$ – скорость света в данной среде; arepsilon и μ для воздуха равны 1;

2) по направлению вдоль оси z

$$\beta_z = \beta \cdot \sin\theta ;$$

$$v_{\phi z} = \frac{v_0}{\sin\theta} ;$$

$$v_{rpz} = v_0 \cdot \sin\theta$$
:

$$\lambda_z = \frac{\lambda}{\sin\theta} = \frac{v_{\phi z}}{f}$$

1.3.3. Модули усредненного по времени вектора Умова - Пойнтинга падающей волны при горизонтальной поляризации и при вертикальной поляризации одинаковы и равны

$$\frac{\Lambda}{p_{nad}} = |E_{nad} \cdot H_{nad}| = \frac{E_{nad}^2}{\eta}$$

- 1.3.4. Эффективная поверхностная плотность тока :
- 1) при горизонтальной поляризации

$$\delta_s = \delta_{sy} = H_t = 2H_{z \pi a A}$$

где H_{t} -касательная к границе раздела компонента поля;

2) при вертикальной поляризации

$$\delta_s = \delta_{sz} = H_t = 2H_{y \, \text{пад}}$$

1.3.5. Удельное поверхностное сопротивление отражающей поверхности и глубина проникновения:

$$R_s = \sqrt{\frac{\mu_a \cdot \omega}{2\gamma}} \; ;$$

$$\Delta^{\circ} = \sqrt{\frac{2}{\mu_a \cdot \omega \cdot \gamma}} .$$

- 1.3.6. Полное сопротивление проводника:
- 1) при горизонтальной поляризации

$$R = R_s \cdot \frac{I_y}{I_z};$$

2) при вертикальной поляризации:

$$R = R_s \cdot \frac{I_z}{I_y} .$$

- 1.3.7. Удельная мощность тепловых потерь:
- 1) при горизонтальной поляризации

$$p_t = \delta_{sy}^2 \cdot R_{s}$$

2) при вертикальной поляризации

$$p_t = \delta_{sz}^2 \cdot R_s$$

Полная мощность тепловых потерь на отражающей поверхности с площадью $S = I_y \cdot I_z$

$$P_t = p_t \cdot S$$

1.3.8. Угол Брюстера и критический угол падения:

$$tg\,\theta_{Bp} = \sqrt{\frac{\varepsilon_2}{\varepsilon_1}}$$

$$\sin \theta_{\kappa p} = \sqrt{\frac{\epsilon_2}{\epsilon_1}}$$

2.ЗАДАЧА 2. ЛИНИИ ПЕРЕДАЧИ ВЫСОКОЧАСТОТНОГО ДИАПАЗОНА

2.1 Задано

При расчетах необходимо пользоваться только системой единиц ${\tt CN}$.

В таблице вариантов задач заданы: форма поперечного сечения волновода и тип волны в нем, максимальная амплитуда напряженности электрического поля, длина линии передачи $^{\prime}$, полоса рабочих частот $^{\prime}$ волновод заполнен воздухом, удельная объемная проводимость стенок такая же, как и в задаче 1, пробивная напряженность $^{\prime}$ кв/мм, КБВ = 0,8. Для расчета допустимой длины линии - длительность импульса $^{\prime}$ частота заполнения $^{\prime}$ макс.

2.2. Требуется выполнить следующее:

1. Выбрать поперечные размеры прямоугольного волновода по заданным рабочим частотам и по минимальной частоте у круглого волновода. Стандарт на волноводы приведен в табл. 3.

- 2. Найти значения K_x , K_y , K_z (прямоугольный волновод) и $g_{E,\,H}$, K_z (круглый волновод) на $\mathbb{C}_{\text{ср}}$.
- 3.Используя найденные в $\pi.2$ значения K, записать выражения для полей заданного типа волны.
- 4. Найти поперечные размеры волновода при работе с высшими типами волн (при заданной рабочей волне H_{10} найти размеры для волны H_{20} ; при работе с волной H_{11} в круглом волноводе найти диаметр под волну E_{01} , а при работе с высшей волной E_{01} , найти диаметр для волны H_{11}). Показать, в каком случае поперечные размеры получаются меньше при работе с основной или с высшей волной.
- 5. Найти критическую частоту и критическую длину волны заданного типа.
- 6. Найти длину волны в волноводе, фазовую и групповую скорости на средней длине волны.
- 7. Найти максимально допустимую длину волновода, при которой не наблюдалось бы заметных искажений формы сигнала при работе короткими импульсами высокой частоты $f_{\text{макс}}$ и длительностью $\tau=10^{-7}$ с.
- 8. Рассчитать предельную мощность в волноводе на средней частоте при выбранных его стандартных размерах. Найти пробивную мощность при КСВ = 1,2, максимально допустимую мощность и сравнить ее с рабочей мощностью.
 - 9. Найти коэффициент затухания на средней частоте.
- 10.Найти отношение амплитуд поля (при x = const и y = const) и мощностей на расстоянии l м при рассчитанной величине коэффициента затухания.
- 11.Определить, на каком расстоянии амплитуды поля волн H_{20} в прямоугольном и H_{01} в круглом волноводах (исходя из задания), находящихся в закритическом режиме, уменьшаются не менее чем в сто раз, если частота равна средней частоте диапазона (надо предварительно найти $2 \, \mathrm{kp}$ волны H_{20} или H_{01}).
- 12. Найти КПД несогласованной с нагрузкой линии передачи при длине линии l и КБВ = 0,8.
 - 2.3. Методика решения задачи
- 2.3.1. Предварительно найдем длины волн рабочего диапазона:

$$\lambda_{\text{MMH}} = \frac{\upsilon_0}{f_{\text{MMKC}}}; \qquad \lambda_{\text{MAKC}} = \frac{\upsilon_0}{f_{\text{MMH}}},$$

 $v_0 = \frac{1}{\sqrt{\mu_a \cdot \varepsilon_a}} = c$ — так как волновод заполнен воздухом.

