
Тема 2. Расчет линейных цепей при гармоническом воздействии

2.1. Расчет RC-цепи при гармоническом воздействии

Схема цепи, изображенная на рисунке, возбуждается источником гармонической ЭДС, имеющей частоту ω_0 и комплексную амплитуду $\dot{E}=100~\mathrm{B}.$

Найдите выражения, описывающие комплексное сопротивление и комплексную проводимость пассивной части цепи, и рассчитайте их численные значения на заданной частоте.

Определите комплексную амплитуду тока \dot{I} в неразветвленной части цепи и комплексные амплитуды напряжений на резисторах.

Постройте векторную диаграмму напряжений в цепи, отображающую II закон Кирхгофа.

Номинальные значения емкости конденсатора и сопротивлений резисторов, а также частота ЭДС ω_0 приведены в таблице 2.

Рассчитайте комплексные мощности на всех элементах цепи, в том числе и на источнике ЭДС. Покажите выполнение баланса мощностей.

Указания. Для определения комплексного импеданса пассивной части цепи используйте известную зависимость комплексного сопротивления емкостного двухполюсника от частоты, а также формулы для расчета сопротивления двухполюсника, представляющего собой последовательно-параллельное соединение элементарных двухполюсников. Комплексные амплитуды тока \dot{I} и напряжений на резисторах рассчитываются с использованием закона Ома для комплексных амплитуд. Для определения комплексных мощностей используйте результаты расчета тока и напряжений.

Таблица 2. Инпиг альные задания по теме 2.1

№ ФИО C , R_1 , R_2 , R_2 , R_3 , R_4		•					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	No	ФИО		С,	R_1 ,	R_2 ,	ω_0 ,
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				пΦ	кОм	кОм	рад/с
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	16			450	4	9	7.10^{5}
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	17			300	5	4	5·10 ⁵
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	18	-		950	7.5	5	4.10^{5}
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	19	_		200	3	5	9·10 ⁵
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	20			600	5	8	4.10^{5}
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		_		800	7	6	2.10^{5}
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				400	4	3	5·10 ⁵
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	23			200	6	5	4.10^{5}
	24		Ī	700	2	9	3·10 ⁵
	25	· -		500	7	1.7	7.10^{5}
$\begin{vmatrix} 26 \\ \end{vmatrix}$ $\begin{vmatrix} 300 \\ \end{vmatrix}$ $\begin{vmatrix} 3 \\ \end{bmatrix}$ $\begin{vmatrix} 3.5 \\ \end{bmatrix}$ $\begin{vmatrix} 5 \cdot 10^5 \\ \end{vmatrix}$	26			300	3	3.5	5·10 ⁵
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	27	-		200	5	7	3·10 ⁵
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	28			600	4.5	5	5·10 ⁵
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	29			600	4	5	4.10^{5}
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	30			800	5	6	3.10^{5}

ć

2.2. Расчет комплексного коэффициента передачи сложных RC- и RLцепей

Схемы цепей изображены на рисунках ниже, варианты схем и выходных сигналов приведены в таблице 3.1.

Найдите выражение, описывающие комплексный коэффициент передачи $\dot{K}(\omega)$. Получите выражения для амплитудно-частотной характеристики цепи $|\dot{K}(\omega)|$ (модуль $\dot{K}(\omega)$) и фазочастотной характеристики $\phi_K(\omega)$ (аргумент $\dot{K}(\omega)$). Определите максимальное значение АЧХ K_{max} .

Постройте полученные зависимости АЧХ и ФЧХ для $R = R_1 = 1$ кОм, $R_2=1$ кОм, $C=C_1=1$ нФ, $C_2=1$ нФ, $L=L_1=10$ мкГн, $L_2=10$ мкГн.

На графиках АЧХ и ФЧХ покажите K_{max} , ω_c и $\varphi_K(\omega_c)$.

Дайте качественное объяснение полученным характеристикам.

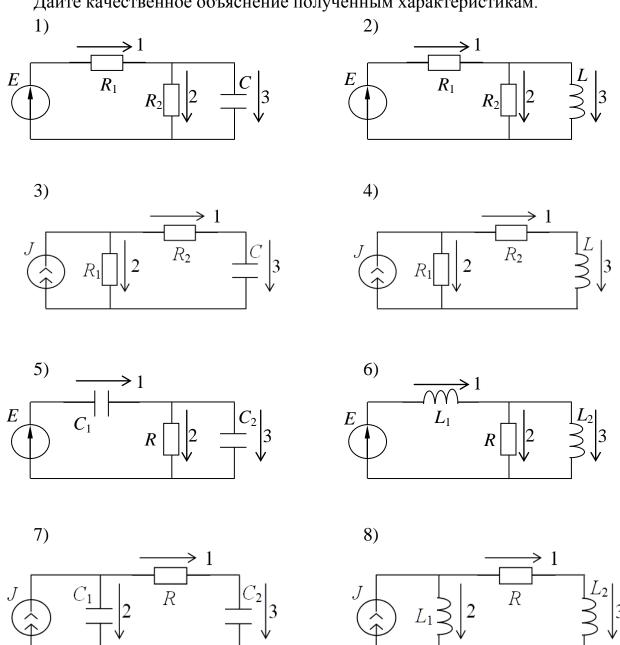


Таблица 3.1. Индивидуальные задания по теме 3.1 для группы

$N_{\underline{0}}$	ФИО	№ схемы	№ выхода	Сигнал
1	А Захиндвиа	1	1	U
2		2	1	U
3	<u> </u>	3	1	I
4	-	4	1	I
5		5	1	U
6	•	6	1	U
7	<u>-</u>	7	1	I
8	_	8	1	I
9	-	1	2	U
10	-	2	2	U
11	_	3	2	I
12	- -	4	2	I
13		5	2	U
14		6	2	U
15	_	7	2	I
16]	8	2	I
17		1	3	U
18	a a	2	3	U
19		3	3	I
20		4	3	I
21	·	5	3	U
22		6	3	U
23		7	3	I
24	<u> </u>	8	3	I
25	<u> </u>	1	1	U
26	Ольга	2	1	U
27	<u>'</u>	3	1	I
28		4	1	I
29		5	1	U
30		6	1	U