Задача Штурма—Лиувилля

В математической физике важны методы, при которых решение задачи получается в форме ряда, то есть в виде разложения по некоторой системе

функций. Такие разложения хорошо изучены, когда каждая из функций, по которым осуществляется разложение, зависит только от одной из переменных, встречающихся в задаче. Чтобы найти естественную систему функций, по которой можно осуществить разложение, обычно необходимо найти решение некоторой граничной задачи для обыкновенного дифференциального уравнения, получившей название задачи Штурма—Лиувилля. Здесь и далее мы рассмотрим элементы теории задачи Штурма—Лиувилля и сформулируем соответствующие теоремы разложения. При этом, опуская доказательства, будем стремиться к изложению результатов в виде, диктуемом практическими потребностями.

Рассмотрим обыкновенное однородное линейное дифференциальное уравнение второго порядка

$$[p(x)X'(x)]' + [\lambda r(x) - q(x)]X(x) = 0, \quad a < x < b, \tag{3.36}$$

где p(x), q(x), r(x) — вещественные функции от x. Будем предполагать, что p(x), p'(x), q(x), r(x) непрерывны в (a,b); p(x) и r(x) положительны в (a,b); λ — параметр, принимающий любые значения. Уравнение (3.36) можно записать в виде

$$p(x)X''(x) + p'(x)X'(x) + [\lambda r(x) - q(x)]X(x) = 0$$
(3.37)

или в виде

$$X''(x) + \frac{p'(x)}{p(x)}X'(x) + \left[\lambda \frac{r(x)}{p(x)} - \frac{q(x)}{p(x)}\right]X(x) = 0.$$

Коэффициенты уравнения (3.37) в силу сделанных предположений непрерывны в интервале (a,b). Каждая внутренняя точка интервала (a,b) — обыкновенная точка уравнения (3.37). Концы интервала (a,b) могут быть как обыкновенными точками, так и особыми (сингулярными). Напомним, что если при некотором x хотя бы один из коэффициентов уравнения (3.37) имеет бесконечный разрыв или p(x) = 0, то говорят, что коэффициенты уравнения имеют особенность в точке x.

Нас будут интересовать решения уравнения (3.36), удовлетворяющие однородным линейным граничным условиям с вещественными коэффициентами. Граничную задачу с такими условиями называют задачей Штурма—Лиувилля. Таким образом, под задачей Штурма—Лиувилля понимается следующая задача: найти решения уравнения (3.36), принадлежащие классу $C^{(2)}((a,b))$ и удовлетворяющие некоторым однородным граничным условиям, заданным на концах интервала (a,b). Примером таких условий могут быть условия

Примером таких условий могут быть условия

$$X|_{x\to a+0}=0, X|_{x\to b-0}=0.$$

Различают задачи двух типов — регулярную задачу и сингулярную задачу. Задача Штурма—Лиувилля называется регулярной, если интервал (a,b) конечен, концы интервала (a,b) — обыкновенные точки рассматриваемого уравнения. Задача называется сингулярной, если хотя бы одно из этих условий не выполнено. Сингулярная задача может быть с одним или двумя сингулярными концами. Характер однородных граничных условий регулярной и сингулярной задач разный.

Сформулируем типовые граничные условия. В случае регулярной задачи различают: граничные условия первого рода

$$X(a) = 0, X(b) = 0;$$
 (1)

граничные условия второго рода

$$X'(a) = 0, X'(b) = 0;$$
 (II)

граничные условия третьего рода

$$X'(a) - h_a X(a) = 0, \quad X'(b) + h_b X(b) = 0, \quad h_a, h_b \ge 0;$$
 (III)

граничные условия четвертого рода

$$X(a) = X(b), X'(a) = X'(b), p(a) = p(b).$$
 (IV)

Граничные условия четвертого рода называются *условиями периодичности*. Точный смысл сформулированных условий таков:

$$X(a) = \lim_{x \to a+0} X(x), \ X(b) = \lim_{x \to b-0} X(x), \ X'(a) = \lim_{x \to a+0} X'(x),$$

и т. д. Поэтому они иногда называются предельными условиями.

Все перечисленные условия — однородные.

В случае сингулярной задачи различают два варианта задач в зависимости от того, один или два конца сингулярны. Пусть x = a — сингулярный конец, x = b — регулярный конец. Тогда на сингулярном конце ставится условие ограниченности функции

$$X|_{Y\to q+0} = O(1),$$
 (V)

а на регулярном конце могут быть условия первого, второго или третьего рода, например,

$$X'(b) + h_b X(b) = 0, h_b \ge 0.$$

Если оба конца сингулярны, то ставятся условия ограниченности функции

$$X|_{x\to a+0} = O(1), \ \ X|_{x\to b-0} = O(1).$$
 (VI)

Перечисленные условия V и VI также однородны.