Условия для выбора размеров прямоугольного волновода для волны Н10:

0.9 ? MUH ? a ? 0.6 ? MARC; b ? a ? 2.

Условия для выбора диаметра круглого волновода с волной H₁₁:

0.77 Muh ? D ? 0.6 Marc, D = 2R.

Условия для выбора диаметра круглого волновода с волной E01:

0.96 ? MUH ? D ? 0.76 ? MAKC.

Удовлетворяющие этим условиям стандартные волноводы выбираются из табл 3.

Если в качестве рабочей волны задана не основная волна, а например, волна ${\rm E}_{01}$ в круглом волноводе, то не всегда удается подобрать стандартный волновод, и тогда размеры следует оставлять те, которые получены из расчета.

2.3.2. Для прямоугольного волновода значения Кх и Ку равны:

$$K_{x} = \frac{m\pi}{a} \; ; \qquad K_{y} = \frac{n\pi}{b} \; ,$$

где m, n - индексы, которые ставятся около названия волны (Hmn и Emn, где m = 0, 1, 2, 3...; n = 0, 1, 2, 3...).

Для круглого волновода значения $g_{\scriptscriptstyle E}$ и $g_{\scriptscriptstyle H}$ равны:

$$g_E = \frac{\beta_{mn}}{R}$$
; $g_H = \frac{\mu_{mn}}{R}$, где $m = 0, 1, 2, 3...$; $n = 0, 1, 2, 3...$;

 $oldsymbol{eta}_{mn}$ - корни функции Бесселя 1-го рода.

 $\mu_{\it mn}$ – корни производной функции Бесселя.

Ниже приводятся таблицы некоторых корней функции Бесселя 1- го рода $oldsymbol{eta}_{mn}$ и корней производной функции Бесселя μ_{mn} (табл. 4 и 5).

Таблица 4 $_{\text{Корни}}$ $oldsymbol{eta_{mn}}$ функции Бесселя

Таблица 5 $\text{Корни} \ \mu_{mn} \ \text{производной функции Бесселя}$

n	1	2	3
0	2,405	5,52	8,65
1	3,83	7,016	10,173
2	5,136	8,417	11,62

n	1	2	3
m			
0 1 2	3,83 1,841 3,054	7,016 5,331 6,706	10,173 8,530 9,969

Таблица 3

Прямоугольные волноводы					Круглые волноводы					
Обозн ачени е типа	Диапа часто для ос ого ти волны	т Сновн 1па	Внутренние размеры		Обо- зна- чение типа	Диа- метр, мм	часто	Критические частоты(ГГц) для волн типа		
волно	OT	до	ширина а, мм	высота b, мм	волно вода	IMM	H ₁₁	E01	H21	

- --

R26	2,17	3,30	86,3	43,18	C25	83 , 62	2,1	2,74	3 , 49
R32	2,60	3 , 95	72,14	34,04	C30	71,42	2,46	3,21	4,08
R40	3,22	4,90	58 , 17	29 , 08	C35	61,04	2,88	3,76	4,77
R48	3,94	5,99	47 , 55	22,149	C40	51 , 99	3,38	4,41	5,61
R70	5,38	8,17	34,85	15 , 8	C48	44,45	3 , 95	5,16	6,56
R84	6 , 57	9,99	28,5	12,62	C65	32,54	5 , 4	7,05	8,96
R100	8,2	12,5	22,86	10,16	C76	27 , 78	6 , 32	8,26	10,5
R120	9,84	15,0	19,05	9 , 52	C89	23,825	7 , 37	9,63	12,2
R140	11,9	18,0	15,0	7,9	C104	20,244	8,68	11,3	14,4
R180	14,5	22,0	12,954	6 , 477	C165	12,7	13,8	18,1	22,9

Технические данные прямоугольных и круглых волноводов (стандарт, принятый Международной электротехнической комиссей (МЭК))

Коэффициент фазы в волноводе

$$K_z = \sqrt{\omega_{cp}^2 \cdot \varepsilon_a \cdot \mu_a - K_{\kappa p}^2}$$

где $K_{\kappa\rho} = \sqrt{K_{\chi}^2 + K_{y}^2}$ — для прямоугольного волновода; $\varepsilon_a = \varepsilon_0$ и $\mu_a = \mu_0$ — если диэлектриком служит воздух; $K_{\kappa\rho} = g_{E,H}$ — для круглого волновода.

