ИССЛЕДОВАНИЕ ХАРАКТЕРИСТИК НЕУПРАВЛЯЕМОГО ВЫПРЯМИТЕЛЯ

Цель работы: Исследование электромагнитных процессов и характеристик в однофазном мостовом неуправляемом выпрямителе при работе на активную нагрузку с емкостным или индуктивным фильтром с помощью программы Multisim 10,11.12.

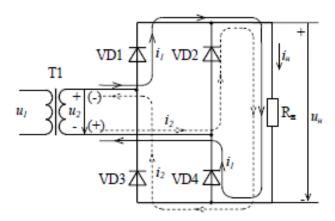
1 Описание работы однофазного мостового неуправляемого выпрямителя Выпрямителем называется устройство, преобразующее переменный ток в постоянный. Он является необходимым элементом источника питания, когда источником электрической энергии является сеть переменного тока (например, с промышленной частотой 50 Гц), а потребителю (нагрузке) необходим постоянный ток. В общем случае источник питания состоит из трансформатора, диодной схемы и сглаживающего фильтра (рис. 1).

Рисунок 1 – Структурная схема источника питания

Трансформатор преобразует переменное напряжение U1 в требуемое значение переменного напряжения U2, а также осуществляет гальваническую развязку между источником напряжение U1 и остальной часть схемы. Диодная схема преобразует (выпрямляет) переменное напряжения U2 в среднее за период напряжение Ud (постоянную составляющую напряжения). Напряжение Ud содержит постоянную и переменную составляющие. Наличие переменной составляющей в большинстве случаев является нежелательным. Для уменьшения переменной составляющей между диодным выпрямителем и нагрузкой включают сглаживающий фильтр, состоящий из реактивных элементов – дросселей и конденсаторов.

Простейший фильтр состоит из конденсатора, включенного параллельно нагрузке (емкостной фильтр), или из дросселя, включенного последовательно с нагрузкой (индуктивный фильтр). Емкость конденсатора выбирают так, чтобы его реактивное сопротивление было значительно меньше сопротивления нагрузки, а индуктивность дросселя должна быть такой, чтобы реактивное сопротивление его было значительно больше сопротивления нагрузки. Благодаря этому уменьшается влияние переменных составляющих напряжения на напряжение на нагрузке.

На рис. 2 приведена схема электрическая принципиальная однофазного мостового неуправляемого выпрямителя, содержащей трансформатор T1, выпрямительные диоды VD1...VD4, включенные по мостовой схеме выпрямления, эквивалентное сопротивление на-грузки RH.


Напряжения u1 и u2 соответственно на первичной и вторичной обмотках трансформатора изменяются по синусоидальному закону:

$$u_1(\upsilon) = U_{1m} \sin \upsilon \, \mathrm{H} \, u_2(\upsilon) = U_{2m} \sin \upsilon,$$

где U_{1m} и U_{2m} – амплитудные (максимальные) значение напряжения u_1 и u_2 ; $v=2\pi ft$ (рад), f – частота изменения напряжения u_1 ; t – текущее время. Ниже анализируется работа схемы на идеальных диодах, для которых падение напряжения в открытом (проводящем ток) состоянии и ток, протекающий через них в закрытом (непроводящем ток) со-стоянии, равны нулю. Состояние диодов определяется полярностью напряжения на аноде относительно катода. При положительном напряжении диод открыт, а при отрицательном — закрыт. При активной нагрузке (типа R) полярность напряжения на аноде относительно ка-

тода совпадает с полярностью напряжения u_2 на вторичной обмотке трансформатора. Следовательно, диоды переключаются в момент изменения полярности напряжения u_2 (в так называемых точках естественного отпирания диодов).

На рис. 3 показаны диаграммы напряжений u^2 и u^2 при различных значениях v.

 $Pucyнok\ 2$ — Схема электрическая принципиальная однофазного мостового неуправляемого выпрямителя

На схеме показаны условно-положительные направления токов и напряжений.

На интервале 0<v< π напряжение u_2 положительно (полярность показана на рис. 1.2 без скобок) диоды VD1 и VD4 открыты, а VD2 и VD3 − закрыты. Нагрузка (R_H) через диоды VD1 и VD4 подключена к вторичной обмотке трансформатора и напряжение на нагрузке равно напряжению

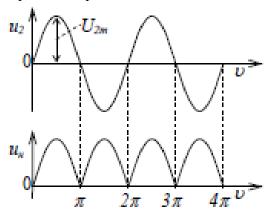


Рисунок 3 – Диаграммы напряжений в схеме рис. 2.

на вторичной обмотке трансформатора $u_{H}(\upsilon)=u_{2}(\upsilon)$, т.е. положительно и изменяется по синусоидальному закону. Ток нагрузки $(i_{H}(\upsilon)=u_{H}(\upsilon)/R_{H})$ протекает по цепи $+u2 \to VD1 \to R_{H} \to VD4 \to -u_{2}$. Ток вторичной обмотки трансформатора равен току нагрузки $(i_{2}(\upsilon)=i_{H}(\upsilon))$. Путь протекания тока нагрузки и тока вторичной обмотки трансформатора показаны на рис. 2 сплошной линией.

