ФЕДЕРАЛЬНОЕ АГЕНТСТВО СВЯЗИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «ПОВОЛЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ТЕЛЕКОММУНИКАЦИЙ И ИНФОРМАТИКИ»

Кафедра линий связи и измерений в технике связи

Д.Е. ПРАПОРЩИКОВ

РАСЧЕТ ПАРАМЕТРОВ ПЕРЕДАЧИ ЭЛЕКТРИЧЕСКИХ КАБЕЛЕЙ СВЯЗИ

Контрольная работа по дисциплине «Направляющие системы связи»

УДК 621.395.73 ББК 32.889

Рекомендовано к изданию методическим советом ПГУТИ, протокол N 35, от 28.04.2020 г.

Прапорщиков, Д.Е.

П Расчет параметров передачи электрических кабелей связи: Контрольная работа по дисциплине «Направляющие системы электросвязи» / Д.Е. Прапорщиков. — Самара: ПГУТИ, 2020. — 14 с.

В учебно-методической разработке приводятся теоретические основы расчета первичных и вторичных параметров передачи симметричных и коаксиальных кабелей связи. В результате выполнения контрольной работы студенты приобретают практические навыки расчета параметров передачи электрических кабелей связи и критического анализа полученных результатов.

Контрольная работа предназначена для студентов заочного отделения, обучающихся с применением образовательных технологий, по направлению подготовки 11.03.02 — Инфокоммуникационные технологии и системы связи.

Цель работы

Закрепление и углубление знаний, полученных студентами при изучении направляющих систем электросвязи, получение практических навыков расчета параметров передачи электрических кабелей связи (ЭКС).

Литература

- 1. Андреев, В.А. Направляющие системы электросвязи [Электронный ресурс]: учебник для вузов, Т. 1. Теория передачи и влияния / В.А. Андреев, Э.Л. Портнов, Л.Н. Кочановский; под ред. В.А. Андреева; ПГУ-ТИ Электрон. текстовые дан. (1 файл: 8,23 Мб). Самара: ПГУТИ, 2017 (http://elib.psuti.local/Andreev_Portnov_Kochanovskiy_Napravlyayuwie_siste my_elektrosvyazi_T1_Teoriya_peredachi_i_vliyaniya.pdf).
- 2. Направляющие системы электросвязи [Электронный ресурс]: учебник для вузов, Т. 2. Проектирование, строительство и техническая эксплуатация / В.А. Андреев [и др.]; под ред. В.А. Андреева; ПГУТИ Электрон. текстовые дан. (1 файл: 3,61 Мб). Самара: ПГУТИ, 2017 (http://elib.psuti.local/andreev_burdin_portnov_kochanovskiy_popov_napravlya yuwie_sistemy_elektrosvyazi_t2_proektirovanie_stroitelstvo_i_tehnicheskaya_e kspluataciya.pdf).
- 3. Андреев, В.А. Направляющие системы электросвязи [Текст]: учебник для вузов: в 2 т. / В.А. Андреев, Э.Л. Портнов, Л.Н. Кочановский. 7-е изд., перераб. и доп. М.: Горячая линия Телеком, 2009 Т. 1: Теория передачи и влияния. 424 с.
- 4. Направляющие системы электросвязи [Текст]: учебник для вузов: в 2 т. / А.В. Бурдин [и др.]; ред. В.А. Андреев. 7-е изд., перераб. и доп. М.: Горячая линия Телеком, 2010 Т. 2: Проектирование, строительство и техническая эксплуатация. 424 с.
- 5. Нефедов, Е.И. Техническая электродинамика [Текст]: учебное пособие для вузов / Е.И. Нефедов. М.: Академия, 2008. 416 с.
- 6. Строительство кабельных сооружений связи: справочник [Текст] / Д. А. Барон [и др.]. Москва: Радио и связь, 1988. 768 с.

