Индивидуальное домашнее задание (3 модуль)

- 1. В условиях задачи 10 ИДЗ 1 (2 модуль) найдите:
 - 1) Математическое ожидание и дисперсию случайных величин ξ и η .
 - 2) Ковариацию и коэффициент корреляции случайных величин ξ и η
 - 3) Математическое ожидание и дисперсию случайной величины μ , математическое ожидание и ковариацию случайных величин μ_1 и μ_2
- 2. В условиях задачи 12 ИДЗ 1 (2 модуль) найдите
 - 1) Математическое ожидание и дисперсию случайных величин ξ и η .
 - 2) Ковариацию и коэффициент корреляции случайных величин ξ и η .
 - 3) Математическое ожидание случайной величины μ .
- 3. В условиях задачи 10 ИДЗ 1 (2 модуль) найдите:
 - 1) условное математическое ожидание с.в. ξ при условии η ;
 - 2) условное математическое ожидание с.в. η при условии ξ ;
- **4.** В условиях **задачи 12 ИДЗ 1 (2 модуль)** найдите условное математическое ожидание с.в. η при условии ξ и условное математическое ожидание с.в. ξ при условии η .
- 5. Выполните следующие задания:
 - 1) По заданным плотностям $p_{\xi}(x)$ и $p_{\eta}(y)$ найдите характеристические функции $f_{\xi}(t)$ и $f_{\eta}(t)$ случайных величин ξ и η ; характеристическую функцию $f_{\mu}(t)$ случайной величины $\mu = \xi + \eta$
 - 2) По заданной характеристической функции $f_{\xi}(t)$ вычислите математическое ожидание случайной величины ξ и дисперсию случайной величины ξ .
- **6.** Посетитель тира платит a рублей за выстрел. При попадании в девятку получает выигрыш b рублей, при попадании в десятку получает выигрыш c рублей. Если стрелок не попадает ни в девятку, ни в десятку, то деньги ему не выплачиваются. Вероятности попадания в девятку, десятку и промаха равны p_1 , p_2 и p_3 соответственно. Число посетителей равно n.

С помощью неравенства Чебышева:

- 1) найдите границы, в которых будет лежать суммарная прибыль владельца тира с вероятностью не менее α :
- 2) найдите число посетителей тира, чтобы вероятность отклонения суммарной прибыли от среднего размера суммарной прибыли на величину не меньше β % (от средней суммарной прибыли) равнялась p

С помощью центральной предельной теоремы оцените вероятность того, что

- 1) размер убытка у владельца тира будет лежать в пределах от m_1 до m_2 рублей;
- 2) что суммарная прибыль окажется в пределах от n_1 до n_2 рублей.
- **7.** По заданным выборкам $X_1, X_2, ..., X_n$ и $Y_1, Y_2, ..., Y_n$ объема n = 50 найти и построить:
 - 1) минимальный и максимальный элементы выборки, разброс выборки, статистический ряд;
 - 2) гистограмму, полигон относительных частот, эмпирическую функцию распределения (для выборки X_1, X_2, \dots, X_n);
 - 3) выборочные характеристики: среднее, дисперсию (смещенную и несмещенную) (по выборке и по статистическому ряду), медиану.
- **8.** Известно, что выборка $X_1, X_2, ..., X_n$ подчиняется теоретическому распределению с заданною плотностью $p_{\xi}(x)$ с неизвестным параметром. Найдите оценку неизвестного параметра методом моментов
- **9.** а) Известно, что выборка X_1, X_2, \dots, X_n подчиняется теоретическому распределению с заданною плотностью

$$p(x) = \begin{cases} 2\sqrt{\frac{\overline{a}}{\pi}}e^{-\left(x\sqrt{a} - \frac{\sqrt{b}}{x}\right)^{2}}, & x > 0\\ 0, & x \le 0 \end{cases}$$

с неизвестными параметрами (a, b).

б) Известно, что выборка Y_1, Y_2, \dots, Y_n подчиняется теоретическому распределению с заданною плотностью

$$p(x) = \begin{cases} \frac{1}{\sqrt{a\pi x^2}} e^{-\frac{(\ln x - b)^2}{2a}}, & x > 0\\ 0, & x \le 0 \end{cases}$$

с неизвестными параметрами (a, b).

Найдите оценку максимального правдоподобия этих параметров

- 10. С помощью критерия отношения правдоподобия проверьте:
 - 1) гипотезы H_0 и H_1 о принадлежности выборки X_1, X_2, \dots, X_n дискретному распределению с заданными параметрами.
 - 2) гипотезы H_0 и H_1 о принадлежности выборки Y_1, Y_2, \dots, Y_n непрерывному распределению с заданными параметрами.
- **11.** С помощью критерия χ^2 проверьте:
 - 1) гипотезу о принадлежности выборки $X_1, X_2, ..., X_n$ к заданному дискретному распределению (с помощью метода моментов найдите параметры распределения).
 - 2) гипотезу о принадлежности выборки Y_1, Y_2, \dots, Y_n заданному непрерывному распределению (с помощью метода моментов найдите параметры распределения).

Распределение баллов (15 баллов)

Задача 1	Задача 2	Задача 3	Задача 4	Задача 5	Задача 6	
1, 5 балла	1,5 балла	1 балл	1 балл	1,5 балла	1,5 балла	

Задача 7	Задача 8	Задача 9	Задача 10	Задача 11		
1,5 балл	1 балл	1,5 балла	1,5 балла	1,5 балла		

	5.	Независим	ные непрер	ывные с	случай	ные ве	личиі	ыξи	ηим	еют п	лотнос	ти распр	ределени	Я		
		$p_{\xi}(x) = \begin{cases} \ln 4 \cdot 4^{-x}, & x \ge 0 \\ 0, & x < 0, \end{cases} \text{if } p_{\eta}(y) = \begin{cases} \frac{2}{21}(3+y), -1 \le y \le 2 \\ 0, & y < -1, & y > 2 \end{cases}$														
			Ρξ	$(x) - \{$	0,	x < 0),	η ρη	(<i>y</i>) -	_ (0, <i>y</i> <	x - 1, y	> 2			
		$f(t) = \frac{\cos^2 4t}{e^{t^2}}$														
) (<i>i</i>	e^t	-2							
-	6.	6. $a = 600, b = 1000, c = 2500, p_1 = 0.2, p_2 = 0.15, p_3 = 0.65, n = 40$										n = 400,				
		$lpha = 0.85, \beta = 10, p = 0.1$ $m_1 = 0, m_2 = 1000, n_1 = 5000, n_2 = 13000$														
				$m_1=0$,	, m	$k_2 = 10$	000,	n_1	= 50	00, n	$t_2 = 13$	8000				
-	7.	Выборка Х	χ ₁ ,, χ _n													
	, ,	0 6 1	1 4	0 13	9 3	0										
		1 8 0	1 0	0 3	2 3	0										
		1 1 8	1 0 3 9 10 5 11 2	0 2	1 1	1										
			6 11 2													
		Выборка У		1 0	0 4	3										
		_	1.42 5.4	4 2.15	3.70	0.04	0.49	0.17	0.5	1						
		3.07 7.76	3.72 0.2	4 1.16	0.57	9.31	2.50	10.10	0.82	2						
			4.39 8.5					0.31	6.7							
			1.38 5.8 2.26 0.9					3.95	12.42							
		0.77 2.24	2.20 0.7	0 4.00	3.23	1./4	0.74	0.40	1.7.	,						
-	8.	Выборка Х	$X_1,, X_n - 1$	имеет п.	лотнос	ть рас	преде	ления								
				f(:	$(x) = \begin{cases} 1 & \text{if } x > 0 \end{cases}$	$0\lambda_1 e^{-\lambda}$	$l_1 x + ($	(1-p)	$)\lambda_2 e^{-i}$	$-\lambda_2 x$	x > 0					
		При залан	ных значен		-	,					_	и параме	тра р.			
3		При заданных значениях параметров $\lambda_1=0.2$ и $\lambda_2=0.4$ найти оценку параметра p . Таблица частот														
			интер-	0-1	1-2	2-3	3-4	4-5	5-6	6 6-	7 7-8	8-9	9-10			
			валы частоты	105	70	63	42	28	19) 15	5 9	7	15			
-		По заданной таблице частот найти оценку ММП параметров а и в														
	9.	9. По заданной таблице частот найти оценку MMII па интер- 1.2- 1.8- 2.4-														
				валы			.4	3	3.6	4.2	4.8	5.4				
				частот	ы 3	6 1	14	144	71	56	51	28				
		По заданной таблице частот найти оценку ММП параметров a и b														
		l _F		частот 1.5-	найти 3.0-		y MM 5-	П пар 6.0-		ов <i>а</i> 1 5-	и <i>b</i> 9.0-	10.5-	12.0-	13.5-		
		интерваль	1.5	3.0	4.5	6.		7.5		.0	10.5	12.0	13.5	15.0		
		частоты	6	176	329	22		150		9	30	13	7	3		
-	10.	Гипотеза І	геоме	етричест	koe nac	преле	пение	Geon	ı(n =	0.3)		1	1			
			H_1 геоме	_	_	_					$\alpha = 0$	0.054				
			4 3 2													
			0 0 4													
			2 7 2 0 0 0													
			0 7 0			1										
		Гипотеза І	гамма	а-распр	еделен	ие Gai	nma($\gamma = 5$, λ =	0.4)						
			H ₁ гамма								$\alpha = 0.0$	52				
		3.81 4.59 13.19 13.81 9.63 12.12 5.24 5.33 11.75 10.72 6.58 4.35 16.86 7.76 10.60 12.31 14.62 8.95 5.73 16.14														
			5 16.86 7 13.79 12													
			6 7.87													
			5 19.53											_		

```
11.
        Геометрическое распределение с неизвестным параметром p, \alpha = 0.1
        Выборка X_1, ..., X_n
          0 \quad 6 \quad 1 \quad 1 \quad 4 \quad 0 \quad 13 \quad 9 \quad 3 \quad 0
           1 8 0
                      1 0 0 3 2 3 0
           1 1 8
                       9 10 0 2 1 1
                                                 1
                                                  2
          0 5 5 11
                            2 1 1 3 7
           1 1 5 6
                            0 1 0 6 4
                                                  3
        Экспоненциальное распределение с параметром \lambda, \alpha=0.05
        Выборка Y_1, ..., Y_n
        0.05 \ \ 3.62 \ \ 1.42 \ \ 5.44 \ \ \ 2.15 \ \ \ 3.70 \ \ \ 0.04 \ \ \ 0.49 \ \ \ 0.17 \ \ \ 0.51
        3.07 \ \ 7.76 \ \ 3.72 \ \ 0.24 \ \ 1.16 \ \ 0.57 \ \ 9.31 \ \ 2.50 \ \ 10.10 \ \ \ 0.82
        2.51 2.43 4.39 8.56 2.65 6.40 7.85 7.63 0.31 6.72
        5.25 \ \ 4.29 \ \ 1.38 \ \ 5.82 \ \ 4.65 \ \ 0.55 \ \ 2.22 \ \ 0.23 \ \ \ 3.95 \ \ 12.42
        0.77 \ \ 2.24 \ \ 2.26 \ \ 0.98 \ \ 4.66 \ \ 3.23 \ \ 1.74 \ \ 0.94 \ \ \ 0.48 \ \ 1.99
```