2.3.3. Для прямоугольного волновода из решения уравнений Максвелла с выполнением граничных условий на идеально проводящих стенках получаются решения для комплексных амплитуд поля волн типа H_{mn} :

$$\dot{H}_{z} = \dot{H}_{z_{0}} \cdot \cos(K_{x} \cdot x) \cdot \cos(K_{y} \cdot y) \cdot e^{-jK_{z}z};$$

$$\dot{H}_{x} = j \dot{H}_{z_{0}} \cdot \frac{K_{x} \cdot K_{z}}{K_{\kappa p}^{2}} \cdot \sin(K_{x} \cdot x) \cdot \cos(K_{y} \cdot y) \cdot e^{-jK_{z}z}$$

$$\dot{H}_{y} = j \dot{H}_{z_{0}} \cdot \frac{K_{y} \cdot K_{z}}{K_{\kappa p}^{2}} \cdot \cos(K_{x} \cdot x) \cdot \sin(K_{y} \cdot y) \cdot e^{-jK_{z}z}$$

$$\dot{E}_{x} = j \dot{H}_{z_{0}} \cdot \frac{\omega \cdot \mu_{a} \cdot K_{y}}{K_{\kappa p}^{2}} \cdot \cos(K_{x} \cdot x) \cdot \sin(K_{y} \cdot y) \cdot e^{-jK_{z}z}$$

$$\dot{E}_{y} = -j \dot{H}_{z_{0}} \cdot \frac{\omega \cdot \mu_{a} \cdot K_{x}}{K_{\kappa p}^{2}} \cdot \sin(K_{x} \cdot x) \cdot \cos(K_{y} \cdot y) \cdot e^{-jK_{z}z}$$

$$\dot{E}_{y} = -j \dot{H}_{z_{0}} \cdot \frac{\omega \cdot \mu_{a} \cdot K_{x}}{K_{\kappa p}^{2}} \cdot \sin(K_{x} \cdot x) \cdot \cos(K_{y} \cdot y) \cdot e^{-jK_{z}z}$$

где
$$\overset{\cdot}{H}_{z_0} = H_{z_m} \cdot e^{j\phi_0}$$
 ; $K_{\kappa\rho} = \omega_{\kappa\rho} \cdot \sqrt{\varepsilon_a \cdot \mu_a}$.

 $\phi_{0\,-\,}$ начальная фаза напряженности магнитного поля, рад; H_{z_m-} действительная амплитуда напряженности продольного магнитного поля, A/M;

 E_x , E_{y-} комплексные амплитуды напряженности электрического поля, В/м.

В круглом волноводе с радиусом R поле волн типа $^{E_{mn}}$:

$$\dot{E}_{z} = \dot{E}_{z_{0}} \cdot J_{m}(g_{E} \cdot r) \cdot \cos(ma) \cdot e^{-jK_{z}z};$$

$$\dot{E}_{r} = -j \cdot \frac{K_{z}}{g_{-}} \cdot \dot{E}_{z_{0}} \cdot J_{m} \cdot (g_{E} \cdot r) \cdot \cos(ma) \cdot e^{-jK_{z}z}$$

$$\dot{E}_{a} = j \cdot \frac{m \cdot K_{z}}{g_{E}^{2} \cdot r} \cdot \dot{E}_{z_{0}} \cdot J_{m} \cdot (g_{E} \cdot r) \cdot \sin(m\alpha) \cdot e^{-jK_{z}z}$$

$$\vdots$$

$$\dot{H}_{r} = -j \cdot \frac{m \cdot \omega \cdot \varepsilon_{a}}{g_{E}^{2} \cdot r} \cdot \dot{E}_{z_{0}} \cdot J_{m} \cdot (g_{E} \cdot r) \cdot \sin(m\alpha) \cdot e^{-jK_{z}z}$$

$$\vdots$$

$$\dot{H}_{a} = -j \cdot \frac{\omega \cdot \varepsilon_{a}}{g_{E}} \cdot \dot{E}_{z_{0}} \cdot J_{m} \cdot (g_{E} \cdot r) \cdot \cos(m\alpha) \cdot e^{-jK_{z}z}$$

и для волн типа H_{mn} :

$$\dot{H}_{z} = \dot{H}_{z_{0}} \cdot J_{m}(g_{H} \cdot r) \cdot \cos(m\alpha) \cdot e^{-jK_{z}z};$$

$$\dot{H}_{r} = -j \cdot \frac{K_{z}}{g_{H}} \cdot \dot{H}_{z_{0}} \cdot J_{m} \cdot (g_{H} \cdot r) \cdot \cos(m\alpha) \cdot e^{-jK_{z}z};$$

$$\dot{H}_{a} = j \cdot \frac{m \cdot K_{z}}{r \cdot g_{H}^{2}} \cdot \dot{H}_{z_{0}} \cdot J_{m} \cdot (g_{H} \cdot r) \cdot \sin(m\alpha) \cdot e^{-jK_{z}z};$$

$$\dot{E}_{r} = \frac{m \cdot \omega \cdot \mu_{a}}{r \cdot g_{H}^{2}} \cdot \dot{H}_{z_{0}} \cdot J_{m} \cdot (g_{H} \cdot r) \cdot \sin(m\alpha) \cdot e^{-jK_{z}z};$$

$$\dot{E}_{a} = j \cdot \frac{\omega \cdot \varepsilon_{a}}{g_{H}} \cdot \dot{H}_{z_{0}} \cdot J_{m} \cdot (g_{H} \cdot r) \cdot \cos(m\alpha) \cdot e^{-jK_{z}z};$$

2.3.4. Критическая длина волны в прямоугольном волноводе

$$\lambda_{\kappa\rho} = \frac{\upsilon_0}{f_{\kappa\rho}} = \frac{1}{f_{\kappa\rho} \cdot \sqrt{\varepsilon_a \cdot \mu_a}} = \frac{c}{f_{\kappa\rho} \cdot \sqrt{\varepsilon\mu}} = \frac{2\pi}{K_{\kappa\rho}} = \frac{2}{\sqrt{\left(\frac{m}{a}\right)^2 + \left(\frac{n}{b}\right)^2}}$$

где $K_{\kappa\rho} = 2\pi f_{\kappa\rho} \cdot \sqrt{\varepsilon_a \cdot \mu_a} = \omega_{\kappa\rho} \cdot \sqrt{\varepsilon_a \cdot \mu_a}$, $\omega_{\kappa\rho} = 2\pi \cdot f_{\kappa\rho}$.