Содержание работы

- 1. Выбор конструкции ЭКС
- 2. Уточнение конструктивных размеров симметричного ЭКС
- 3. Расчет первичных параметров передачи симметричного ЭКС
- 4. Расчет вторичных параметров передачи симметричного ЭКС
- 5. Выводы по полученным результатам

1. Выбор конструкции ЭКС

Исходные данные для расчета определяются суммой двух последних цифр номера зачетной книжки студента согласно таблице 1, в которой задаются тип используемого кабеля (коаксиальный или симметричный), его емкость, диаметр проводников, материал и конструкция изоляции жил, материал оболочки кабеля. В контрольной работе студенту необходимо определить, пользуясь справочником [6], конструктивные размеры поясной изоляции, оболочки и внешних покровов наиболее близких по конструкции кабелей, выпускаемых промышленностью. Необходимо учесть три варианта прокладки кабеля: в грунт прокладывается ЭКС с ленточной броней, под воду – с круглопроволочной броней, в канализацию – без брони.

Таблица 1. Исходные данные для расчета

Сумма двух по- следних цифр но- мера за- четной книжки	Тип исполь- зуемой си- стемы пере- дачи	Тип и ёмкость ЭКС	Диаметр жилы СК или внугреннего проводника КП, мм	Тип изо- ляции ЭКС	Толщина сплошной изоляции или лент кордельной изоляции, мм	Диаметр корделя, мм	Материал оболочки ЭКС
0	ИКМ-120x2	CK 1x4	1,04	СП	1,3	-	Fe
1	ИКМ-480x2	КК 4КП	1,20	ТΠ	-	-	Pb
2	ИКМ-120	CK 4x4	1,18	КС	0,15	0,4	Al
3	ИКМ-120x2	CK 1x4	1,21	СП	0,8	-	Fe
4	ИКМ-480С	CK 4x4	1,21	ПП	1,2	-	Al
5	ИКМ-480	КК 4КП	1,20	ТΠ	-	-	Pb
6	ИКМ-480x2	КК 4КП	1,18	ТΠ	-	-	Pb
7	ИКМ-120x2	CK 1x4	1,07	ПП	0,9	-	Al
8	ИКМ-480С	CK 4x4	1,23	СП	1,2	-	Al
9	ИКМ-480	КК 4КП	1,23	ТΠ	-	-	Pb
10	ИКМ-120x2	CK 1x4	1,07	СП	1,1	-	Fe
11	ИКМ-120	CK 1x4	1,05	СП	1,0	-	Al
12	ИКМ-480x2	КК 4КП	1,22	ТΠ	-	-	Pb
13	ИКМ-480С	CK 4x4	1,22	КС	0,14	0,8	Al
14	ИКМ-120x2	CK4x4	1,19	КС	0,20	0,7	Fe
15	ИКМ-480x2	КК 4КП	1,19	ТΠ	-	-	Al
16	ИКМ-480	КК 4КП	1,21	ТΠ	-	-	Pb
17	ИКМ-480С	CK 4x4	1,21	КС	0,10	0,5	Pb
18	ИКМ-120	CK 1x4	1,06	КС	0,12	0,6	Al

Примечание по таблице 1: CK — симметричный кабель; KK — коаксиальный кабель; $K\Pi$ — коаксиальная пара; KC — кордельно-стирофлексная изоляция; $T\Pi$ — трубчатая полиэтиленовая изоляция; $C\Pi$ — сплошная поли-

этиленовая изоляция; $\Pi\Pi$ — пористая полиэтиленовая изоляция; Al — алюминий; Pb — свинец; Fe — сталь.

2. Уточнение конструктивных размеров симметричного ЭКС

При существенном расхождении исходных данных для симметричного ЭКС из таблицы 1 и стандартных конструкций симметричных кабелей, приведенных в справочнике [6], необходимо уточнить конструктивные размеры симметричного ЭКС. Для этого по заданному значению диаметра токопроводящей жилы определяется диаметр изолированной жилы. В симметричных кабелях изоляция жил классифицируется по конструктивному признаку на два основных типа:

- 1) кордельно-полистирольная (рисунок 1а);
- 2) сплошная или пористая полиэтиленовая (рисунок 16).