Задача Штурма—Лиувилля всегда имеет не представляющее интереса решение $X \equiv 0$, называемое *тривиальным*. Нас будут интересовать *нетривиальные* решения задачи. Однако нетривиальных решений при данном произвольном λ может и не быть. Поэтому содержанием задачи Штурма—Лиувилля является не только отыскание решений при данном λ , но и определение совокупности значений λ ,

при которых существуют нетривиальные решения. Всякое нетривиальное решение задачи Штурма—Лиувилля называется собственной функцией данной задачи. При этом параметр λ должен принимать некоторые определенные значения, которые называются собственными значениями (или числами) задачи. Собственные функции, по определению, находятся с точностью до произвольной константы. Иногда накладывается условие

$$\int_a^b r(x) \big| X(x) \big|^2 dx = 1,$$

тогда мы имеем дело с нормированными собственными функциями. Данному собственному значению могут соответствовать одна или две (не более) собственные функции. Множество всех собственных значений называется спектром данной задачи.

Некоторые свойства собственных значений регулярной задачи Штурма—Лиувилля

Рассмотрим регулярную задачу Штурма—Лиувилля с граничными условиями первого, второго, третьего или четвертого рода.

Уравнение Штурма-Лиувилля:

$$[p(x)X'(x)]' + [\lambda r(x) - q(x)]X(x) = 0, \ a < x < b, \tag{3.38}$$

где p(x), p'(x), q(x), r(x) непрерывны в [a,b]; p(x) и r(x) — положительны в [a,b]. Граничные условия: либо

$$X(a) = 0, \ X(b) = 0,$$
 (1)

либо

$$X'(a) = 0, \ X'(b) = 0,$$
 (II)

либо

$$X'(a) - h_a X(a) = 0, \ X'(b) + h_b X(b) = 0, \ h_a, h_b \ge 0,$$
 (III)

либо

$$X(a) = X(b), X'(a) = X'(b), p(a) = p(b).$$
 (IV)

TEOPEMA 1. Все собственные значения регулярной задачи Штурма—Лиувилля вещественны.

ТЕОРЕМА 2. Все собственные значения регулярной задачи Штурма—Лиувилля ограничены снизу.

ТЕОРЕМА 3. Спектр регулярной задачи Штурма - Лиувилля для краевых условий **I - III** состоит из множества собственных значений, отделенных друг от друга, и не имеет точек сгущения. Каждому собственному значению соответствует одна собственная функция, определенная с точностью до произвольного постоянного множителя.

Такой спектр называется дискретным: $\lambda_1 < \lambda_2 < ... < \lambda_n < ... — последовательность собственных значений. Таким образом, спектр регулярной задачи Штурма—Лиувилля — счетное множество вещественных чисел без точек сгущения. Таким образом, можно построить бесконечную последовательность собственных функций <math>X_1(x), X_2(x), X_3(x), ..., X_n(x), ...$

TEOPEMA 4. Система собственных функций регулярной задачи Штурма— Лиувилля для краевых условий I - III ортогональна на [a,b] с весом r(x), то есть

$$\int_{a}^{b} r(x) X_{m}(x) X_{n}(x) dx = \begin{cases} 0, & m \neq n, \\ \|X_{n}\|^{2}, & m = n. \end{cases}$$
 (3.63)

Пусть f(x) определена на [a,b]. Будем предполагать, что эта функция удовлетворяет некоторым условиям, которые мы уточним в дальнейшем. Поставим задачу: представить функцию f(x) в виде ряда

$$f(x) = \sum_{n=1}^{\infty} C_n X_n(x).$$
 (3.64)

Если предположить, что такое разложение существует и ряд (3.64) сходится так, что он допускает почленное интегрирование, то можно найти коэффициенты разложения C_n . Действительно, умножим (3.64) на $r(x)X_m(x)$ и проинтегрируем по [a,b]

$$\int_{a}^{b} f(x)r(x)X_{m}(x)dx = \sum_{n=1}^{\infty} C_{n}\int_{a}^{b} r(x)X_{m}(x)X_{n}(x)dx.$$

В силу (3.63) будем иметь

$$\int_{a}^{b} f(x) r(x) X_{m}(x) dx = C_{m} \|X_{m}(x)\|^{2} \Rightarrow$$

$$C_{m} = \frac{\int_{a}^{b} f(x) r(x) X_{m}(x) dx}{\|X_{m}(x)\|^{2}}, \quad m = 1, 2, ...$$

Таким образом, окончательно получаем

$$C_n = \frac{\int\limits_a^b f(x)r(x)X_n(x)dx}{\left\|X_n(x)\right\|^2}.$$

Итак, мы формально получили следующее разложение:

$$f(x) = \sum_{n=1}^{\infty} C_n X_n(x), \quad C_n = \frac{\int_a^b f(x) r(x) X_n(x) dx}{\|X_n(x)\|^2}.$$
 (3.65)

Для обоснования этого разложения наложим на функцию f(x) определенные условия. Справедлива следующая теорема разложения

ТЕОРЕМА 5. Пусть функция f(x) определена на [a,b] и удовлетворяет там условиям Дирихле:

- 1) f(x) кусочно-непрерывна на [a,b];
- 2) f(x) имеет конечное число максимумов и минимумов на [a, b].

Тогда ряд (3.65) сходится к значению функции f(x) во всех точках $x \in [a,b]$, где функция непрерывна. В точке разрыва ряд (3.65) сходится и его сумма равна

$$\frac{f(c+0)+f(c-0)}{2},$$

 $rde \ x = c - moчкa \ paзpыва \ nepвого \ poda.$

Домашнее задание № 2 задача шт.-л.

5)
$$y'' + \lambda y = 0$$
, $y'(0) = 0$, $y(l) = 0$, $x \in [0, l]$;

6)
$$y'' + \lambda y = 0$$
, $y'(0) = 0$, $y'(l) = 0$, $x \in [0, l]$;

8)
$$y'' + \lambda y = 0$$
, $y'(l) = 0$, $-y'(0) + hy(0) = 0$, $x \in [0, l]$, $h > 0$;

9)
$$y'' + \lambda y = 0$$
, $-y'(0) + hy(0) = 0$, $y'(l) + hy(l) = 0$, $x \in [0, l]$, $h > 0$;

Разложить функцию f(x) по собственным функциям задачи Шт.-Лиувилля

$$f(x)=1-x$$
, $l=1$, $h=1$;

Примеры

1. Решить задачу Штурма-Лиувилля с краевыми условиями І-го рода:

$$\begin{cases} \mathbf{X}''(x) + \lambda \mathbf{X}(x) = 0, \\ \mathbf{X}(0) = \mathbf{X}(l) = 0. \end{cases}$$
 (1.1)

Общее решение уравнения $\mathbf{X}''(x) + \lambda \mathbf{X}(x) = 0$ имеет вид

$$X(x) = c_1 \sin(\sqrt{\lambda} x) + c_2 \cos(\sqrt{\lambda} x) \qquad \text{при } \lambda > 0;$$

$$X(x) = c_1 e^{\sqrt{-\lambda} x} + c_2 e^{-\sqrt{-\lambda} x} \qquad \text{при } \lambda < 0;$$

$$X(x) = c_1 x + c_2 \qquad \text{при } \lambda = 0;$$

• При $\lambda > 0$ имеем из краевого условия X(0) = 0, что $c_2 = 0$, $\Rightarrow X(x) = c_1 \sin(\sqrt{\lambda} x)$. Поэтому из второго краевого условия X(l) = 0 получаем, что $\sqrt{\lambda} l = \pi n$ откуда имеем бесконечное множество собственных чисел задачи Штурма–Лиувилля:

$$\lambda_n = \frac{\pi^2 n^2}{l^2}, \qquad n \in \mathbb{N}.$$

Им соответствует бесконечное множество собственных функций:

$$X_n(x) = \sin\left(\frac{\pi nx}{l}\right), \quad n \in \mathbb{N}.$$

• При $\lambda > 0$ имеем из краевого условия X(0) = 0, что $c_2 = 0$, $\Rightarrow X(x) = c_1 \sin(\sqrt{\lambda} x)$. Поэтому из второго краевого условия X(l) = 0 получаем, что $\sqrt{\lambda} \, l = \pi n$ откуда имеем бесконечное множество собственных чисел задачи Штурма–Лиувилля:

$$\lambda_n = \frac{\pi^2 n^2}{l^2}, \qquad n \in \mathbb{N}.$$

Им соответствует бесконечное множество собственных функций:

$$X_n(x) = \sin\left(\frac{\pi nx}{l}\right), \quad n \in \mathbb{N}.$$

- При $\lambda < 0$ имеем из краевого условия X(0) = 0, что $c_2 = -c_1$, $\Rightarrow X(x) = 2c_1 \sinh \sqrt{-\lambda} x$. Поэтому из второго краевого условия X(l) = 0 получаем, что $c_1 = 0$, т.е. задача Штурма–Лиувилля не имеет отрицательных собственных чисел.
- При $\lambda=0$ имеем из краевого условия X(0)=0, что $c_2=0$, $\Rightarrow X(x)=c_1x$. Поэтому из второго краевого условия X(l)=0 получаем, что $c_1=0$, т.е. задача Штурма–Лиувилля не имеет собственного числа, равного нулю.

Итак, мы имеем бесконечное множество нетривиальных решений

$$\lambda_n = \frac{\pi^2 n^2}{l^2}, \quad X_n(x) = \sin\left(\frac{\pi n x}{l}\right), \quad n \in \mathbb{N}$$
 (1.2)

задачи (1.1).

5. Решить задачу Штурма-Лиувилля с краевым условием I-го рода на левом конце отрезка $[0,\,l]$ и III-го рода — на правом:

$$\begin{cases} \mathbf{X}''(x) + \lambda \mathbf{X}(x) = 0, \\ \mathbf{X}(0) = \mathbf{X}'(l) + hX(l) = 0, \quad h > 0. \end{cases}$$
 (5.1)

Общее решение уравнения $\mathbf{X}''(x) + \lambda \mathbf{X}(x) = 0$ имеет вид

$$X(x) = c_1 \sin(\sqrt{\lambda} x) + c_2 \cos(\sqrt{\lambda} x)$$
 при $\lambda > 0$;

$$X(x) = c_1 e^{\sqrt{-\lambda} x} + c_2 e^{-\sqrt{-\lambda} x}$$
 при $\lambda < 0$;

$$X(x) = c_1 x + c_2$$
 при $\lambda = 0$;

• При $\lambda > 0$ из краевого условия X(0) = 0 следует, что

$$c_2 = 0$$
, $\Rightarrow X(x) = c_1 \sin(\sqrt{\lambda} x) \Rightarrow X'(x) = c_1 \sqrt{\lambda} \cos(\sqrt{\lambda} x)$.

Поэтому из второго краевого условия X'(l) + hX(l) = 0 получаем, что $\sqrt{\lambda} \cos(\sqrt{\lambda} \, l) + h\sin(\sqrt{\lambda} \, l) = 0$, откуда (очевидно, косинус не может быть равен нулю, т.к. тогда синус равнялся бы (± 1) , и равенство не было бы выполнено)

$$\sqrt{\lambda} = -h \operatorname{tg}(\sqrt{\lambda} l)$$

Это уравнение, как легко увидеть из графика, имеет бесконечно много решений λ_n , $n \in \mathbb{N}$. Сами эти решения явным образом выписать нельзя, но любое может быть найдено со сколь угодно большой точностью численно. Мы их искать не будем, удовлетворившись знанием, что они есть, и их можно найти.

Таким образом, существует бесконечное множество собственных чисел задачи Штурма—Лиувилля:

$$\lambda_n > 0$$
 — решения уравнения $\sqrt{\lambda} = -h \operatorname{tg}(\sqrt{\lambda} l), \quad n \in \mathbb{N}.$

Им соответствует бесконечное множество собственных функций:

$$X_n(x) = \sin\left(\sqrt{\lambda_n} x\right), \quad n \in \mathbb{N}.$$

- ullet При $\lambda < 0$ задача Штурма-Лиувилля никогда не имеет нетривиальных решений.
- При $\lambda=0$ имеем из краевого условия X(0)=0, что $c_2=0$, $\Rightarrow X(x)=c_1x$ $\Rightarrow X'(x)=c_1$), и второе краевое условие X'(l)+hX(l)=0 даёт требование $c_1+c_1hl=0$, откуда $c_1=0$, и у данной задачи нет нетривиальных решений при $\lambda=0$.

Итак, мы имеем бесконечное множество нетривиальных решений

$$\lambda_n>0$$
 — решения уравнения $\sqrt{\lambda}=-h\operatorname{tg}(\sqrt{\lambda}\,l), \quad X_n(x)=\sin\left(\sqrt{\lambda_n}\,x\right), \quad n\in\mathbb{N}$ (5.2) задачи (5.1).