Критические длины волн в круглом волноводе типа ${\cal E}_{mn}$

$$\lambda_{\kappa\rho\,E} = \frac{2\pi}{g_E} = \frac{2\pi R}{\beta_{mn}}$$

и волн типа Hmn

$$\lambda_{\kappa\rho H} = \frac{2\pi}{g_H} = \frac{2\pi R}{\mu_{mn}}$$

Приведенные выше выражения для $\mathbb{D}_{\kappa p}$ позволяют найти поперечные размеры прямоугольного волновода и диаметр (D = 2R) круглого волновода при работе с высшими типами волн.

2.3.5. В прямоугольном волноводе критические частоты волн типа H и E с одинаковыми сочетаниями индексов m и п одинаковы и равны

$$\omega_{\kappa p \, m n} = \frac{\sqrt{\left(\frac{m\pi}{a}\right)^2 + \left(\frac{n\pi}{b}\right)^2}}{\sqrt{\varepsilon_a \mu_a}} = \upsilon_0 \cdot \sqrt{\left(\frac{m\pi}{a}\right)^2 + \left(\frac{n\pi}{b}\right)^2}$$

$$u_0 = \frac{1}{\sqrt{arepsilon_a \cdot \mu_a}} = c$$
 где $u_0 = \frac{1}{\sqrt{arepsilon_a \cdot \mu_a}} = c$ в круглом волноводе критические частоты имеют ра

В круглом волноводе критические частоты имеют разные значения у волн типа Н и Е даже с одинаковыми индексами. Для волн типа E_{mn}

$$\omega_{\kappa p E_{mn}} = \frac{g_E}{\sqrt{\varepsilon_a \cdot \mu_a}} = \frac{\beta_{mn}}{R \cdot \sqrt{\varepsilon_a \cdot \mu_a}}$$

Для волн типа H_{mn}

$$\omega_{\kappa\rho H_{mn}} = \frac{g_H}{\sqrt{\varepsilon_a \cdot \mu_a}} = \frac{\mu_{mn}}{R \cdot \sqrt{\varepsilon_a \cdot \mu_a}}$$

2.3.6. Длина волны в волноводе, фазовая и групповая скорости вычисляются для прямоугольного и круглого волноводов по одинаковым формулам, но при соответствующих \mathbb{D}_{kp} :

$$\lambda_{B} = \frac{2\pi}{K_{z}} = \frac{2\pi}{\sqrt{K^{2} - K_{\kappa\rho}^{2}}} = \frac{2\pi}{K \cdot \sqrt{1 - \left(\frac{K_{\kappa\rho}}{K}\right)^{2}}} = \frac{\lambda_{0}}{\sqrt{\varepsilon - \left(\frac{\lambda_{0}}{\lambda_{\kappa\rho}}\right)^{2}}}$$

где $K = \sqrt{K_{\kappa\rho}^2 + K_z^2} = \sqrt{g_{E,H}^2 + K_z^2} = \omega_0 \cdot \sqrt{\varepsilon_a \mu_a}$;

 $\lambda_0 = \lambda_{cp_-}$ в соответствии с заданием ;

arepsilon=1 – в волноводе, заполненном воздухом;

$$\upsilon_{\phi} = \lambda_{B} f = \frac{\upsilon_{0}}{\sqrt{1 - \left(\frac{\lambda_{0}}{\lambda_{\kappa\rho}}\right)^{2}}} = \frac{\upsilon_{0}}{\sqrt{1 - \left(\frac{\omega_{\kappa\rho}}{\omega_{0}}\right)^{2}}} = \frac{c}{\sqrt{\varepsilon} \cdot \sqrt{1 - \left(\frac{\lambda_{0}}{\lambda_{\kappa\rho}}\right)^{2} \cdot \frac{1}{\varepsilon}}}$$

$$v_{rp} = v_0 \cdot \sqrt{1 - \left(\frac{\omega_{\kappa p}}{\omega_0}\right)^2} = v_0 \cdot \sqrt{1 - \left(\frac{\lambda_0}{\lambda_{\kappa p}}\right)^2}$$

где $\omega_0 = \omega_{cp}$.

2.3.7. Максимально допустимая длина волновода, при которой искажения еще невелики

$$L_{MAKC} \leq 1,5 \cdot 10^{8} \cdot \frac{\left[1 - \left(\frac{f_{KP}}{f_{MAKC}}\right)^{2}\right]^{3/2}}{f_{MAKC}(\Delta f / f_{MAKC})^{2} \cdot \left(f_{KP} / f_{MAKC}\right)^{2}}$$

где $\Delta f = \frac{2}{\tau}$ разность двух крайних частот спектра.

