Лабораторная работа №3 «Моделирование простейших динамических звеньев»

Цель работы: Приобретение навыков моделирования динамических звеньев в системе Scilab; оценка точности моделирования.

Задание.

- 1. Рассчитать аналитически переходную характеристику цепи h(t), имеющей заданную передаточную функцию.
- 2. Построить график переходной характеристики средствами Scilab.
- 3. Получить график процесса h(t), воспользовавшись средством визуального моделирования Scicos.
- 4. Сравнить результаты пунктов 2 и 3.

Таблица 1 Звенья для анализа

№ варианта	Передаточная функция звена	№ варианта	Передаточная функция звена
1	$W(p) = \frac{10}{p+2}$	10	$W(p) = \frac{10p}{p+2}$
2	$W(p) = \frac{10}{p+2}$ $W(p) = \frac{5}{p^2 + 2p + 1}$	11	$W(p) = \frac{5p}{p^2 + 2p + 1}$
3	$W(p) = \frac{2}{p^2 + 5p + 4}$	12	$W(p) = \frac{2p}{p^2 + 5p + 4}$
4	$W(p) = \frac{p^2}{p^2 + 4p + 3}$	13	$W(p) = \frac{p}{p^2 + 4p + 3}$
5	$W(p) = \frac{p^2}{p^2 + 2p + 5}$	14	$W(p) = \frac{4}{p^2 + 2p + 5}$
6	$W(p) = \frac{p}{p^2 + 2p + 5}$	15	$W(p) = \frac{10}{p^2 + 4p + 20}$
7	$W(p) = \frac{5p}{p^2 + 4p + 20}$	16	$W(p) = \frac{2p^2}{p^2 + 4p + 20}$
8	$W(p) = \frac{p+2}{p+1}$	17	$W(p) = \frac{p-4}{p+1}$ $W(p) = \frac{p-2}{p+2}$
9	$W(p) = \frac{p+2}{p+1}$ $W(p) = \frac{p-1}{p+2}$	18	$W(p) = \frac{p-2}{p+2}$

Краткие теоретические сведения.

Передаточная функция линейной системы представляет собой отношение изображений по Лапласу выходного сигнала ко входному при нулевых начальных условиях:

$$W(p) = \frac{x_{\text{вых}}(p)}{x_{\text{вх}}(p)} \tag{1}$$

Отсюда изображение по Лапласу выходного сигнала может быть найдено по формуле

$$x_{\text{\tiny RMX}}(p) = x_{\text{\tiny RX}}(p) \, \mathbf{W}(p) \tag{2}$$

А сам выходной сигнал рассчитан через обратное преобразование Лапласа:

$$X_{\text{вых}}(t) = L^{-1}[X_{\text{вх}}(p)W(p)]$$
 (3)

Переходная характеристика представляет собой отклик системы на единичный ступенчатый сигнал:

$$h(t) = x_{\text{BMX}}(t) \Big|_{x_{\text{BX}}}(t) = 1(t)$$
 (4)

Поскольку изображение единичного ступенчатого сигнала есть

$$L[1(t)] = \frac{1}{p},\tag{5}$$

справедливо равенство

$$\mathbf{h}(t) = \mathbf{L}^{-1} \left[\frac{1}{p} \mathbf{W}(p) \right], \tag{6}$$

которое используют для аналитического вычисления h(t).

Вычисление обратного преобразования Лапласа (нахождение оригинала) от рациональной дроби вида

$$\frac{b(p)}{a(p)} = \frac{b_0 + b_1 p + b_2 p^2 + \dots}{a_0 + a_1 p + a_2 p^2 + \dots}$$

сводится к разложению ее на сумму простых дробей и суммированию оригиналов для каждой из них. При этом приходится иметь дело с простыми дробями видов:

•
$$S_1(p) = \frac{K}{p-a}$$
, где K , a — вещественные числа.

Оригинал находится по выражению:

$$L^{-1}[S_1(p)] = K e^{at}$$
 (7)

•
$$S_2(p) = \frac{K}{(p-a)^n}$$
, где K , a — вещественные, $n > 1$ — целое.

Оригинал находится по выражению:

$$L^{-1}[S_2(p)] = \frac{K}{(n-1)!} t^{n-1} e^{at}$$
(8)

•
$$S_3(p) = \frac{K_1}{p - p_1} + \frac{K_2}{p - p_2}$$
, где
$$\begin{cases} K_1 = n + jm, & K_2 = n - jm, \\ p_1 = -\delta + j\omega_0, & p_2 = -\delta - j\omega_0 \end{cases}$$

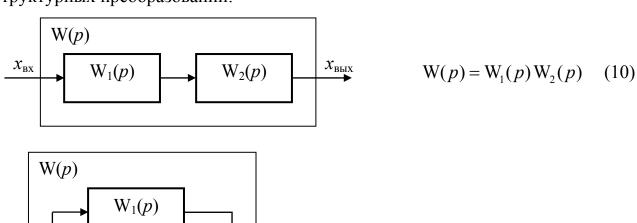
Оригинал находится по выражению:

$$L^{-1}[S_3(p)] = 2e^{-\delta t} \left[n\cos(\omega_0 t) - m\sin(\omega_0 t) \right]$$
(9)

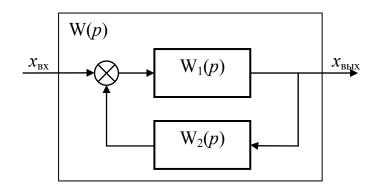
 $(n,m,\delta,\omega_0$ — вещественные).

