Markov Chain

Definition 44

The process {X,,} is a Markov chain if it satisfies the Markov property:
]P)(Xn =j|XO = X0, "'an—l = l) = [P)(Xn =j|Xn—1 = l)

foralli,j, xg,..<x,_» € Sandforalln = 1,2,3,....

* The Markov property implies that:
P(Xn, = j|Xn, = %0, r Xy, =1) = P(Xp, = j|Xn,_, =1)
forall k,n,allnyg <ny <-- <ny_; S ngandalli,j,xg, ..., Xp,_,

= Also
]P(Xn+m :j|XO = X0, Xm = i) = ]P(Xn+m :j|Xm = i)

>



Homogeneous Chain

= The evolution of a markov chain is defined by its transition probability, defined by
P(X,,+1 = j|X, = i) (where without loss of generality we may assume that S is an integer
set.

Definition 45

= The chain {X,,} is called homogeneous if its transition probabilities do not depend on the
time, i.e.,
PXp+1 = jlXn = 1) = P(X; = jlXo = 1)

for all n, i, j. The transition probability matrix P = [p; ;] is the |S| x |S| matrix of
the transition probabilities, such that p; j= P(X;,4, = j|X;, = 1)



Transition Matrix

Theorem
The transition matrix P of a Markov chain is a stochastic matrix, that is, it has non-negative elements

such that
z pij =1

JES
(sum of the elements on each row yields 1)

* In order to characterize the probability for n steps transitions, we introduce the n-step transition
probability matrix with elements
pi,j(m'm +n) =PXpsn =jlXm =1)
= By homogeneity, we have that P(m,m + 1) = P.

= Furthermore, P(m,m +n) 2 P does not depend on m.
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Transition Matrix

p(s, ﬂz? W E bed, 14

pij(m,m+mn+r)= Zpi,k(m, m +n)pg;(m+mn,m+n+r)
k

Therefore, P(m,m + n+1r) = P(m,m +n)P(m + n,m + n + r). It follows that for
homogeneous Markov chains, P(m,m +n) = P%, i.e, P = P"
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Initial State pmf

= We let u(n) denote the pmf of X,,, that if] for each n we have that u(n) is a vector with |S]|
non-negative components that sum to/l.

u(m +n) = u(m)P™, and heny¢e u(n) = u(0)P™". This describes the pmf of X,, in terms of the
initial state pmf u(0). Z

“n’ \lp 'P




Example

LetS = {1, 2, 3,4,5,6} and consider the transition matrix

2 3 0 0 0 0]
1 3
L3000 0
1 1 1 1
p_|1 14141200
L p 1 1 o 1
4 4 4 4
o000 1
0000} L




Stationary Distribution

Definition

The vector 7 is called a stationary distribution of the chain if it has entries { 7;: j € S} such
that:

a)m; = 0forallj,and Y jesm; = 1.

b) it satisfies # = mP, thatis, m; = };m;p; ; forall j € S.

= This is called “stationary distribution” since if X,y is distributed with u(0) = =, then all
X, will have the same distribution, in fact

u(n) =u(0)P" = wP" = PP = gaP" 1= ... =g
* Given the classification of chains and the decomposition theorem, we shall assume that the

chain is irreducible, that is, its state space is formed by a single equivalence class of
intercommunicating (persistent) states C or by the class of transient states T



Stationary Distribution

Theorem

A irreducible chain has a stationary distribution r if and only if all states are non-null
: : : : . 1
persistent. In this case, 7 is unique and satisfies 7; = o
J
where is the mean recurrence time of state j.
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Let S = {1, 2} and consider the transition matrix

|

P =

B = N
B0 N
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Convergence
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Convergence

Definition Let {z,,n > 1} be a real-valued sequence, i.e., a map from N to R. We say that the
sequence {z,} converges to some z € R if there exists an ng € N such that for all € > 0,

|zn — z| < €, ¥V 1 2 ny.

We say that the sequence {z,} converges to +oc if for any M > 0, there exists an ny € N such that for all

n>ng, Tn > M.
We say that the sequence {z,} converges to —oc if for any M > 0, there exists an ng € N such that for all

n>ng, Tn < —M.

Let (Q, F,P) be a probability space and let {X,, },en be a sequence of real-valued random variables defined

on this probability space.
13
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Convergence

Definition [Definition 0 (Point-wise convergence or sure convergence)]
A sequence of random variables { X, }nen is said to converge point-wise or surely to X if

Xn(w) » X(), YVwen.
—

X“(o)f_ xLXZXﬁﬁe ———— —

K. \} K(D\ *Z
¥ (1) Xq X5 Xe
X XQX(()

P
Time S c}‘astic Processes 14
;s §

}«




Convergence

Definition Definition 1 (Almost sure convergence or convergence with probability 1)]
A sequence of random variables {X,, }nen is said to converge almost surely or with probability 1 (denoted by
a.s. orw.p. 1) to X if

P{w|Xn(w) = X(w)}) = 1.

—
—_—
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Convergence

Definition [Definition 2 (convergence in probability)]
A sequence of random variables { X, }nen is said to converge in probability (denoted by i.p.) to X if

lim P(|X, - X|>€)=0, Ve>0.

Time Series and Stochastic Processes 16



Convergence

Definition [Definition 3 (convergence in r*® mean)]

A sequence of random variables { X, }nen is said to converge in " mean to X if

lim E[|X, — X|"] = 0.

n—oo

Time Series and Stochastic Processes
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Convergence

Definition [Definition 4 (convergence in distribution or weak convergence)]
A sequence of random variables { X, }nen is said to converge in distribution to X if

li_)m Fx, (z) = Fx(z), V x &R where Fx(-) is continuous.
n—oo

T
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Convergence

(1) Point-wise Convergence: X, =5 X.
(2) Almost sure Convergence: X, ~— X or X, eyt X

(3) Convergence in probability: X, LNS'S

(4) Convergence in r** mean: X, — X. When r = 2, X,, = X.

(5) Convergence in Distribution: X, 2, x.

Time Series and Stochastic Processes
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Convergence

Example: Consider the probability space (€2, F,P) = ([0, 1], B([0,1]), A) and a sequence of random variables
{Xn,n > 1} defined by

i 1
X (w) = {n, ifwe [0, n] ,

0, otherwise.

Time Series and Stochastic Processes 20



Convergence

x ™ with probability %,
" |0, with probability 1 — 1.

Clearly, when w # 0, 1i_1)n Xn(w) = 0 but it diverges for w = 0. This suggests that the limiting random

variable must be the constant random variable 0. Hence, except at w = 0, the sequence of random variables
converges to the constant random variable 0. Therefore, this sequence does not converge surely, but converges

almost surely.

21
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Convergence

For some € > 0, consider

lim P(|X,|>¢) =
n—oo

Hence, the sequence converges in probability.

Time Series and Stochastic Processes

lim P (X, =n),

n—oo

lim (1),
n—oo \ N

22



Convergence

Consider the following two expressions:

lim E[|X,[*] = lim

n—oo

lim E[|X,|]] =

n—oo

lim
n—00

1.

n—oo
= 0OQ.

1
n

Time Series and Stochastic Processes

(n2x1+0),
n
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Convergence

X,(0): 221222022222 10222w

p.w.=—=a.s.

i.p.=D

rt" mean (r > 1)=———= 5" mean (r > s > 1)

Time Series and Stochastic Processes
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Convergence

Theorem Xp 53X = Xo-BX, Vr>1

Proof: Consider the quantity li_)m P(|X, — X| > €). Applying Markov’s inequaliy, we get
n o0

lim P(|X,—X|>¢ < lim E“X"_X|],ve>o,

n—oo n—oo 61‘

(;) 0,

P (M%) ¢ E@;\

Time Series and Stochastic Processes 25

where (a) follows since X,, — X. Hence proved.




Convergence

Theorem X, 2 X = X, > X.
e

Proof: Fix an € > 0.

FX'n (x = P(Xn S :1;),
=P(X,<z,X<z+¢+PX,<z,X >z+¢),
P(| X, — X| > ¢€).

Q

Similarly,
Fx(z—¢)=P(X <z —¢),
=PX<z-¢X,<2)+P(X<z-¢X,>1),
< Fx, (z) + P(| X, — X| > €).

)
/
Thus, d

Fx(z —¢) —P(|X, — X| >¢) < Fx, (z) < Fx(z +¢€) + P(| X, — X| > ¢).

/

Asn — oo, since X, 1Py X, P(|X,, — X| > €) = 0. Therefore,

Fx(z — €) < liminf Fx, (z) < limsup Fx, (z) < Fx(z +¢€), Ve > 0.
n—oo n—oo

If F is continuous at z, then Fx(z — €) T Fx(z) and Fx(z + ¢€) | Fx(z) as € | 0. Hence proved.
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Convergence

Theorem

7

\/ E(@M— Y J20 E[G\,\q«)s) -0

Xp—>X = X, 5 X,ifr>s>1.

(E[| X, — Xlﬂ)l/; < (B[ X, — X|")'",
i S N R
G( R)) é(E(A ) e

Time Series and Stochastic Processes
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Convergence

Theorem X, Ihy x = X, — X in general.

Proof: Proof by counter-example:
Let X,, be an independent sequence of random variables defined as

3 1
an{ n®, w.p. -3,

o 0, w.p. 1-#.

- -0
v ; v

Then, P(|X,| > €) = -5 for large enough n, and hence X, ~P4 0. On the other hand, E[|X,|] = n, which

diverges to infinity as n grows unbounded. [ |

Time Series and Stochastic Processes 28



Convergence

Theorem Xy e ¥ = X, 1Py X in general.

Proof: Proof by counter-example:
Let X be a Bernoulli random variable with parameter 0.5, and define a sequence such that X;=X V i. Let

Y=1- X. Clearly, X; — Y. But, |X; — Y|=1, V i. Hence, X; does not converge to Y in probabilitv. =~ m

Time Series and Stochastic Processes 29



Convergence

Theorem X, B X = X, 2% X in general. M@ \(\/\Q V\’&' ey\e(&

Proof: Proof by counter-example:
Let {X,} be a sequence of independent random xariables defined as

1, w.p. ' - '
X":{ 0, w.p. f-% - X }a l1

lim P(|X,|>¢€) = lim P(X, =1)= lim % =0.So, X, - 0.
n—oo n—oo n

—oo ™

Let A, be the event that {X, = 1}. Then, A,’s are independent and > P(A,) = oo. By Borel-Cantelli

n=1
Lemma 2, w.p. 1 infinitely many A,,’s will occur, i.e., {X,, = 1} i.0.. So, X,, does not converge to 0 almost
surely. [ |
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Convergence

Theorem X, —>X 5 X,— X ifr>s>1in general.

Proof: Proof by counter-example:
Let {X,} be a sequence of independent random variables defined as

1
n, wW.p. —m=,
.Xn - e 1

n
0, ‘Wip.. 1 —.

n 2

Hence, E[|X%|]] =n"7 — 0. But, E[|X7|] =n"7 — c.

Time Series and Stochastic Processes 31



Convergence

Theorem X S X = X, 2% X in general.

Proof: Proof by counter-example:
Let {X,} be a sequence of independent random variables defined as

1, wp. 1
Xn — ) n?
{ 0, w.p. 1—;1;.

E[X2]=1. So, X, =5 0. X,, does not converge to 0 almost surely.

Time Series and Stochastic Processes 32



Convergence

Theorem X, 2 X =4 X, ™% X in general.

Proof: Proof by counter-example:
Let {X,} be a sequence of independent of random variables defined as

[ n, we (0,%L ,
Xn(w) = { 0, otherwise.

We know that X,, converges to 0 almost surely. E[XZ%]=n — oo. So, X,, does not converge to 0 in the
mean-squared sense. ]

Before proving the implication X, —3 X = X, — X, we derive a sufficient condition followed by a
necessary and sufficient condition for almost sure convergence.

Time Series and Stochastic Processes 33



Convergence

Theorem 28.20 [Skorokhod’s Representation Theorem)]
Let {X,,n > 1} and X be random variables on (2, F,P) such that X,, converges to X in distribution. Then,
there exists a probability space (', F',P’), and random variables {Y,,n > 1} andY on (', F',P') such that,

a) {Yn,n > 1} and Y have the same distributions as {X,,n > 1} and X respectively.

b)) Y, 3Y asn — .

Time Series and Stochastic Processes 34



Convergence

Theorem 28.21 [Continuous Mapping Theorem]
If X, B X, and g: R — R is continuous, then 9(X,) EaS 9(X).

Proof: By Skorokhod’s Representation Theorem, there exists a probability space (2, F', '), and {Y,,n >
1}, Y on (', F',') such that, ¥;, “3' Y. Further, from continuity of g,

{we | g(Yn(w)) > g(Y(w)} 2{we|Yn(w) > Y(w)}

= P({w e @' | g(Ya(w)) = g(Y(w))}) 2 P({w € Q' | Ya(w) = Y(w)}),

= P{w e 2 [g(Yn(w)) = g(Y(w)}) 2 1,

= 9(Ya) =5 g(Y),

= g(Ya) = g(¥).

This completes the proof since, g(Y;,) has the same distribution as g(X,,), and g(Y") has the same distribution
as g(X). ]
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Convergence
Theorem 28.23 If X,, -2 X, then Cx, (t) — Cx (), Vt.

Proof: If X,, 2y x , from Skorokhod’s Representation Theorem, there exist random variables {Y,,} and Y

such that Y,, =5 Y.
So,
cos(Y,t) — cos(Y't), cos(X,t) — cos(Xt), Vt.

As cos(+) and sin(-) are bounded functions,
E[cos(Ynt)] + iE[sin(Yy,t)] — E[cos(Y't)] + iE[sin(Y't)], Vt.

= Cy, (t) — Cy(t), Vt.

We get,
C-X'n (t) — CX (t)’ Vt?

since distributions of {X,} and X are same as those of {Y,,} and Y respectively, from Skorokhod’s Repre-
sentation Theorem. |



Convergence

Example 1: Let the random variable U be uniformly distributed on [0, 1]
defined as:

X(n) = #

1. Almost sure convergence: Suppose

The sequence becomes

In fact, for any a € [0, 1]
liIn Xn = 0,

n—oc

therefore, X,, — (.

. Consider the sequence

37



Convergence

Convergence in mean square sense:

In order to answer this question, we need to prove that
lim E [|X, — 0]*] =0.
n—oo

We know that,

lim E [|X, —0]*] = lim E[X2],

n—oo n—oc

. U?
i 7|1

Il
3
&=

Il
—

Hence, X,, =23 0.
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