2.3.8. Предельная мощность в прямоугольном волноводе на средней частоте и волне типа H_{10} и H_{20}

$$P_{nped} = 6.63 \cdot 10^{-4} \cdot ab \cdot E_{npo6}^2 \cdot \sqrt{1 - \left(\frac{\lambda_{cp}}{\lambda_{\kappa p}}\right)^2}$$

Предельная мощность в круглом волноводе:

1) с волной типа H_{11}

$$P_{npeg} = 1,99 \cdot 10^{-3} \cdot R^2 \cdot E_{npoo}^2 \cdot \sqrt{1 - \left(\frac{\lambda_{cp}}{\lambda_{\kappa p}}\right)^2}$$

где E_{npo6} в В/м;

2) с волной *E*₀₁

$$P_{npe,q} = 1,125 \cdot 10^{-3} \cdot R^2 \cdot E_{npoo}^2 \cdot \sqrt{\left(\frac{\lambda_{\kappa p}}{\lambda_{cp}}\right)^2 - 1}$$

Пробивная мощность $P_{npoo} = P_{npeq} / \text{ КСВ}$, где КСВ – коэффициент стоячей волны.

Максимально допустимая мощность

$$P_{gon} = \frac{P_{npeg}}{3 \div 5}$$

Рабочая мощность (мощность, проходящая по волноводу)

$$P_{pa6} = \frac{P_{npo6}}{E_{npo6}^2} \cdot E_{pa6m}^2$$

где $E_{\it pa6m}_{\it -}$ амплитуда максимального значения электрического поля.

В задании именно это максимальное значение поля $E = E_{pa6m}$ и задано.

Должно выполняться условие

$$P_{pa6} << P_{gon}$$

2.3.9 Коэффициент затухания волн типа H_{10} и H_{20} в прямоугольном волноводе при воздушном заполнении равен

$$a = \frac{0.023R_s \left[\left(\frac{1}{b} \right) + \left(\frac{2}{a} \right) \cdot \left(\frac{\lambda_{cp}}{\lambda_{\kappa p}} \right)^2 \right]}{\sqrt{1 - \left(\frac{\lambda_{cp}}{\lambda_{\kappa p}} \right)^2}}$$
, дБ/м ,

где R_{s-} удельное поверхностное сопротивление

$$R_s = \sqrt{\frac{\mu_a \cdot \omega_{cp}}{2\gamma}} = \frac{34.5}{\sqrt{\lambda_{cp}\gamma}}$$

где \mathbb{C} - удельная объемная проводимость стенок (такая же, как в задаче 1).

Коэффициенты затухания в круглом волноводе равны у волн H_{11}

$$\alpha = \frac{0,023 \cdot R_s \left[\left(\frac{\lambda_{cp}}{\lambda_{\kappa p}} \right)^2 + 0,416 \right]}{R \sqrt{1 - \left(\frac{\lambda_{cp}}{\lambda_{\kappa p}} \right)^2}}, \quad \text{AB/M} ,$$

и у волн E_{01}

$$a = \frac{0.023 \cdot R_s}{R \sqrt{1 - \left(\frac{\lambda_{cp}}{\lambda_{\kappa p}}\right)^2}}, \quad \text{AB/M} ,$$

где R - внутренний радиус волновода.

2.3.10 Отношение амплитуд поля и отношение мощностей можно найти из следующей формулы

$$a = \frac{20}{I} \cdot \lg \frac{E_m(z)}{E_m(z+I)} = \frac{10}{I} \lg \frac{P(z)}{P(z+I)}$$

2.3.11 Расстояние Δz , на котором поле волны H_{20} (или H_{01}), находящейся в закритическом режиме, уменьшается в 100 раз на средней частоте диапазона, находится так :

$$\frac{E_m(z)}{E_m(z+I)} = 100 = e^{K_z' \Delta z}$$

In 100= 2,3 lg 100=
$$K_z' \Delta z$$

Критическая длина волны типа H_{20} при выбранных размерах прямоугольного волновода

$$\lambda_{\kappa p} = \frac{2}{\sqrt{\left(\frac{m}{a}\right)^2 + \left(\frac{n}{b}\right)^2}} = a$$

Критическая длина волны типа H_{01} в круглом волноводе

$$\lambda_{\kappa\rho H} = \frac{2\pi}{g_H} = \frac{2\pi R}{\mu_{mn}} = \frac{2\pi R}{\mu_{01}}$$

Коэффициент закритического затухания

$$K'_{z} = \sqrt{K_{\kappa\rho}^{2} - K^{2}} = K_{\sqrt{\omega_{\kappa\rho}}} \left[\frac{\omega_{\kappa\rho}}{\omega_{c\rho}} \right]^{2} - 1 = 2\pi \sqrt{\varepsilon_{a}\mu_{a}} \cdot \sqrt{f^{2}_{\kappa\rho} - f_{c\rho}^{2}} = 2\pi \sqrt{\frac{\lambda_{c\rho}^{2} - \varepsilon \lambda_{\kappa\rho}^{2}}{\lambda_{c\rho}\lambda_{\kappa\rho}}}$$

где ε =1 – для воздуха.

Откуда расстояние, на котором поле уменьшится в раз, равно

$$\Delta z = \frac{4,6}{K'_z}$$

2.3.12. Коэффициент полезного действия несогласованной с нагрузкой линии передачи

кпд =
$$\left(1 - \left|\dot{\Gamma}\right|^2\right) \cdot e^{-2al}$$

где Γ – модуль коэффициента отражения;

a - коэффициент затухания в Неп/м;

/ - длина линии.