На интервале π<υ<2π напряжение u_2 отрицательно (полярность показана на рис. 1.2 в скобках) диоды VD2 и VD3 открыты, а VD1 и VD4 − закрыты. Нагрузка ($_{RH}$) через диоды VD2 и VD3 подключена к вторичной обмотке трансформатора и напряжение на нагрузке u_H равно напряжению на вторичной обмотке трансформатора u_H (v)=- u_2 (v), т.е. положительно и изменяется по синусоидальному закону. Ток нагрузки протекает по цепи (+) u_2 → VD2 → u_2 0 → VD3 → (-) u_2 1. Путь протекания тока нагрузки показаны на рис. 2 пунктирной линией.

На дальнейших интервалах изменения υ работа выпрямителя повторяется.

Из рассмотренного следует, что на различных интервалах изменения υ напряжение на нагрузке и ток через нагрузку не изменяют своего знака.

Из рис.3 следует, что частота пульсаций напряжения на нагрузке в 2-а раза выше частоты напряжения u_2 . Ток нагрузки i_H определяется из выражения i_H = u_H / R_H , поэтому кривая тока i_H отличается от кривой напряжения u_2 только масштабом (масштабный множитель равен $1/R_H$).

Пульсирующее напряжение u_H содержит постоянную и переменную составляющие. Постоянная составляющая U_d напряжения на нагрузке u_H равно среднему (за период повторяемости π) значению:

$$U_{d} = \frac{1}{\pi} \int_{0}^{\pi} U_{2m} \sin \theta d\theta = \frac{U_{2m}}{\pi} \left[-\cos \theta \right]_{\theta=0}^{\theta=\pi} = \frac{2U_{2m}}{\pi} = 0.9U_{2},$$

где -
$$U_2 = U_{2m} \, / \, \sqrt{2}$$
 действующее значение напряжения u_2 .

Из полученного выражения следует, что для получения требуемого среднего значения напряжения на нагрузке U_d напряжение на вторичной обмотке трансформатора должно быть равным

$$U_2 = \frac{U_d}{0.9} = 1.1U_d$$

Среднее значение тока нагрузки равно

$$I_d = \frac{U_d}{R_u}$$

Из рис. 2 и 3 следует, что максимальное обратное напряжение на каждом диоде равно амплитудному значению напряжения U_{2m} на вторичной обмотке трансформатора, а среднее значение тока, протекающего через каждый диод равно $I_d/2$. Эти данные могут быть использованы для выбора диодов.

2 Описание программной модели лабораторной установки

На рис. 4 приведена программная модель, которая содержит: источник переменного напряжения U_C ; выпрямительные диоды VD1...VD4; резистор R1, имитирующий внутреннее сопротивление источника переменного напряжения и диодного выпрямителя; сопротивление нагрузки R2 и R3; индуктивность фильтра L1; конденсатор фильтра S1 и S2; амперметр PI1 постоянного тока нагрузки; вольтметр PU1 постоянного напряжения на нагрузке; четырехканальный осциллограф XSC1, контролирующий напряжения в различных участках выпрямителя (канал A – напряжение UC, каналы B и C – напряжения на аноде относительно катода соответственно на диодах VD1 и VD2, канал D – напряжение на нагрузке); четырех-канальный осциллограф XSC2, контролирующий токи в различных участках выпрямителя (канал A – ток нагрузки; канал B –ток источника переменного напряжения; каналы C и D ток анода соответственно диодов VD1 и VD2); датчики напряжения SU1...SU3 – коэффициентом передачи, равным 1; датчики тока SI1...SI5 с коэффициентом передачи, равным 1 Ом.

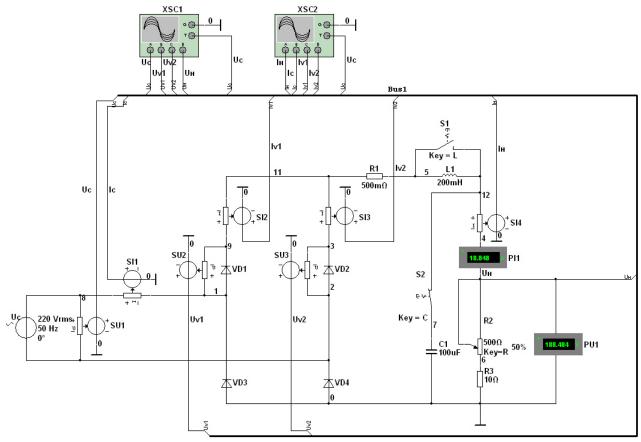


Рисунок 4 – Программная модель лабораторной установки

3 Задание и методические указания

3.1 Домашнее задание:

- а) Изучить описания работы и программной модели неуправляемого мостового выпрямителя.
- b) Рассчитать среднее значение напряжения на нагрузке, ток нагрузки для заданного варианта (табл. 1), среднее значение тока диода и максимальное значение напряжения на диодах.

Таблица 1.

