Stochastic Processes: Basic Definitions

Stochastic process

Discrete vs. continuous time

Markov property

The value of a variable changes in an
uncertain way

When can a variable change?

What values can a variable take?

Only the current value of a variable is relevant
for future predictions

No information from past prices or path
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A Chain




Markov Chain

= The state transition diagram:
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Markov Chain

» Consider time index n=0,1,2,... & time dependent random state X,

>

State X,, takes values on a countable number of states

» In general denotes states as i1 =0,1,2,...
» Might change with problem

Denote the history of the process X, = [X,, Xn_1,...,X0] "

Denote stochastic process as Xy
The stochastic process Xy is a Markov chain (MC) if
P[Xot1=J|Xo =i, Xp1] =P [Xop1 =j| Xa=i] = P;

Future depends only on current state X,

11



Observations

>

Process’s history X,,_; irrelevant for future evolution of the process

Probabilities P are constant for all times (time invariant)
From the definition we have that for arbitrary m
P [Xn+m | Xna Xn—l] =P [Xn+m |Xn]

Xn+m depends only on X, ,—1, which depends only onX,, o,
...which depends only on X,

Since Pj's are probabilities they're positive and sum up to 1

Pi>0 > Pj=1
j=1

12



Matrix Representation

» Group transition probabilities P in a “matrix” P

/Poo Po1  Po2
Pio P11 P2

Pio  Pa P

\

.

» Not really a matrix if number of states is infinite
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Graph Representation

» A graph representation is also used

PI 1 J—1 P;: P,+1 i+1
u
l 2,i—1 I 1,/ Il+1 1+11+2
l 1,i—2 II 1 l+ll I+2l+1

» Useful when number of states is infinite
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Happy - Sad

>

>

>

>

>

| can be happy (X, =0) or sad (X, = 1).
Happiness tomorrow affected by happiness today only

Model as Markov chain with transition probabilities

0.8 0.7

Inertia = happy or sad today, likely to stay happy or sad tomorrow
(Poo = 0.8, P11 =0.7)

But when sad, a little less likely so (Pyo > P11)

0.8 0.2
P= ( 0.3 0.7 )
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Happy - Sad 2

» Happiness tomorrow affected by today and yesterday

» Define double states HH (happy-happy), HS (happy-sad), SH, SS
» Only some transitions are possible

» HH and SH can only become HH or HS
» HS and SS can only become SH or SS
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» More time happy or sad increases likelihood of staying happy or sad

P .=

» State augmentation => Capture longer time memory iy



Random Walk

» Step to the right with probability p, to the left with prob. (1-p)
p p p p
@ _0_@®
~_ -~ ~_ -~
1—p 1—p 1—p 1—0p

» States are 0, +1,£2, ..., number of states is infinite

» Transition probabilities are
Pii+1=p, Pii-1=1-—p,

» P; = 0 for all other transitions
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Random Walk Continous

position (in steps)

» Random walks behave differently if p <1/2, p=1/20r p > 1/2
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With p > 1/2 diverges to the right (grows unbounded almost surely)
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With p < 1/2 diverges to the left
With p = 1/2 always come back to visit origin (almost surely)

Because number of states is infinite we can have all states transient
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» They are not revisited after some time (more later)
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2D Random Walk

» Take a step in random direction East, West, “
South or North . =
= E, W, S, N chosen with equal probability g” J%:T n
» States are pairs of coordinates (x, y) i "%;;* PRt
» x=0,+1,4+2,...and y = 0, 41,42, . .. i M% e
» Transiton probabilities are not zero only for

0 5 10

25 30 35 40

points adjacent in the grid

P [x(t+1) = i+1,y(t +1) = | x(t) = i, y(t) =] =

P [x(t+1) = i—1,y(t +1) =j | x(t) = i, y(t) =] =

P [x(t+1) =i, y(t+1) = j+1 | x(t) = i, y(t) = j] =

Px(t+1) =i, y(t+1) =j—-1|x(t) =i,y(t) =j] =
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MutiStep Model

» What can be said about multiple transitions ?
» Transition probabilities between two time slots
P =P [Xmio =j| Xm=1]
» Probabilities of X1, given X,, = n-step transition probabilities

P} =P [Xmin=Jj| Xm =]

» Relation between n-step, m-step and (m + n)-step transition probs.