Модуль коэффициента отражения

$$\Gamma = \frac{KCB - 1}{KCB + 1}$$

где КСВ = 1/КБВ.

Коэффициент затухания

$$\alpha = \frac{\alpha, \, \mu E/M}{8,69} = \alpha, \, \frac{He\pi}{M}$$

При расчете КПД величина $e^{2a\,l}=x$ вычисляется как обычно $\ln x = 2.3 \lg x = 2a I$.

$$\lg x = \frac{2a I}{2,3}$$

Далее, находим X.

Отсюда

$$K\Pi \Pi = \frac{1 - \left| \dot{\Gamma} \right|^2}{x}$$

3. ЗАДАЧА 3. ОБЪЕМНЫЕ РЕЗОНАТОРЫ

3.1. Задано

Задана форма резонатора и тип колебания (Нтпр, Етпр или Т (ТЕМ) p=1), его размеры а, b, d — в прямоугольном резонаторе, радиус R и длина d — в цилиндрическом резонаторе; меньший радиус R1 = 50 мм и больший радиус R2= R, длина d — в коаксиальном резонаторе. Дана максимальная амплитуда напряженности электрического поля E_{mMakc} B/M, проводимость материала стенок равна $\gamma = 10^7$ $1/OM \cdot M$, заполнение воздушное, $\mu_a = \mu_0 = 125 \cdot 10^{-7}$ Γ/M , $\varepsilon_a = \varepsilon_0 = 8.8 \cdot 10^{-12}$ Φ/M .

- 3.2. Требуется выполнить следующее :
- 1. Нарисовать картину поля заданного типа колебания, используя рис.3.
- 2. Записать выражения для компонент поля соответствующего типа колебаний.В эти выражения надо подставить числовые значения K_x , K_y , K_z , которые заданы типом колебаний и размерами a, b, d, R.
- 3. Найти резонансную частоту $\omega_{\it pes}$ резонатора с заданным типом колебания.
- 4. Запасенную энергию электромагнитного поля W (считать, что заданное электрическое поле E равно соответственно $E_{zm\, Makc}$, $E_{ym\, Makc}$ или $E_{rm\, Makc}$ амплитуде поля в том месте, где поле максимально).
 - 5.Глубину проникновения в материал стенок.
- 6.Добротность резонатора Q без учета потерь в диэлектрике.
- 7.Постоянную времени $^{\tau_0}$. Определить, во сколько раз уменьшится запасенная в резонаторе энергия при свободных колебаниях за время t=5 с.

3.3 Методика решения задачи

- 3.3.1. Картины полей различных типов колебаний в резонаторах различной формы приведены на рис.3.
- 3.3.2. Для прямоугольного резонатора составляющие поля для колебаний H_{mnp} :

$$H_z = H_{z_o} \cos(K_x x) \cdot \cos(K_y y) \cdot \sin(K_z z);$$

$$\dot{H}_{y} = j \dot{H}_{z_{o}} \frac{K_{z} \cdot K_{x}}{K_{x}^{2} + K_{y}^{2}} \cdot \cos(K_{x}x) \cdot \sin(K_{y}y) \cdot \cos(K_{z}z)$$

$$\dot{H}_x = j \dot{H}_{z_0} \frac{K_z \cdot K_x}{K_x^2 + K_y^2} \sin(K_x x) \cos(K_y y) \cos(K_z z)$$

$$\dot{E}_x = \dot{H}_{z_0} \frac{\omega \mu_a K_y}{K_x^2 + K_y^2} \cos(K_x x) \sin(K_y y) \sin(K_z z)$$

$$\dot{E}_y = -\dot{H}_{z_0} \frac{\omega \mu_a K_x}{K_x^2 + K_y^2} \sin(K_x x) \cos(K_y y) \sin(K_z z)$$

$$E_z = 0$$
; $H_{z_0} = H_{z_m} \cdot e^{j(\omega t + \phi_0)}$

где
$$K_x = \frac{m\pi}{a}$$
; $K_y = \frac{n\pi}{b}$; $K_z = \frac{p\pi}{d}$.

- --

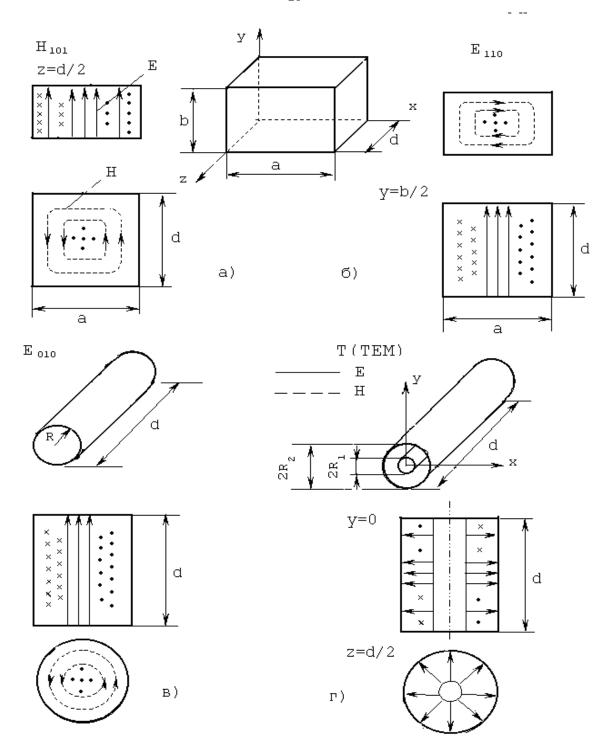


Рис.3 Полые металлические резонаторы: а) и б)— прямоугольный с колебаниями H^{101} и E^{110} ; в)— цилиндрический с колебанием E^{010} ; г)—коаксиальный Т (TEM) (p=1)

Пример картины поля типа H_{mnp} , например, H_{101} , приведен на рис. 3,а.