No	Uc	<i>R</i> 1	R2:	R3	L1	<i>C</i> 1
варианта	В	Ом	Ом	Ом	мГн	мкФ
1	220	0.5	500	10	200	100
2	200	0.45	450	9	220	120
3	180	0.4	400	8	270	130
4	110	0.3	300	7	300	150
5	140	0.3	300	6	320	170
6	120	0.25	250	6	380	180
7	100.	0.25	250	5	400.	200
8	220o	0.6	600	12	200	100,
9	200	0.65	550	9	220	120
10	180	0.7	500	8	270	130
11	160	0.3	450	7	300	150

12	140	0.3	300	6	320	170
13	120	0.25	300	6	380	180
14	100	0.3	250	5	400	200
15	:220	0.8	700	14	200	100
17	200	0.75	650	13	220	120
18	180	0.7	600	12	270	130
19	160	0.6	550	11	300	150
20	140	0.5	500	10	320	170
21	120	0.45	450	9	380	180
22	100	0.4	400	8	400	200
23	140	0.5	300	5	250	100
24	100	0.6	250	4	150	200
25	200	0.8	350	6	200	300
26	145	0.55	320	8.5	340	160
27	250	0.65	480	4.5	380	180
28	320	0.48	570	7.5	450	220
29	185	0.35	380	9.5	240	280
30	190	0.85	440	5.5	425	330
31	150	0.5	120	5	500	100
32	210	0.6	140	6	300	150
33	310	0.85	240	5.5	400	180
34	295	0.9	300	7	250	220
35	300	1	325	8	380	90
36	110	0.4	280	9	600	80
37	135	0.95	330	10	550	110
38	180	0.7	430	8.5	280	190
39	115	0.8	250	5.5	300	300
40	305	1.1	380	9.5	250	250
41	90	1	150	4	480	420
42	125	0.5	140	7.5	500	300

3.2. Экспериментальное исследование выпрямителя:

а) Получить задание от преподавателя и после запуска программы Multisim выставить заданные параметры в программной модели.

Для задания параметра дважды щелкните мышкой по требуемому элементу схемы и в распахнувшемся окне выставьте параметр.

b) Для варианта без фильтра

– снять осциллограммы напряжений: источника Uc, на диодах VD1 и VD2, на нагрузке, а также токов источника IC, диодов VD1 и VD2.

Все осциллограммы зарисовываются одна под другой в едином масштабе времени с указанием масштаба по оси напряжений и токов.

– построить внешнюю характеристику выпрямителя.

Внешняя характеристика выпрямителя— зависимость Ud(Id) снимается при изменении положения движка потенциометра R2. Напряжение и ток нагрузки считываются по показаниям вольтметра PUI и амперметра PAI после окончания переходного процесса (после окончания изменений показаний).

- с) Для варианта с емкостным фильтром:
- снять с указанием значений меток по оси времени и параметра осциллограммы напряжения на нагрузке и тока нагрузки;
 - снять и построить внешнюю характеристику выпрямителя;
 - определить размах пульсаций напряжения на нагрузке.

Размах пульсаций определяется с помощью маркеров 1 и 2 осциллографа.

- d) Для варианта с индуктивным фильтром:
- снять с указанием значений меток по оси времени и параметра осциллограммы напряжения на нагрузке и токов нагрузки и источника переменного напряжения;
 - снять и построить внешнюю характеристику выпрямителя;
 - определить размах пульсаций напряжения на нагрузке.

4 Требования к содержанию отчета по курсовому проекту(лабораторной работе)

Отчет по выполненной лабораторной работе должен содержать:

- номер и название лабораторной работы;
- цель лабораторной работы;
- схемы, приведенные в описании лабораторной работы;
- программу выполнения лабораторной работы;
- осциллограммы, таблицы и графики, снятые в процессе выполнения лабораторной работы;
 - выводы по результатам лабораторной работы.

5 Контрольные вопросы

- 1. Из каких блоков состоит выпрямитель и каково их назначение?
- 2. Назовите условия переключения диода в открытое и закрытое состояния.
- 3. Что такое точка естественного отпирания диодов?
- 4. Объясните по схеме и снятым осциллограммам работу выпрямителя.
- 5. Что такое внешняя характеристика выпрямителя?
- 6. Как связана величина обратного напряжения на диодах с напряжением источника переменного напряжения?
- 7. Как связаны между собой амплитудное, действующее и среднее значение напряжений?
 - 8. Как можно уменьшить пульсации напряжения и тока нагрузки?
- 9. Как влияет величина емкости конденсатора емкостного фильтра на величину пульсаций напряжения и тока нагрузки?
- 10. Как влияет величина индуктивности дросселя индуктивного фильтра на величину пульсаций напряжения и тока нагрузки?
- 11. Какой фильтр предпочтительней применять в области малых и больших токов нагрузки?

Самара	Силовая электрога: ФГБОУ ВПО «Саг	ника. Часть 1. Учебі марский государстве	но-методическое п енный технический	особие. / П.К. Кузнег і университет», 2013.	цов, В.И. Семавин. – – 63 с.: ил: