Лабораторная работа № 10

Критерии выбора рационального решения

Цель работы

Целью работы является приобретение навыков решения статистических игр ЛПР с природой в условиях неопределенности, используя различные критерии принятия решений.

Задание

Машину (станок, технологическую установку, конвейер и т.п.) требуется подвергнуть проверке с приостановкой ее эксплуатации и выпуска продукции. Вовремя не обнаруженная неисправность может привести к капитальной поломке машины.

У ЛПР имеется три варианта решения:

 E_1 – полная проверка; E_2 – минимальная проверка; E_3 – отказ от проверки.

Машина может находиться в следующих состояниях:

 F_1 – исправна; F_2 – незначительная неисправность; F_3 – серьезная неисправность.

Необходимо найти оптимальное решение ЛПР по MM-, S-, HW-, P-, BL-, HL-, G-критериям.

Для заданной матрицы выигрыша из списка найти оптимальное решение ЛПР по перечисленным выше критериям, если вероятности состояний спроса: 0,2; 0,5; 0,3; коэффициент пессимизма $\lambda = 0,4$; коэффициент достоверности информации о состояниях спроса u = 0,6.

Номер задачи соответствует порядковому номеру студента в списке группы. Оформить отчет о проделанной работе (MS Word). Обязательно титульный лист, задание и описание результатов решения. Отчет прикрепить через учебный портал. Имя файла делаем по шаблону "ЛабР10-Фамилия.docx".

Теоретическая часть

Пример 1

Предположим, что экспертно удалось оценить возможные результаты и представить их в виде матрицы выигрыша ЛПР (результаты включают затраты на проверку машины, ремонт, недополученную продукцию и т.п.).

Эта матрица выигрыша ЛПР и результаты поиска оптимального решения по *MM*-критерию представлены в виде следующей таблицы:

	\mathbf{F}_1	\mathbf{F}_2	F ₃	$Z_{M\!M} = \max_i \min_j e_{ij}$
$\mathbf{E_1}$	-20	-22	-25	-25
\mathbf{E}_2	-14	-23	-31	-31
E ₃	0	-24	-40	-40

Из таблицы видно, что для получения оптимального решения ЛПР по критерию MM исходная матрица выигрышей E дополняется столбцом, состоящим из минимальных элементов каждой строки, далее среди них выбирается максимальный элемент. Соответствующее решение является оптимальным по MM-критерию. В данном случае это решение E_1 . Оно полностью исключает риск.

Найдем оптимальное решение по S-критерию Сэвиджа. Он так как *ММ-*критерий, используется В полной же, условиях неопределенности. S-критерий отражает позицию относительного пессимизма, поскольку рекомендует выбирать в качестве оптимальной которой стратегии TY, при величина максимального риска минимизируется при наихудшем состоянии природы. Для оценки решения по S-критерию вначале вычислим величину потерь, т.е. от исходной матрицы $E=(e_{ii})$ переходим к матрице недополученного выигрыша $R=(r_{ii})$, а затем используем минимаксную функцию и правило выбора решения по данному критерию. Результаты сведем в таблицу следующего вида:

	\mathbf{F}_1	\mathbf{F}_2	\mathbf{F}_3	\mathbf{F}_1	\mathbf{F}_2	\mathbf{F}_3	$Z_S = \min_{i} \max_{j} (\max_{i} e_{ij} - e_{ij})$
\mathbf{E}_1	-20	-22	-25	20	0	0	20
$\mathbf{E_2}$	-14	-23	-31	14	1	6	14
$\mathbf{E_3}$	0	-24	-40	0	2	15	15

Оптимальным по S-критерию является решение E_2 .

Найдем оптимальное решение по HW-критерию Гурвица. Это компромиссный критерий пессимизма-оптимизма. Для его применения необходимо задать значение λ – весовой множитель Гурвица. Пусть λ = 0,5. Для оценки решения по HW-критерию необходимо воспользоваться правилом выбора решения по данному критерию. Результаты сведем в таблицу следующего вида:

	\mathbf{F}_1	\mathbf{F}_2	F ₃	$\lambda \min_{j} e_{ij}$	$(1-\lambda)\max_{j}e_{ij}$	$\max_{i} \left[\lambda \min_{j} e_{ij} + (1 - \lambda) \max_{j} e_{ij}\right]$
$\mathbf{E_1}$	-20	-22	-25	-12,5	-10	-22,5
$\mathbf{E_2}$	-14	-23	-31	-15,5	-7	-22,5
$\mathbf{E_3}$	0	-24	-40	-20	0	-20

Оптимальным по HW-критерию является решение E_3 . Однако при $\lambda > 0,57$ оптимальным по Гурвицу становится решение E_2 .

Найдем оптимальное решение по P-критерию произведений. Он применим только для матриц выигрыша с *положительными* значениями элементов. Поскольку в исходной таблице элементы матрицы выигрыша являются неположительными, то для применения P-критерия необходимо вначале прибавить ко всем элементам матрицы некоторое достаточно большое положительное число c. Рассмотрим два варианта: c = 41 и c = 200. Для оценки решения по P-критерию необходимо воспользоваться правилом выбора решения по данному критерию. Результаты сведем в таблицу следующего вида:

	\mathbf{F}_1	\mathbf{F}_2	$\mathbf{F_3}$	\mathbf{F}_1	\mathbf{F}_2	$\mathbf{F_3}$	$Z_{P(c=41)} = \max \prod_{j=1}^{n} e_{ij}$	$Z_{P(c=200)} = \max \prod_{j=1}^{n} e_{ij}$
$\mathbf{E_1}$	-20	-22	-25	21	16	16	6 384	5 607 000
$\mathbf{E_2}$	-14	-23	-31	27	18	10	4 860	5 563 818
$\mathbf{E_3}$	0	-24	-40	41	17	1	697	5 632 000

Из таблицы P-критерия следует, что принимаемое решение зависит от величины константы (c), которая прибавляется ко всем элементам исходной матрицы с целью выполнения условия $e_{ij} > 0$. При c = 41 оптимальным будет решение E_1 , при $c = 200 - E_3$.

Найдем оптимальное решение по BL-критерию Байеса—Лапласа, который используют в условиях *частичной* неопределенности и котрый основан на поиске решения, дающего максимальный средний выигрыш при априорно известных вероятностях состояний природы q_j . Пусть состояния природы F_1 , F_2 , F_3 равновероятны: $q_1 = q_2 = q_3 = 1/3$. Для оценки решения по BL-критерию воспользуемся правилом выбора

решения по данному критерию. Результаты сведем в таблицу следующего вида:

	\mathbf{F}_1	F ₂	F ₃	$Z_{BL} = \max_{i} \sum_{j=1}^{n} e_{ij} q_{j}, q1 = q2 = q3 = 1/3$
\mathbf{E}_1	-20	-22	-25	-22,33
$\mathbf{E_2}$	-14	-23	-31	-33,67
$\mathbf{E_3}$	0	-24	-40	-21,33

Согласно BL-критерию оптимальным будет решение \mathbf{E}_3 – отказ от проверки.

Найдем оптимальное решение по HL-критерию Ходжа—Лемана, который используют в условиях частичной неопределенности. Он опирается одновременно на критерии BL и MM путем введения некоторого параметра $0 \le v \le 1$, выражающего степень доверия к используемому распределению вероятностей q_j . Если это доверие велико, то акцент делается на BL-критерий, иначе — на MM-критерий. Пусть v = 0.5, а состояния природы F_1 , F_2 , F_3 равновероятны: $q_1 = q_2 = q_3 = 1/3$. Для оценки решения воспользуемся правилом выбора решения по HL-критерию. Результаты сведем в таблицу следующего вида:

	$\mathbf{F_1}$	$\mathbf{F_2}$	\mathbf{F}_3	$Z_{HL} = \max_{i} \left(v \sum_{j=1}^{n} e_{ij} q_{j} + (1 - v) \min_{j} e_{ij} \right); v = 0,5; qi = 1/3$
$\mathbf{E_1}$	-20	-22	-25	-23,67
$\mathbf{E_2}$	-14	-23	-31	-26,84
$\mathbf{E_3}$	0	-24	-40	-30,76

Согласно *HL*-критерию оптимальным будет решение \mathbf{E}_1 – полная проверка машины. При степени доверия $\mathbf{v} > 0,94$ оптимальным будет другое решение.

Найдем оптимальное решение по G-критерию Гермейера, который также рекомендуется использовать в условиях частичной неопределенности при оценке потерь ЛПР (элементы матрицы выигрышей $e_{ij} < 0$). Критерий ориентирован на поиск решений, которые не считаются заведомо худшими, чем другие. Пусть состояния природы F_1 , F_2 , F_3 равновероятны: $q_1 = q_2 = q_3 = 1/3$. Оценим решения по G-критерию. Результаты сведем в таблицу следующего вида:

	\mathbf{F}_1	F ₂	F ₃	$Z_G = \max_i \min_j e_{ij} q_j$, $q_1 = q_2 = q_3 = 1/3$
\mathbf{E}_1	-20	-22	-25	-8,33
$\mathbf{E_2}$	-14	-23	-31	-10,33
\mathbf{E}_3	0	-24	-40	-13,44

Согласно G-критерию оптимальным будет решение \mathbf{E}_1 – полная проверка машины.

Анализ решений, полученных по всем критериям, показывает, что критерии не дают единогласного решения:

- решение E_2 не выгодно с различных точек зрения, его рекомендуют только S- и HW-критерии (при $\lambda > 0.57$);
- \bullet решение E_1 рекомендуют MM-, P-, HL- и G-критерии;
- ullet решение E_3 рекомендуют HW-, P-, BL- и HL-критерии.

Если число реализаций решения невелико, то более надежным будет решение E_1 .

Пример 2

Предположим, что лицо, принимающее решения рассматривает несколько возможных решений: i=1,...,m. Ситуация, в которой действует данное лицо, является неопределенной. Известно лишь, что присутствуют различные варианты решения: j=1,...,n. Если будет принято i-e решение, которой соответствует ситуация есть j-n, то фирма получит доход q_{ij} . Матрица составленная из вышеприведенных условий ($Q=q_{ij}$) называется матрицей возможных решений. В ситуации полной неопределенности могут быть высказаны лишь некоторые рекомендации предварительного характера: предположим, что мы хотим оценить риск, который несет i-e решение. Нам неизвестна реальная ситуация, но если бы ее знали, то выбрали бы наилучшее решение, т.е. приносящее наибольший доход. То естьнекоторую ситуацию j, приносящую фирме определенных результат (доход) q_{ij} .

Из вышеизложенного следуетчто, принимая i-e решение мы рискуем получить не полный результат (q_i) , а только один из его вариантов (q_{ii}) , значит принятие одного из решений несет риск недобрать определенный результат, который определяется выражением: $r_{ij} = q_j - q_{ij}$, на основе которого составляется матрица рисков $(R = r_{ij})$.

Составим для примера условную матрицу последствий(Q) для i-x решений:

$$Q = \begin{pmatrix} 2 & 5 & 8 & 4 \\ 2 & 3 & 4 & 12 \\ 8 & 5 & 3 & 10 \\ 1 & 4 & 2 & 8 \end{pmatrix} \tag{1}$$

Проанализирую представленную матрицу последствий, найдем максимально благоприятные решения, имеющие высокий показатель (по столбцам), $q_1 = 8$, $q_2 = 5$, $q_3 = 8$, $q_4 = 12$.

Составим матрицу рисков(R)по вышеописанному условию, вычтем максимально выгодное решение из всех предложенных элементов по столбцам..

$$R = \begin{pmatrix} 6 & 0 & 0 & 8 \\ 6 & 2 & 4 & 0 \\ 0 & 0 & 5 & 2 \\ 7 & 1 & 6 & 4 \end{pmatrix} \tag{2}$$

Для принятия решений в условиях неопределенностипридерживаются следующим правилам-рекомендациям по принятию решений в этой ситуации[6]:

1) **Правило Вальда** (правило крайнего пессимизма). Рассматривая i-е решение будем полагать, что на самом деле ситуация складывается самая плохая, т.е. приносящая самый малый доход a_i . При таких условиях для себя выберем решение i с наибольшим a_i . Итак, правило Вальда рекомендует принять решение a_i , такое чтобы выполнялось условие:

$$a_{i0} = max_i(a_i) = max_i(min_i(q_{ij}))$$
(3)

Так, в вышеуказанном примере, имеем минимальные варианты решений (построчно), которые равняются: $a_1 = 2$, $a_2 = 2$, $a_3 = 3$, $a_4 = 1$. Из приведенных значений максимальным является число 3. Значит, правило Вальда рекомендует принять 3-е решение. Тем самым выбрать лучшее из наихудших.

2) **Правило Сэвиджа** (правило минимального риска). При применении этого правила анализируется матрица рисков $R = (r_{ij})$. Рассматривая i-е решение будем полагать, что на самом деле складывается ситуация максимального риска $b_i = \max[r_{ii}]$.

Но теперь уж выберем решение i_0 с наименьшим b_{i0} . Итак, правило Сэвиджа рекомендует принять решение i_0 , такое чтобы выполнялось условие:

$$b_{i0} = min_i(b_i) = min_i(msx_i(r_{ij}))$$
(4)

В рассматриваемом примере имеем максимальные (построчные) риски такие как: $b_1 = 8$, $b_2 = 6$, $b_3 = 5$, $b_4 = 7$. Минимальным из этих чисел является число 5. Т.е. правило Сэвиджа рекомендует принять 3-е решение. С минимальным из предложенных построчных рисков.

3) **Правило Гурвица** (взвешивающее пессимистический и оптимистический подходы к ситуации). Принимается решение i, на котором достигается максимум из условия:

$$\lambda \cdot min_j(q_{ij}) + (1 - \lambda) \cdot max_j(q_{ij})$$
, где $0 \le \lambda \le 1$ (5)

Значение λ выбирается из субъективных соображений. Если λ приближается к 1, то правило Гурвица приближается к правилу Вальда, при приближении λ к 0, правило Гурвица приближается к правилу "розового оптимизма" (как говориться в обиходе розовых очков). В вышеуказанном примере при λ = 1/2 правило Гурвица рекомендует 2-е решение(по второй строке).

$$0.5*2+(1-0.5)*12 = 7$$

Принятие решений в условиях частичной неопределенности

Предположим, что в рассматриваемой схеме известны вероятности p_i того, что реальная ситуация развивается по варианту ј. Именно такое положение называется частичной неопределенностью. В таком случае возможно выбрать одно из следующих правил.

1) Правило максимизации среднего ожидаемого дохода.

Доход, получаемый фирмой при реализации i-го решения, является случайной величиной Q_i с рядом распределения:

q_{i1}	q_{i2}	 $q_{\rm in}$
p_1	p_2	 p_n

Математическое ожидание $M[Q_i]$ и есть средний ожидаемый доход, обозначаемый $\overline{Q_i}$. Правило рекомендует принять решение, приносящее максимальный средний ожидаемый доход.

Предположим, что в схеме из предыдущего примера вероятности взаимосвязаны как (1/2, 1/6, 1/6, 1/6). Тогда:

$$\begin{cases} Q_1 = \frac{2}{2} + \frac{5}{6} + \frac{8}{6} + \frac{4}{6} = \frac{23}{6} \\ Q_2 = \frac{2}{2} + \frac{3}{6} + \frac{4}{6} + \frac{12}{6} = \frac{25}{6} \\ Q_3 = \frac{8}{2} + \frac{5}{6} + \frac{3}{6} + \frac{10}{6} = \frac{7}{6} \\ Q_4 = \frac{1}{2} + \frac{4}{6} + \frac{2}{6} + \frac{8}{6} = \frac{17}{6} \end{cases}$$

Максимальный средний ожидаемый доход равен 7, что соответствует третьему решению.

2) **Правило минимизации среднего ожидаемого риска**. Риск фирмы при реализацииi-20 решения, является случайной величиной R_i , с рядом распределения:

r_{i1}	r_{i2}	•	r_{in}
p_1	p_2		p_n

Математическое ожидание $M[R_i]$ и есть средний ожидаемый риск, обозначаемый также R_i . Правило рекомендует принять решение, влекущее минимальный средний ожидаемый риск. Вычислим средние ожидаемые риски при указанных выше вероятностях.

$$\begin{cases} R_1 = \frac{3}{2} + \frac{3}{6} + \frac{0}{6} + \frac{8}{6} = \frac{20}{6} \\ R_2 = \frac{6}{2} + \frac{2}{6} + \frac{4}{6} + \frac{0}{6} = 4 \\ R_3 = \frac{0}{2} + \frac{0}{6} + \frac{5}{6} + \frac{2}{6} = \frac{7}{6} \\ R_4 = \frac{7}{2} + \frac{1}{6} + \frac{6}{6} + \frac{4}{6} = \frac{32}{6} \end{cases}$$

Минимальный средний ожидаемый риск равен 7/6, соответствует третьему решению.