» Write P,;.”Jr" in terms of P’ and Pj

» All questions answered by Chapman-Kolmogorov's equations
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2"d Step probabilities

» Start considering transition probs. between two time slots
Pj =P [Xorz = j| Xo = ]
» Using the theorem of total probability
P2=> P[Xps2=1j|Xnt1 =k, Xn=i] P [Xpp1 = k| X, =]
k=1
» In the first probability, conditioning on X,, = i is unnecessary. Thus
Pi=> P[Xoy2=j|Xnp1 = k] P [Xns1 = k| X, = i]
k=1

» Which by definition yields

Pi=> PP
k=1
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N+M step

> ldentical argument can be made (condition on Xj to simplify
notation, possible because of time invariance)

Pt =P [Xoym =Jj | Xo = 1]
» Use theorem of total probability, remove unnecessary conditioning

and use definitions of n-step and m-step transition probabilities

P,.T+":ZP[X,,,+,,=J'|X,,,=k,xozi]P[xm:k}xozi]
k=1

Pg’+"=ZP[Xm+,,:j|Xm=k]P[x,,,:k|x0:i]
k=1

o%e)

m—+n __ n pm

Pij —E:ij ik
k=1
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Equation

>

>

Chapman Kolmogorov is intuitive. Recall
oo
+n _
Pi" =D PiPR
k=1

Between times 0 and m + n time m occurred
At time m, the chain is in some state X,,, = k
= P is the probability of going from Xy =i to X, = k
= Py; is the probability of going from X, = k to Xinin =
= Product P,-’L’P,'(’j is then the probability of going from

Xo =1 to Xpy4n = J passing through X,, = k at time m
Since any k might have occurred sum over all k
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Matrix equation

>

>

Define matrices P(™ with elements P,T P(") with elements Pﬁ and
P(m+n) with elements pr

> et Pg;Pii is the (i,/)-th element of matrix product p(mp(n)

Chapman Kolmogorov in matrix form

p(m+n) _ p(m)p(n)

Matrix of (n + m)-step transitions is product of n-step and m-step
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N-th transition probabilities

» For m = n =1 (2-step transition probabilities) matrix form is

P2 = PP = P2

» Proceed recursively backwards from n
PN = plr-1p = pn-2pp = | =P~
» Have proved the following

Theorem

The matrix of n-step transition probabilities P\") s given by the n-th
power of the transition probability matrix P. i.e.,

P(n) — pr

Henceforth we write P"
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Happy Sad Game

» Happiness transitions in one day (not the same as earlier example)

0 e Q)
(38 @ @
0.3

» Transition probabilities between today and the day after tomorrow?
0.70 0.55

0 0w ()
o0

0.45

p2._ (070 030
=\ 045 055
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A Chain

>

... After a week and after a month

p7 . 0.6031 0.3969 p30 ._ 0.6000 0.4000
"~ \ 0.5953 0.4047 "~ \ 0.6000 0.4000

Matrices P” and P3% almost identical = lim,_,., P" exists
» Note that this is a regular limit

After a month transition from H to H with prob. 0.6 and from S to
H also 0.6

State becomes independent of initial condition

Rationale: 1-step memory => initial condition eventually forgotten
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Unconditional probabilities

>

>

All probabilities so far are conditional, i.e., P [X, = j ] Xo = i]
Want unconditional probabilities p;j(n) := P [X,, = j]
Requires specification of initial conditions p;(0) := P [Xp = i]

Using theorem of total probability and definitions of P and p;(n)
pi(n) =P [Xo=41=) P[Xa=j|Xo=i]P[X =]
i=1
= Pipi(0)
i=1

Or in matrix form (define vector p(n) := [p1(n), p2(n),...]")

p(n) = P""p(0)
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Universium

. - : 0.8 0.2
» Transition probability matrix = P := ( 03 0.7 )

p(0) =[1,0] p(0) =[0,1]
1 T 1 T
P(Happy) — P(Happy)
09} - P(Sad) H 0.9 P(Sad) |{
08 08}
0.7 0.7}
o 06[ o 06
2 2
S 05} S 05
2
8 8
& o4t < o4}
03F 03r
0.2 ozr
01 01
0 ] ) L ] 0 ]
0 10 15 20 25 0 10 15 20 25 30
Time (days) Time (days)

» For large n probabilities p(t) are independent of initial state p(0)
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Markov Chain

= Stationary transition probability:

« If foreachiandj, P{ X, =j|Xi=i}=P{X;=]j| X, =1}, for
all t, then the transition probability are said to be stationary.
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Markov Chain

= Steady-State Equations :

M
;= Zfr,-p,-j fori=0,1,.., M
i=0

M
Zﬂ'j=1

j=0

= , which consists of M+2 equations in M+1 unknowns.
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Markov Chain

= A stochastic process {X.} is @ Markov chain if it has Markovian
property.

= Markovian property:
- P{ xt+1 =j | XO = kOl Xl = kll veny Xt-l = kt-ll Xt = I}
=P{ Xy =] X =i}

s P{X.1=]J| X =1} is called the transition probability.

32



