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Markov	Chain

3

§ The	Markov	property	implies	that:

ℙ "!! = $ "!" = %", … , "!!#$ = ( = ℙ "!! = $ "!!#$ = (
for	all	), *, +,, *" ≤ *# ≤ ⋯ ≤ *$%# ≤ *$ and	all	(, $, %", … , %!!#$

§ Also
ℙ "!&' = $ "" = %", … , "' = ( = ℙ "!&' = $ "' = (

The	process	{"!} is	a	Markov	chain	if	it	satisfies	the	Markov	property:
ℙ "! = $ "" = %", … , "!%# = ( = ℙ "! = $ "!%# = (

for	all	(, $, %", … < %!%( ∈ 3 and	for	all	* = 1,2,3,… .

ЕЕ



Homogeneous	Chain

§ The	evolution	of	a	markov chain	is	defined	by	its	transition	probability,	defined	by	
ℙ "!&# = $ "! = () (where	without	loss	of	generality	we	may	assume	that	S	is	an	integer	
set.
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Definition	45
§ The	chain	{"!} is	called	ℎ:;:<=*=:>? if	its	transition	probabilities	do	not	depend	on	the	
time,	i.e.,

ℙ "!&# = $ "! = () = ℙ "# = $ "" = ()
for	all	*, (, $.	The	transition	probability	matrix	@ = [B),+] (? Dℎ= |3| % |3|matrix	of
the	transition	probabilities,	such	that B),+= ℙ "!&# = $ "! = ()



Transition	Matrix	
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§ In	order to characterize the probability for n	steps transitions,	we introduce the !-step transition
probability matrix with elements

"!,#($,$ + !) = ℙ(*$%& = +|*$ = -)

§ By homogeneity,	we have that .($,$ + 1) = ..

§ Furthermore,	.($,$ + !) ≜ .(&) does not depend on$.

Theorem
The	transition matrix P of a	Markov chain is a	stochastic matrix, that is,	it has non-negative elements
such that
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#∈*

"!,# = 1

(sum of the elements on each row yields 1)
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Transition	Matrix
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Theorem

Therefore,	@ ;,; + * + G = @ ;,; + * @ ; + *,; + * + G . It	follows	that	for	
homogeneous	Markov	chains,	@ ;,; + * = H!,	i.e.,	@(!) = @!
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Lemma

Initial	State	pmf

§ We	let	I(*) denote	the	pmf of	"!, that	is,	for	each	*we	have	that	I(*) is	a	vector	with	|3|
non-negative	components	that	sum	to	1.

7

I ; + * = I ; K!,	and	hence	I * = I 0 K!.	This	describes	the	pmf of	"! in	terms	of	the	
initial	state	pmf I 0 .
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Example

Let	/ = {1, 2, 3, 4, 5,6} and	consider	the	transition	matrix
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Stationary	Distribution

§ This	is	called	“stationary	distribution”	since	if	"" is	distributed	with	I(0) = M,	then	all	
"! will	have	the	same	distribution,	in	fact	

§ Given	the	classification	of	chains	and	the	decomposition	theorem,	we	shall	assume	that	the	
chain	is	irreducible,	that	is,	its	state	space	is	formed	by	a	single	equivalence	class	of	
intercommunicating	(persistent)	states	N or	by	the	class	of	transient	states	O.
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Definition
The	vector	P is	called	a	stationary	distribution	of	the	chain	if	it	has	entries	{ P+: $ ∈ 3} such	
that:	
a)	P+ ≥ 0 for	all	$,	and	∑+∈/P+ = 1.
b)	it	satisfies	M = MP,	that	is,	P+ = ∑) P)B),+ for	all	$ ∈ 3.	



Theorem

Stationary	Distribution

A irreducible	chain	has	a	stationary	distribution	, if	and	only	if	all	states	are	non-null	
persistent.	In	this	case,	, is	unique	and	satisfies	,! = "

#+
,

where	is	the	mean	recurrence	time	of	state	..
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Convergence
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Convergence

Time	Series	and	Stochastic	Processes 13
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Convergence
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Convergence
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