3) Анализ принимаемых решений по двум критериям: среднему ожидаемому доходу и среднему ожидаемому риску и нахождение решений, оптимальных по Парето, аналогично анализу доходности и риска финансовых операций. В примере множество решений, оптимальных по Парето операций, состоит только из одного 3-его решения.

В случае, если количество Парето-оптимальных решений больше одного, то для определения лучшего решения применяется взвешивающая формула f(Q)=2Q-R.

4) Правило Лапласа

Иногда в условиях полной неопределенности применяют правило Лапласа, согласно которому все вероятности p_i считают равными. После этого можно выбрать какое-нибудь из двух приведенных выше правил-рекомендаций принятия решений.

Пример 3

Сельскохозяйственное предприятие может реализовать некоторую продукцию одним из следующих способов:

- А1) сразу после уборки;
- А2) в зимние месяцы;
- А3) в весенние месяцы.

Прибыль зависит от цены реализации в данный период времени, затратами на хранение и возможных потерь. Размер прибыли, рассчитанный для разных состояний-соотношений дохода и издержек (S1, S2 и S3), в течение всего периода реализации, представлен в виде матрицы (млн. руб.)

	S1	S2	S3
A1	2	-3	7
A2	-1	5	4
A3	-7	13	-3

Необходимо: определить наиболее выгодную стратегию по всем критериям (*критерий Байеса*, *критерий Лапласа*, *максиминный критерий Вальда*, *критерий пессимизма-оптимизмаГурвица*, *критерий Ходжа-Лемана*, *критерий минимаксного риска Сэвиджа*), если вероятности состояний спроса: 0,2; 0,5; 0,3; коэффициент пессимизма $\lambda = 0,4$; коэффициент достоверности информации о состояниях спроса u = 0,6.

Решение

1. Критерий Байеса (максимального математического ожидания)

Расчет осуществляется по формуле:

$$W_i = \sum_{j=1}^{3} a_{ij} \cdot p_j = a_{i1} \cdot p_1 + a_{i2} \cdot p_2 a_{i3} \cdot p_3$$

По вышепредставленной формуле расчитано:

$$W_1 = 2 \cdot 0.2 + (-3) \cdot 0.5 + 7 \cdot 0.3 = 0.4 - 1.5 + 2.1 = 1$$

$$W_2 = -1.0,2 + 5.0,5 + 4.0,3 = -0.2 + 2.5 + 1.2 = 3.5$$

 $W_1 = -7.0,2 + 12.0,5 + (.2),0.2 = 1.2 + 6.5,0.0 = 4.5$

$$W_3 = -7.0,2 + 13.0,5 + (-3).0,3 = -1,2 + 6,5 - 0,9 = 4,2$$

Найденные значения заносим в столбец (Б) таблицы 1 и выбираем максимальноеW = $\max\{1;3.5;4.2\} = 4.2$, значит оптимальной по данному критерию является стратегия A3 — продавать в весенние месяцы.

2. Критерий недостаточного основания Лапласа (НО)

Находим среднее значение элементов каждой строки:

$$W_{i} = \frac{1}{3} \cdot \sum_{j=1}^{3} a_{ij} = \frac{1}{3} [(a)]_{i1} + a_{i2} + a_{i3}]$$

$$W_{1} = \frac{1}{3} (2 - 3 + 7) = 2$$

$$W_{2} = \frac{1}{3} (-1 + 5 + 4) = 2,7$$

$$W_{3} = \frac{1}{3} (-7 + 13 - 3) = 1$$

Найденные значения заносим во второй столбец (HO) таблицы 1 и выбираем максимальное $W = \max\{2; 2.7; 1\} = 2.7$, значит оптимальной по данному критерию является стратегия A2 – продавать в зимние месяцы.

3. Максиминный критерий Вальда (ММ)

В каждой строке находим минимальный элемент:

$$W_i = \min_{1 < j < 3} a_{ij}$$

$$W_1 = \min\{2; -3; 7\} = -3$$

$$W_2 = \min\{-1; 5; 4\} = -1$$

$$W_3 = \min\{-7; 13; -3\} = -7$$

Найденные значения заносим в третий столбец (ММ)таблицы 1 и выбираем максимальное $W=\max\{-3; -1; 7\}=-1$, значит оптимальной по данному критерию является стратегия A2- продавать в зимние месяцы.

4. Критерий пессимизма-оптимизма Гурвица (П-О)

Для каждой строки рассчитываем значение критерия по формуле:

$$W_i = \lambda \cdot \min_{1 < j < 3} a_{ij} + (1 - \lambda) \cdot \max_{1 < j < 3} a_{ij}$$

Из исходных данных $\lambda = 0.4$, значит:

$$W_1 = 0.4 \cdot \min\{2; -3; 7\} + (1-0.4) \cdot \max\{2; -3; 7\} = 0.4 \cdot (-3) + 0.6 \cdot 7 = -1.2 + 4.2 = 3$$

$$W_2 = 0.4 \cdot \min\{-1; 5; 4\} + (1-0.4) \cdot \max\{-1; 5; 4\} = 0.4 \cdot (-1) + 0.6 \cdot 5 = -0.4 + 3 = 2.6$$

$$W_3 = 0.4 \cdot \min\{-7; 13; -3\} + (1-0.4) \cdot \max\{-7; 13; -3\} = 0.4 \cdot (-7) + 0.6 \cdot 13 = -2.8 + 7.2 = 5$$

Найденные значения заносим в четвертый столбец (П-O) таблицы 1 и выбираем максимальное $W = \max\{3; 2.6.5\} = 5$, значит оптимальной по данному критерию является стратегия A3 – продавать в весенние месяцы.

5. Критерий Ходжа-Лемана (Х-Л)

Для каждой строки рассчитываем значение критерия по формуле:

$$W_i = u \cdot \sum_{j=1}^{3} a_{ij} p_j + (1-u) \cdot \min_{1 < j < 3} a_{ij}$$

Из исходных данных u = 0.6 и множители в каждом слагаемом уже рассчитаны, их можно взять их первого столбика (Б) таблицы 1 и из третьего столбика (ММ) таблицы 1, значит:

$$W_1 = 0.6 \cdot 1 + (1-0.6) \cdot (-3) = 0.6 - 1.2 = -0.6$$

$$W_2 = 0.6 \cdot 3.5 + (1-0.6) \cdot (-1) = 2.1 - 0.4 = 1.7$$

$$W_3 = 0.6 \cdot 4.2 + (1-0.6) \cdot (-7) = 2.52 - 2.8 = -0.28$$

Найденные значения заносим в пятый столбец (X-Л) таблицы 1 и выбираем максимальное $W = \max\{-0.6; 1.7; -0.28\} = 1.7$, значит оптимальной по данному критерию является стратегия A2 – продавать в зимние месяцы.

5. Критерий минимаксного риска Сэвиджа

Рассчитаем матрицу рисков. Заполнять ее лучше по столбцам. В каждом столбце находим максимальный элемент и вы читаем из него все остальные элементы столбца, результаты записываем на соответствующих местах.

Максимальный элемент в первом строчке это 2 значит по формуле:

$$r_{ij} = max_i a_{ij} - a_{ij}$$

$$\mathbf{r}_{11} = 2 - \mathbf{a}_{11} = 2 - 2 = 0$$

$$r_{21} = 2 - a_{21} = 2 - (-1) = 3$$

$$r_{31} = 2 - a_{31} = 2 - (-7) = 9$$

Рассчитаем второй столбец матрицы рисков. Максимальный элемент во втором столбце:

$$a_{32} = 13$$
, значит:

$$r_{12} = 13 - a_{12} = 13 - (-3) = 16$$

$$r_{22} = 13 - a_{22} = 13 - 5 = 8$$

$$r_{32} = 13 - a_{32} = 13 - 13 = 0$$

Рассчитаем третий столбец матрицы рисков.

Максимальный элемент в третьем столбце: $a_{13} = 7$, значит:

$$\mathbf{r}_{13} = 7 - \mathbf{a}_{13} = 7 - 7 = 0$$

$$r_{23} = 7 - a_{23} = 7 - 4 = 3$$

$$r_{33} = 7 - a_{33} = 7 - (-3) = 10$$

Таким образом, матрица рисков имеет вид (в каждом столбце на месте максимального элемента платежной матрицы должен стоять ноль):

S1	S2	S3
0	16	0

3	8	3
9	0	10

Дополним матрицу рисков рассчитанными значениями критерия W_i – в каждой строке выбираем максимальный элемент из условия:

 $W_i = max_i r_{ij}$

 $W_1 = \max\{0; 16; 0\} = 16$

 $W_2 = \max\{3; 8; 3\} = 8$

 $W_3 = \max\{9; 0; 10\} = 10$

Найденные значения заносим в столбец (W_i).