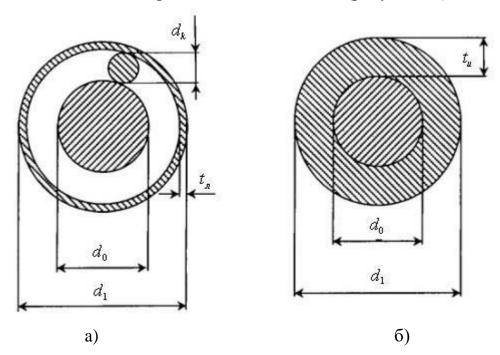


Рисунок 1. Определение диаметра изолированной жилы

Диаметр изолированной жилы с кордельной изоляцией (рисунок 1a) определяется по формуле:

$$d_1 = d_0 + 2 \cdot d_{\kappa} + 2 \cdot t_{\pi}, \text{ MM},$$

где d_0 – диаметр токопроводящей жилы, мм;

 d_{κ} – диаметр корделя, мм;

 t_{n} – общая толщина лент, наложенных поверх корделя, мм.

Диаметр изолированной жилы со сплошной или пористой изоляцией (рисунок 1б) определяется по формуле:

$$d_1 = d_0 + 2 \cdot t_u, \text{ MM},$$

где t_u — радиальная толщина изоляционного слоя, мм.

Изолированные жилы скручиваются в четвёрки с шагом 80–300 мм (рисунок 2).

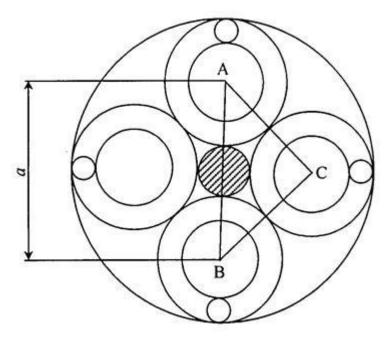


Рисунок 2. Определение диаметра элементарной группы кабеля

Диаметр элементарной группы, скрученной в звёздную четвёрку, определяется из выражения:

$$d_3 = d_1 + a, MM,$$

где a — расстояние между центрами жил одной симметричной пары (цепи), мм. Из рисунка 2 видно, что это расстояние можно определить по формуле:

$$a = \sqrt{AC^2 + BC^2} = \sqrt{2} \cdot d_1$$

Получим:

$$d_3 = 2, 41 \cdot d_1, \text{ MM}.$$

Диаметр центрирующего корделя определяется из соотношения:

$$d_{u\kappa} = a - d_1$$
, MM.

Размеры кабельного сердечника зависят от числа четвёрок в кабеле. Диаметр кабельного сердечника $D_{\kappa c}$ определяется из выражений:

– для одночетверочного кабеля

$$D_{\kappa c} = d_{\scriptscriptstyle 3}$$
, MM;

– для четырехчетверочного кабеля по аналогии с рисунком 2

$$D_{\kappa c} = 2, 41 \cdot d_3, \text{ MM};$$

 для семичетвёрочного кабеля при расположении одной четвёрки в центре и шести четвёрок в повиве

$$D_{\kappa c} = 3 \cdot d_3$$
, MM.

Диаметр кабельного сердечника с поясной изоляцией при наличии металлической оболочки будет соответствовать диаметру экрана:

$$d_{2} = D_{\kappa c} + 2 \cdot t_{nu}$$
, MM,

где t_{nu} — радиальная толщина поясной изоляции, мм.

Необходимо учесть три варианта прокладки кабеля: в грунт прокладывается ЭКС с ленточной броней, под воду — с круглопроволочной броней, в канализацию — без брони. Поэтому расчёт конструкции кабеля необходимо выполнить для всех трёх вариантов, пользуясь справочными данными [6]. Результаты расчетов свести в таблицу 2.