Для прямоугольного резонатора составляющие поля для колебаний типа E_{mnp} :

$$E_{z} = E_{z_{0}} \sin(K_{x}x) \cdot \sin(K_{y}y) \cdot \cos(K_{z}z) ;$$

$$\dot{H}_{y} = -j E_{z_{0}} \frac{\omega \varepsilon_{a} K_{x}}{K_{x}^{2} + K_{y}^{2}} \cos(K_{x}x) \sin(K_{y}y) \cos(K_{z}z) ;$$

$$\dot{E}_{x} = -E_{z_{0}} \frac{K_{z} \cdot K_{x}}{K_{x}^{2} + K_{y}^{2}} \cos(K_{x}x) \sin(K_{y}y) \sin(K_{z}z) ;$$

$$\dot{E}_{y} = -E_{z_{0}} \frac{K_{z} \cdot K_{y}}{K_{x}^{2} + K_{y}^{2}} \sin(K_{x}x) \cos(K_{y}y) \sin(K_{z}z) ;$$

$$\dot{E}_{y} = -E_{z_{0}} \frac{K_{z} \cdot K_{y}}{K_{x}^{2} + K_{y}^{2}} \sin(K_{x}x) \cos(K_{y}y) \sin(K_{z}z) ;$$

Пример картины колебаний типа E_{mnp} , например E_{110} , приведен на рис.3,б.

У цилиндрического резонатора составляющее поля колебаний типа ${\tt E}_{010}$ равны:

$$\dot{E}_{z} = \dot{E}_{z_{0}} J_{0} \left(\frac{\beta_{01}}{R} \cdot \mathbf{r} \right);$$

$$\dot{H}_{a} = -j \sqrt{\frac{\varepsilon_{a}}{\mu_{a}}} E_{z_{0}} J_{1} \left(\frac{\beta_{01}}{R} \mathbf{r} \right);$$

 $H_z = 0$; $E_{z_0} = E_{z_m} \cdot e^{j(\omega t + \phi_0)}$

где β_{01-} находится из табл.4; $J_0(x)$ и $J_1(x)$ функция Бесселя 1-го рода нулевого и первого порядка соответственно.

Картина поля колебания E_{010} приведена на рис.3,в. Для коаксиального резонатора с волной Т (ТЕМ), картина поля которой для p=1 приведена на рис.3,г:

$$\dot{E}_r = \dot{E}_{r_0} \frac{R_1}{r} \sin \frac{p\pi}{d} z$$

$$\dot{H}_a = \dot{J} \dot{E}_{r_0} \frac{R_1}{r} \sqrt{\frac{\varepsilon_a}{\mu_a}} \cos \frac{p\pi}{d} z$$

3.3.3. Резонансные частоты в прямоугольном резонаторе с колебаниями типа H_{mnp} и E_{mnp}

$$\omega_{pesE,H} = \frac{\sqrt{\left(\frac{m\pi}{a}\right)^2 + \left(\frac{n\pi}{b}\right)^2 + \left(\frac{p\pi}{d}\right)^2}}{\sqrt{\varepsilon_a \mu_a}}$$

Резонансные частоты цилиндрических круглых резонаторов с колебаниями типа $\boldsymbol{\mathcal{E}_{mnp}}$

$$\omega_{pesE} = \frac{\sqrt{\left(\frac{\beta_{mn}}{R}\right)^2 + \left(\frac{p\pi}{d}\right)^2}}{\sqrt{\varepsilon_a \mu_a}}$$

где eta_{mn-} корень функции Бесселя первого рода m — го порядка. Резонансная частота коаксиального резонатора с колебанием типа T (TEM).

$$\omega_{pes} = \frac{p\pi c}{d\sqrt{\varepsilon}}$$

 $_{\text{где}}$ $c = 3.10^8$ м/с.

- 3.3.4.Запасенная электромагнитная энергия
- 1) в прямоугольном резонаторе с типом колебания H_{101}

$$W_{H_{101}} = \frac{\varepsilon_a}{4} E_{y_{mmakc}}^2 \frac{abd}{4} ;$$

2) в прямоугольном резонаторе с типом колебания E_{110}

$$W_{E_{110}} = \frac{\varepsilon_a}{4} E_{z_{mmakc}}^2 \frac{abd}{4} \quad ;$$

3) в цилиндрическом резонаторе с колебанием типа ${\it E}_{\rm 010}$

$$W_{E_{010}} = \frac{\varepsilon_a}{4} E_{z_{mmakc}}^2 2\pi d \frac{R^2}{2} J_1^2 (\beta_{01})$$

где $J_1(x)_-$ находится из табл. 1 приложения;

4) в коаксиальном резонаторе с колебанием типа T (TEM) при p=1

$$W_T = \frac{\varepsilon_a}{4} E_{r_{mmakc}}^2 R_1^2 2\pi \frac{d}{2} \ln \frac{R_2}{R_1}$$