 $\mathcal{X}_{\mathrm{BX}}$

При моделировании динамического звена используются интеграторы, сумматоры, масштабные усилители, а также специфические средства регистрации сигналов (построения графиков). При этом приходится решать задачу получения структурной схемы системы (из перечисленных выше блоков) по ее передаточной функции. Здесь пользуются известными правилами структурных преобразований:



 $x_{\text{вых}}$



 $W_2(p)$

$$W(p) = \frac{W_1(p)}{1 - W_1(p)W_2(p)}$$
 (12)

 $W(p) = W_1(p) + W_2(p)$

(11)

Порядок выполнения работы

- 1. По номеру бригады (или по указанию преподавателя) выбрать передаточную функцию звена, воспользовавшись таблицей 1. Занести индивидуальное задание в отчет.
- 2. Рассчитать аналитически переходную характеристику звена h(t), имеющего заданную передаточную функцию. Воспользоваться формулами, приведенными в предыдущем разделе. Расчеты занести в отчет о лабораторной работе.
- 3. Составить файл сценария Scilab для построения графика аналитического выражения h(t), полученного в п.2. Текст сценария занести в отчет.
- 4. Запустить сценарий на выполнение. Сделать копию графического окна, сохранить ее в файл для помещения в отчет.
- 5. Синтезировать структуру звена, которая бы содержала только интеграторы, масштабные усилители и сумматоры. Преобразования и рисунок структуры занести в отчет.
- 6. Реализовать структуру в редакторе Scicos, дополнив ее источником ступенчатого сигнала и графическим регистратором. Графическую копию окна редактора сохранить в файл для помещения в отчет.
- 7. Произвести настройку блоков структуры с таким расчетом, чтобы максимально облегчить сравнение с графиком, полученным в п. 4.
- 8. Произвести симуляцию переходной характеристики. Сделать копию графического окна, сохранить ее в файл для помещения в отчет.
- 9. Продемонстрировать окна редакторов и графические окна преподавателю.
- 10. Оформить отчет о лабораторной работе.

Пример оформления отчета

Индивидуальное задание

Передаточная функция звена задана выражением

$$W(p) = \frac{1}{p^2 + 2p + 2}$$

1. Аналитический расчет переходной характеристики

$$h(t) = L^{-1} \left[\frac{1}{p} W(p) \right] = L^{-1} \left[\frac{1}{p(p^2 + 2p + 2)} \right]$$

Представим выражение в скобках в виде суммы простых дробей

$$\frac{1}{p(p^2+2p+2)} = \frac{K_1}{p-p_1} + \frac{K_2}{p-p_2} + \frac{K_3}{p},$$

где p_1, p_2 — корни уравнения

$$p^2 + 2p + 2 = 0$$
,

T.e.
$$p_1 = -1 + j$$
; $p_2 = -1 - j$.

Коэффициенты K_1 , K_2 , K_3 найдем по известным формулам из теории вычетов:

$$K_{i} = \left[(p - p_{i}) \frac{b(p)}{a(p)} \right] p = p_{i}, \text{ T.e.}$$

$$K_{1} = \left[(p + 1 - j) \frac{1}{p(p + 1 - j)(p + 1 + j)} \right] p = -1 + j = -0.25 + 0.25 j$$

$$K_{2} = \left[(p + 1 + j) \frac{1}{p(p + 1 - j)(p + 1 + j)} \right] p = -1 - j = -0.25 - 0.25 j$$

$$K_{3} = \left[p \frac{1}{p(p^{2} + 2p + 2)} \right] p = 0 = 0.5$$

При обратном преобразовании Лапласа первые две простые дроби, соответствующие комплексно-сопряженным полюсам p_1 и p_2 , учитываем совместно (формула 9):

$$L^{-1} \left[\frac{K_1}{p - p_1} + \frac{K_2}{p - p_2} \right] = 2e^{-t} \left[-0.25 \cos t - 0.25 \sin t \right]$$

(Учитывая, что $\delta=1, \quad \omega_0=1, \quad n=-0.25, \quad m=0.25$.)

Оригинал от последней дроби по (7)

$$L^{-1} \left\lceil \frac{K_3}{p} \right\rceil = K_3 = 0.5$$

Т.о., переходная характеристика описывается выражением:

$$h(t) = 0.5 - 2e^{-t} \left[0.25 \cos t + 0.25 \sin t \right] = 0.5 \left[1 - e^{-t} \left(\cos t + \sin t \right) \right]$$

2. Построение графика переходной характеристики

Для построения графика средствами Scilab создадим файл сценария (например, Graf01.sci) со следующим содержимым:

Запуск его на выполнение приводит к открытию графического окна со следующим графиком:

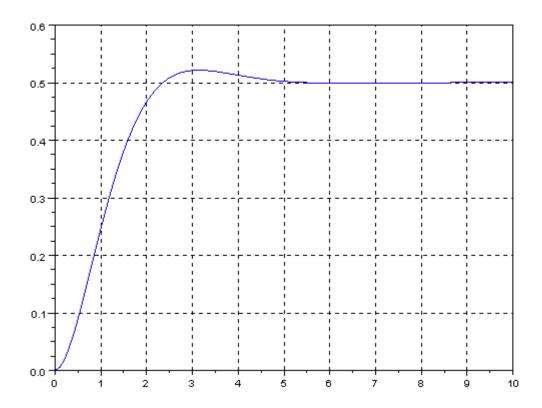


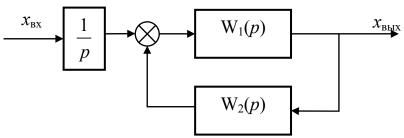
Рис. 1. График h(t), полученной аналитически

3. Моделирование процесса средством Scicos

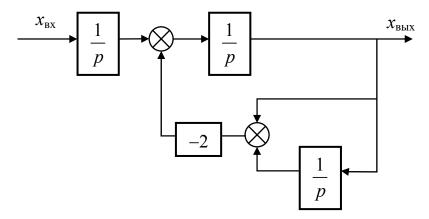
Для выяснения структуры исследуемой системы преобразуем ее передаточную функцию к виду

$$\begin{split} \mathbf{W}(p) &= \frac{1}{p^2 + 2p + 2} = \frac{\frac{1}{p^2}}{1 + \frac{2}{p} + \frac{2}{p^2}} = \frac{1}{p} \cdot \frac{\frac{1}{p}}{1 + \frac{1}{p} \left(2 + \frac{2}{p}\right)} = \frac{1}{p} \cdot \frac{\mathbf{W}_1(p)}{1 - \mathbf{W}_1(p) \, \mathbf{W}_2(p)}, \end{split}$$
 где $\mathbf{W}_1(p) = \frac{1}{p}, \quad \mathbf{W}_2(p) = -2 \left(1 + \frac{1}{p}\right)$

В соответствии с приведенными выше правилами структурных преобразований, этой передаточной функции соответствует следующая структура:



Конкретизируя далее функции W_1 и W_2 , находим



На следующем рисунке приведена соответствующая модель, составленная в редакторе Scicos.

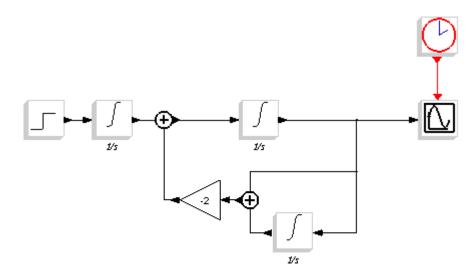


Рис. 2. Модель для симуляции

Запуск симуляции осуществим на 10 секунд. Результат приведен на следующем рисунке.

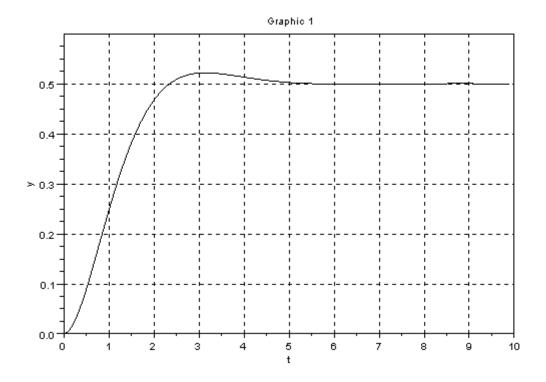


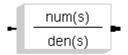
Рис. 3. Результат симуляции модели

4. Сравнение результатов

Графики переходной характеристики, полученные аналитически и с помощью визуального моделирования, неотличимы друг от друга. Это говорит о высокой точности моделирования.

Замечание

Средство визуального моделирования Scicos в палитре (наборе) линейных элементов (меню **Palette** – **Palettes** – **Linear**) содержит универсальный блок, моделирующий звено с заданной передаточной функцией «CLR — Continuous transfer function»:



В настройках блока указываются полиномы числителя (Numerator) и знаменателя (Denominator) в функции комплексной частоты s.

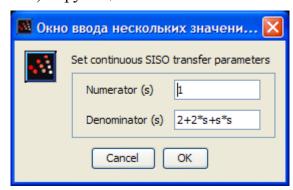


Рис. 4. Настройка блока CLR

Порядок полинома знаменателя всегда должен быть больше порядка полинома числителя. Модель с использованием этого блока приведена на рисунке:

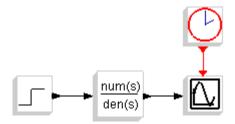


Рис. 5. Модель с использованием блока CLR

Результат ее симуляции ничем не отличается от приведенного выше.