# Практическая работа №4. Дисциплина ПВПД-1

Раздел: Электрические аппараты.

При анализе данного материала студенту необходимо повторить конспект лекций – электрические аппараты, который выложен на портале. Внимательно проанализировать занятия с 14 по 16 (примеры решения задач)

Каждому студенту необходимо решить три задачи.

Работа, которую вы отправляете на проверку преподавателю, должна содержать:

- 1.Условие задачи с номером варианта.
- 2. Решение, т.е. определение необходимых величин, построение графиков согласно условию задачи.

Работу вы можете выполнить любым способом, в том числе вручную, отсканировать, перевести в PDF и прислать на проверку.

**ЗАДАЧА 1**. Токоподвод к автоматическому выключателю постоянного тока выполнен медными прямоугольными шинами сечением b х h, расположенными параллельно широкой стороне друг к другу на расстоянии a и закрепленными на опорных изоляторах на расстоянии  $\ell$  между соседними изоляторами. Выбрать размеры сечения b и h токоподводящих шин, исходя из длительного режима работы выключателя при  $I_{\text{ном}}$  и его электродинамической стойкости при сквозном токе короткого замыкания  $I_{K3}$  (максимальное значение пропускаемого тока). Данные для расчета представлены в табл. 2.

Таблица 2

| Парамет-                          | ВАРИАНТЫ |     |     |     |     |     |      |      |      |      |
|-----------------------------------|----------|-----|-----|-----|-----|-----|------|------|------|------|
| ры                                | 1        | 2   | 3   | 4   | 5   | 6   | 7    | 8    | 9    | 10   |
| a, MM                             | 60       | 60  | 65  | 70  | 75  | 80  | 90   | 100  | 110  | 120  |
| $\ell$ , mm                       | 150      | 160 | 170 | 170 | 180 | 180 | 200  | 200  | 210  | 210  |
| $I_{\scriptscriptstyle{HOM}}$ , A | 160      | 200 | 250 | 400 | 600 | 800 | 1000 | 1600 | 2000 | 2500 |
| $I_{K3}$ , к $A$                  | 55       | 60  | 75  | 80  | 100 | 120 | 160  | 200  | 250  | 300  |

#### Методические указания

1. Определение размеров сечения шин, исходя из длительного режима работы

$$S_{\partial \pi} = \frac{I_{\text{HOM}}}{\dot{I}_{\partial \Omega}}$$
 ,

где  $j_{\partial on} = 2$  А/мм $^2$  — допустимая из условий нагрева шинопровода плотность тока.

Отношение узкой стороны сечения шинопровода к его широкой стороне b/h обычно принимается в пределах от 0,1 до 0,25. При этом размеры сечения выбираются из стандартных рядов для медного проката. Для размера b: ... 3, 4, 5, 6, 8, 10, 12...мм, для размера h: ... 20, 30, 40, 50, 60, 80, 100, 120 ... мм.

Выбранные размеры b и h должны обеспечивать сечение не менее  $S_{\partial n}$  и максимально близкое к нему.

2. Определение размеров сечения шин, исходя из электродинамической стойкости при токе короткого замыкания.

Электродинамическая сила, действующая на участок шинопровода длиной  $\ell$  ,

$$P_{\ni \eth} = 10^{-7} \, K K_{\dot{\phi}} I_{K3}^2 \quad , \quad$$

где 
$$K = \frac{2\ell}{a} \left[ \sqrt{1 + \left(\frac{a}{\ell}\right)^2} - \frac{a}{\ell} \right]$$
 — коэффициент контура;

 $K_{\phi}$  – коэффициент формы, определяется по кривым Двайта.

Максимальное изгибающее механическое напряжение в шине

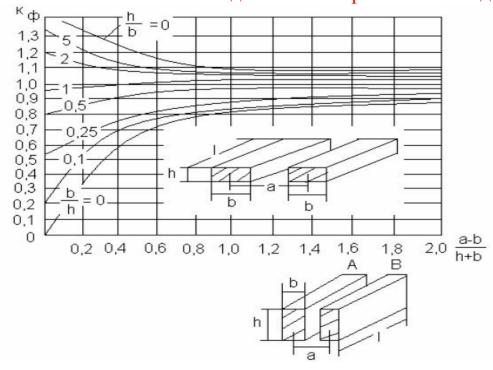
$$\sigma_{\text{max}} = \frac{P_{\ni \delta} \ell}{12W_{\text{NS}}} = \frac{P_{\ni \delta} \ell}{2hb^2} \quad ,$$

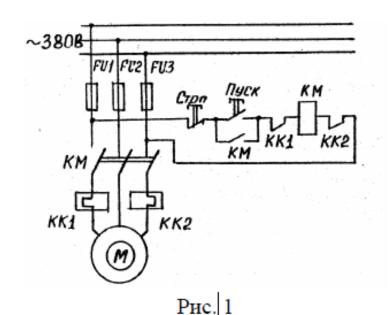
где  $W_{u3} = \frac{hb^2}{6}$  — момент сопротивления изгибу шины, мм<sup>3</sup>.