3.3.5. Глубина проникновения в материал стенок :

$$\Delta^o = \sqrt{\frac{2}{\omega_{pes}\mu_a \gamma}}$$

- 3.3.6. Добротность при различных типах колебаний:
- 1) в прямоугольном резонаторе с колебаниями H_{101} и H_{110}

$$Q_{H101} = \frac{adb(a^2 + d^2)}{ad(a^2 + d^2) + 2b(a^3 + d^3)} \cdot \frac{1}{\Delta^o}$$

$$Q_{E110} = \frac{abd(a^2 + b^2)}{ab(a^2 + b^2) + 2d(a^3 + b^3)} \cdot \frac{1}{\Delta^o}$$

2) в цилиндрическом резонаторе с колебанием E_{010} :

$$Q_{E010} = \frac{d \cdot R}{d + R} \cdot \frac{1}{\Delta^{o}} ;$$

3) в коаксиальном резонаторе с колебанием T (TEM) при p=1

$$Q_{T} = \frac{2d \cdot \ln(R_{2}/R_{1})}{4\ln(R_{2}/R_{1}) + d(1/R_{1} + 1/R_{2})} \cdot \frac{1}{\Delta^{o}}$$

3.3.7 Энергия при свободных колебаниях тратится на потери и постепенно уменьшается по закону

$$W = W_o e^{-\frac{\omega_0 t}{Q}} = W_0 e^{-\frac{2t}{\tau_0}}$$

$$\tau_0 = \frac{2Q}{\omega_0}$$

где W_{0-} начальный запас энергии в резонаторе при t=0;

 au_0 - постоянная времени;

 ω_{0} - собственная частота резонатора.

Собственная частота ω_0 и резонансная частота $\omega_{\it pes}$ связаны друг с другом через добротность Q так, что

$$\omega_0 = \omega_{pes} \sqrt{1 + \frac{1}{4Q^2}}$$

Как видно, при больших добротностях $Q \ge 10$ в инженерных расчетах этой разницей в величинах резонансной и собственной частоты можно пренебречь и считать $\omega_0 = \omega_{pes}$.

За время t энергия поля при свободных колебаниях уменьшается $W_0 / W = e^{2t/\tau_0}$.

ЛИТЕРАТУРА

- 1. Григорьев А.Д. Электродинамика и техника СВЧ.-М.: Высшая школа, 1990.-335с.
- 2.Яманов Д.Н. Основы электродинамики и распространение радиоволн: Тексты лекций. Часть 1."Основы электродинамики".-М.: МГТУ ГА, 2002.-80c.
- 3.Яманов Д.Н. Электродинамика и техника сверхвысоких частот: Тексты лекций. Часть 2."Основы электродинамики".- М.: МГТУ ГА, 1997.-107с.
- $4.\Phi$ альковский О.И. Техническая электродинамика.-М.: Связь, 1978.-432с.
- 5.Баскаков С.И. Электродинамика и распространение радиоволн.-М.: Высшая школа, 1992.-416 с.

ПРИЛОЖЕНИЕ

Значение функции Бесселя 1-го рода нулевого порядка $J_0(x)$ и первого порядка $J_1(x)$ для аргументов от x=1,6 до x=4,05

Таблица І

X	$J_0(x)$	$J_1(x) = -J_0(x)$	Х	$J_0(x)$	$J_1(x) = -J_0(x)$
1,60	0,455	0,570	2,85	-0,205	0,393
1,65	0,427	0,574	2,90	-0,224	0,375
1,70	0,398	0,578	2,95	-0,242	0,357
1,75	0,369	0,580	3,00	-0,260	0,339
1,80	0,340	0,581	3,05	-0,276	0,320
1,85	0,311	0,582	3,10	-0,292	0,301
1,90	0,282	0,581	3,15	-0,306	0,281
1,95	0,253	0,579	3,20	-0,320	0,261
2,00	0,224	0,577	3,25	-0,333	0,241
2,05	0,195	0,573	3,30	-0,344	0,221
2,10	0,166	0,568	3,35	-0,355	0,200
2,15	0,138	0,563	3,40	-0,364	0,179
2,20	0,110	0,556	3,45	-0,373	0,158
2,25	0,083	0,548	3,50	-0,380	0,137
2,30	0,055	0,540	3,55	-0,386	0,116
2,35	0,029	0,530	3,60	-0,392	0,095
2,40	0,002	0,520	3,65	-0,396	0,074
2,45	-0,023	0,509	3,70	-0,399	0,054
2,50	-0,048	0,497	3 , 75	-0,401	0,033
2,55	-0,073	0,483	3,80	-0,403	0,013
2,60	-0,097	0,471	3,85	-0,403	-0,007
2,65	-0,120	0,457	3,90	-0,402	-0,627
2,70	-0,142	0,442	3,95	-0,401	-0,047
2,75	-0,164	0,426	4,00	-0,397	-0,066
2,80	-0,185	0,410	4,05	-0,393	-0,085

СОДЕРЖАНИЕ

Ρροπυμίο τυναραυτία ν ριποπυρυτίο νουπροπι υσίν ραδοπιί
Вводные указания к выполнению контрольной работы
1. Задача 1. Плоские электромагнитные волны
2.Задача 2. Линии передачи высокочастотного диапазона1
3.Задача 3. Объемные резонаторы23
Литература
Приложение

- --