, ,			
S1	S2	S3	$\mathbf{W_i}$
0	16	0	16
3	8	3	8
9	0	10	10

Выбираем минимальное $W = min\{16,8,10\} = 8$, значит оптимальной по данному критерию является стратегия A2 – продавать в зимние месяцы.

Рассчитанные по всем правилам варианты, для наглядности представления занесем в общую таблицу 1.

Таблица 1 - Результаты расчетов по всем правилам

	S1	S2	S3	Б	НО	MM	П-О	х-л
A1	2	-3	7	1	2	-3	3	-0,6
A2	-1	5	4	3,5	2,7	-1	2,6	1,7
A3	-7	13	-3	4,2	1	-7	5	-0,28
$\mathbf{p}_{\mathbf{i}}$	0,2	0,5	0,3	A3	A2	A2	A3	A2

Вывод:

Стратегия А1 (продавать сразу после уборки) не является оптимальной ни по одному из критериев.

Стратегия A2 (продавать в зимние месяцы) является оптимальной согласно критериям недостаточного основания Лапласа, максиминного критерия Вальда и минимаксного критерия Сэвиджа.

Стратегия АЗ (продавать в весенние месяцы) является оптимальной согласно критериям Байеса, пессимизма-оптимизма Гурвица, Ходжа-Лемана.

Вариант 1.

	F1	F2	F3
E1	-10	-15	-20
E2	-20	-11	-3
E3	0	-5	-10

Вариант 2.

	F1	F2	F3
E1	-10	-22	-30
E2	-14	-19	-23
E3	0	-15	-10

Вариант 3.

	F1	F2	F3
E1	-1	-15	-20
E2	-20	-10	-3
E3	0	-50	-10

Вариант 4.

	F1	F2	F3
E1	-9	-15	-23
E2	-20	-18	-3
E3	0	-5	-14

Вариант 5.

	F1	F2	F3
E1	-12	-14	-20
E2	-20	-11	-13
E3	0	-5	-10

Вариант 6.

	F 1	F2	F3
E1	-17	-18	-20
E2	-20	-10	-30
E3	0	-5	-1

Вариант 7.

	F1	F2	F3
E1	-11	-15	-20
E2	-12	-11	-3
E3	0	-5	-10

Вариант 8.

	F1	F2	F3
E1	-10	-15	-20
E2	-12	-11	-3
E3	0	-15	-10

Вариант 9.

	F1	F2	F3
E1	-10	-15	-20
E2	-20	-11	-3
E3	0	-4	-7

Вариант 10.

	F1	F2	F3
E1	-22	-19	-20
E2	-20	-10	-3
E3	0	-15	-10

Вариант 11.

	F1	F2	F3
E1	-10	-15	-20
E2	-20	-11	-30
E3	0	-50	-10

Вариант 12.

	F1	F2	F3
E1	-14	-15	-20
E2	-20	-17	-31
E3	0	-15	-10

Вариант 13.

	F1	F2	F3
E1	-16	-15	-20
E2	-20	-15	-3
E3	0	-12	-10

Вариант 14.

	F1	F2	F3
E1	-25	-35	-20
E2	-20	-15	-35
E3	0	-25	-10

Вариант 15.

	F1	F2	F3
E1	-9	-15	-20
E2	-20	-23	-5
E3	0	-25	-10

Вариант 16.

	F1	F2	F3
E1	-59	-19	-20
E2	-20	-10	-3
E3	0	-15	-10

Вариант 17.

	F1	F2	F3
E1	-10	-15	-20
E2	-48	-11	-30
E3	0	-50	-10

Вариант 18.

	F1	F2	F3
E1	-14	-15	-20
E2	-20	-27	-31
E3	0	-15	-10

Вариант 19.

	F1	F2	F3
E1	-26	-15	-20
E2	-20	-15	-3
E3	0	-12	-10

Вариант 20.

	F 1	F2	F3
E1	-25	-35	-20
E2	-20	-15	-35
E3	0	-25	-40