Если  $\sigma_{max} \leq \sigma_{\partial on} = 13.7 \cdot 10^5 \ H/mm^2$ , то сечение медных токоподводящих шин, выбранное исходя из длительного режима работы, принимается окончательным. Если же  $\sigma_{max} > \sigma_{\partial on}$ , то необходимо увеличить толщину шинопровода, исходя из соотношения

$$b = \sqrt{\frac{P_{3\delta}\ell}{2h\sigma_{\partial on}}} .$$

Это значение b также должно выбираться из стандартного ряда





Рис. 1.3. Кривые Двайта, учитывающие влияние размеров поперечного сечения проводника

**ЗАДАЧА 2**. Для прямого пуска короткозамкнутого асинхронного электродвигателя серии 4 А мощностью P, питающегося от сети с номинальным напряжением Uном = 380 В, используется магнитный пускатель, схема включения которого представлена на рис. 1. В состав пускателя входят контактор КМ и тепловые реле ККІ и КК2. Определить необходимые параметры двигателя и выбрать тип пускателя и параметры его тепловых реле.

Данные для расчета приведены в табл. 3.

Таблица 3

| Параметры           | Варианты |       |       |       |       |      |      |       |      |      |
|---------------------|----------|-------|-------|-------|-------|------|------|-------|------|------|
| параметры           | 1        | 2     | 3     | 4     | 5     | 6    | 7    | 8     | 9    | 10   |
| Р, кВт              | 15       | 18,5  | 22    | 15    | 18,5  | 22   | 11   | 15    | 11   | 15   |
| cos Ф <sub>дв</sub> | 1        | 0,92  | 0,91  | 0,88  | 0,88  | 0,90 | 0,86 | 0,87  | 0,75 | 0,82 |
| η                   | 8        | 0,885 | 0,885 | 0,885 | 0,895 | 0,90 | 0,86 | 0,875 | 0,87 | 0,87 |



Технические данные некоторых типов пускателей и тепловых реле приведены в табл. 4 и 5.

### Методические указания

1. Определение номинального тока двигателя

$$I_{\text{HOM}_{\partial e}} = \frac{P}{\sqrt{3}U_{\text{HOM}}\cos\phi_{\partial e}\eta},$$

где  $\cos \phi_{\partial s}$  – коэффициент мощности двигателя ;  $\eta$  – КПД (табл. 3).

По величине этого тока из табл. 4 производится выбор пускателя таким образом, чтобы максимальный рабочий ток пускателя в категории применения АС-3 (пуск электродвигателей с короткозамкнутым ротором, отключение вращающихся двигателей при номинальной нагрузке) был не менее номинального тока двигателя и максимально близким к нему.

2. Определение номинального тока уставки теплового реле.

Для лучшего согласования перегрузочной характеристики двигателя и защитной (время-токовой) характеристики реле номинальный ток уставки выбирается на 15-20 % выше номинального тока двигателя, т. е.  $Iycm.hom = (1,15 \div 1,20)Ihom.de$ , так как в тепловое реле выбранного выше пускателя может быть установлен тепловой элемент с различным номинальным током (током срабатывания при нулевом положении регулятора), то из ряда этих токов для реле пускателя необходимо выбрать значение, ближайшее к Iycm.hom и проверить, укладывается ли величина

Iуст.ном в пределы регулирования номинального тока уставки ( $\pm 25$  %). Технические данные тепловых реле приведены в табл. 5.

Таблица 4

| Тип<br>защищённого<br>исполнения | Номинальный<br>ток, А | Максимальный рабочий ток при категории исполнения АС-3 | Тип встроенного<br>теплового реле |
|----------------------------------|-----------------------|--------------------------------------------------------|-----------------------------------|
| ПМЕ-122                          | 10                    | 7,5                                                    | TPH-8                             |
| ПМЕ-222                          | 23                    | 18                                                     | TPH-25                            |
| ПА-322                           | 40                    | 30                                                     | TPH-32                            |
| ПА-422                           | 56                    | 50                                                     | ТРП-60                            |
| ПА-522                           | 115                   | 100                                                    | ТРП-150                           |
| ПА-622                           | 140                   | 135                                                    | ТРП-150                           |

#### Технические данные тепловых реле приведены в табл. 5

Таблица 5

| Тип         | Номиналь-  | Номинальные токи тепловых      | Пределы                                |
|-------------|------------|--------------------------------|----------------------------------------|
| защищен-    | ный ток, А | элементов реле, А              | регулирования                          |
| ного испол- |            | (при нулевом положении         | номинального тока                      |
| нения       |            | регулятора)                    | установки                              |
| TPH8        | 10         | 2; 2,5; 3.2; 4; 5; 6,8; 8; 10  | От                                     |
| TPH-25      | 25         | 5; 6,3; 8; 10; 12,5; 16; 20;25 | $0,75 \; I_{HOM}$                      |
| TPH-32      | 40         | 16; 20; 25; 32; 40             | До                                     |
| ТРП-60      | 60         | 25; 30; 40; 50; 60             | $1,25 \; I_{\!\scriptscriptstyle HOM}$ |
| TPΠ-150     | 150        | 50; 60; 80; 100; 120; 150      |                                        |

Выбранные таким образом параметры реле обеспечивают отключение двигателя, например, при токе перегрузки 1,3  $I_{\text{ном-дв}}$  за время не более 10-20 мин., а при перегрузке током  $10 I_{\text{ном-дв}}$  за время не более 2-5 с.

Задача 3. Для защиты от тока короткого замыкания цепи питания короткозамкнутого асинхронного электродвигателя мощностью P (рис. 1 и табл. 3) используются плавкие предохранители серии ПР-2 (разборные, без наполнителя).

Определить номинальный и пограничный токи, а также сечение медной плавкой вставки и выбрать наиболее близкое по номинальному току плавкой вставки исполнение предохранителя. Технические данные предохранителей серии ПР-2 при напряжении 380 В приведены в табл. 6.

Таблица 3

| Параметры           | Варианты |       |       |       |       |      |      |       |      |      |
|---------------------|----------|-------|-------|-------|-------|------|------|-------|------|------|
| Параметры           | 1        | 2     | 3     | 4     | 5     | 6    | 7    | 8     | 9    | 10   |
| Р, кВт              | 15       | 18,5  | 22    | 15    | 18,5  | 22   | 11   | 15    | 11   | 15   |
| cos ф <sub>дв</sub> | 1        | 0,92  | 0,91  | 0,88  | 0,88  | 0,90 | 0,86 | 0,87  | 0,75 | 0,82 |
| η                   | 8        | 0,885 | 0,885 | 0,885 | 0,895 | 0,90 | 0,86 | 0,875 | 0,87 | 0,87 |

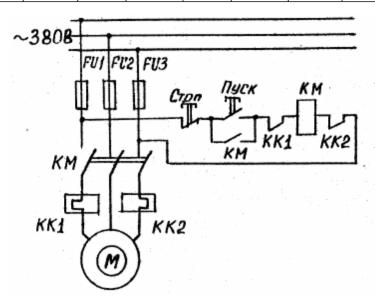



Рис. 1

Таблица 6

| Номинальный ток предохранителя, А | Номинальные токи плавких<br>вставок, А | Предельный<br>отключаемый ток  |
|-----------------------------------|----------------------------------------|--------------------------------|
|                                   |                                        | при $\cos \varphi_A = 0,4$ , A |
| 15                                | 6, 10 и 15                             | 4500                           |
| 60                                | 15, 20, 25, 35, 45 и 60                | 8000                           |
| 100                               | 60,80 и 100                            | 11000                          |
| 200                               | 100, 125, 160 и 200                    | 11000                          |
| 350                               | 200, 225, 260, 300 и 350               | 13000                          |
| 600                               | 350, 430, 500 и 600                    | 20000                          |

## Методические указания

1. Определение номинального тока плавкой вставки.

Плавкая вставка предохранителя не должна отключать двигатель при кратковременных перегрузках его пусковыми токами. Для двигателей серии А02 величина пускового тока

$$I_n = 7I_{HOM.\partial 6}$$
.

Для зашиты одиночных двигателей в большинстве практических случаев номинальный ток плавкой вставки рекомендуется определять из соотношения

$$I_{\textit{BCM.HOM}} = \frac{I_n}{2.5}$$
.

В соответствии с рассчитанным значением  $I_{scm.ном}$  из табл.6 выбирается номинальный ток плавкой вставки — ближайшее большее значение. В соответствии с выбранным значением  $I_{scm.ном}$  определяется исполнение предохранителя (по его номинальному току).

2. Определение пограничного тока плавкой вставки.

Под пограничным током понимают номинальный ток, при котором сгорает плавкая вставка, достигнув установившейся температуры.

Расчетный пограничный ток  $I_{nozp}$  берется несколько больше номинального тока плавкой вставки. Отношение  $I_{nozp}$  /  $I_{вст.ном}$  для медных вставок составляет  $1,6\div 1,8,$  т. е.  $I_{nozp.}=(1,6\div 1,8)I_{вст.ном}$ .

 Определение диаметра медной плавкой вставки. Исходя из баланса подводимого и отводимого от плавкой вставки мощностей, диаметр плавкой вставки определяется из уравнения

$$d = 3 \sqrt{\frac{4I_{nozp}^{2}(1 + \alpha_{c}T_{nn})\rho_{0}}{\pi^{2}K_{T}(T_{nn} - T_{o\kappa p})}} ,$$

где  $\rho_{o} = 1,75 \cdot 10^{-6} \ \mathrm{Om} \cdot \mathrm{cm} - \mathrm{y}$ дельное сопротивление меди;

α <sub>c</sub>= 0,004 1/град – температурный коэффициент сопротивления для меди;

 $T_{nn} = 1083$ °С — температура плавления меди;

 $T_{okp} = 40^{\circ} \text{C}$  –температура окружающей среды;

 $K_T = 11 \cdot 10^{-4} \, \mathrm{Bt/cm^2} \, \mathrm{град} - коэффициент теплопередачи с наружной$ 

поверхности