Таблица 2. Конструктивные размеры симметричного кабеля связи

	Марка кабеля, прокладываемого в грунт	Марка кабеля, прокладываемого под воду	Марка кабеля, прокладываемого в кабельную канализацию
d_0 , mm			
d_{κ} , mm			
$t_{_{\mathcal{I}}}$, MM			
t_u , MM			
d_1 , mm			
$d_{\scriptscriptstyle 3}$, mm			
$D_{\kappa c}$, mm			
t_{nu} , MM			
$d_{\scriptscriptstyle 3}$, MM			

3. Расчет первичных параметров передачи симметричного ЭКС

Параметры передачи кабельных цепей рассчитываются с целью оценки электрических свойств исследуемого в работе кабеля.

В результате расчёта должны быть построены графики частотной зависимости параметров, поэтому расчёт необходимо провести не менее чем на трёх фиксированных частотах рабочего диапазона, включая минимальную и максимальную. При выборе средней расчётной частоты следует иметь в виду, что наиболее резкому изменению подвержены параметры в области нижней части рабочего диапазона.

При расчёте параметров кабеля, предназначенного для работы с системами ИКМ, за минимальную частоту целесообразно принимать $f = 10 \, \mathrm{k}\Gamma$ ц, за максимальную — полутактовую частоту, соответствующую половинному значению скорости передачи, кбит/с (таблица 3).

Система передачи	Скорость передачи, кбит/с	Затухание ЭКУ, дБ	Расстояние между ОРП, км	Используемый кабель
ИКМ-120	8500	4565	240	симметричный
ИКМ-120x2	12000	4565	240	симметричный
ИКМ-480С	34000	4585	200	симметричный
ИКМ-480	34000	4565	200	малогабаритный коаксиальный
ИКМ-480х2	52000	4565	200	малогабаритный коаксиальный

Таблица 3. Нормируемые параметры систем передач

Активное сопротивление симметричной цепи

Активное сопротивление цепи определяется по формуле:

$$R = R_0 \left[1 + F(ky_0) + \frac{P \cdot G(ky_0) \left(\frac{d_0}{a}\right)^2}{1 - H(ky_0) \left(\frac{d_0}{a}\right)^2} \right] + R_M$$
OM/KM,

где R_0 — сопротивление цепи на постоянном токе, рассчитываемое по формуле

$$R_0 = \frac{8 \cdot 10^3 \chi \rho}{\pi d_0^2}$$
, OM/KM;

$$\rho = \frac{1}{\sigma}$$
 — удельное сопротивление материала жил, $O_M \cdot MM^2/M$ (значение

определяется из таблицы 4 в зависимости от материала проводников); d_0 – диаметр токопроводящей жилы, мм;

 χ — коэффициент укрутки, учитывающий увеличение длины цепи за счёт скрутки, принимается равным 1,01...1,02;

p — коэффициент, учитывающий потери на вихревые токи в жилах второй цепи элементарной группы (для звёздной скрутки p=5);

a — расстояние между центрами жил цепи, найденное по формуле, мм; a_0 — радиус токопроводящей жилы, определяемый по формуле $r_0 = d_0 \ 2$, / мм;

k - коэффициент вихревых токов, определяемый по формуле $k = \sqrt{\omega \cdot \mu_a \cdot \sigma}$, $\textit{мм}^{-1}$ (значение определяется по формуле из таблицы 4 на каждой расчетной частоте в зависимости от материала проводников); $F(kr_0)$, $G(kr_0)$, $H(kr_0)$ — функции, учитывающие потери на вихревые токи вследствие поверхностного эффекта и эффекта близости, значения которых приведены в таблице 5.

Таблица 4. Параметры материалов проводников

Металл	Удельное сопротивление ρ , Ом·мм 2 /м	Удельная проводи- мость σ , См·м/мм 2	Относитель- ная магнитная проницае- мость <i>µ</i>	Коэффициент вихревых токов k , $1/мм$
медь	0,01754	57	1	$21,2 \cdot 10^{-3} \cdot \sqrt{f}$ $16,35 \cdot 10^{-3} \cdot \sqrt{f}$ $5,97 \cdot 10^{-3} \cdot \sqrt{f}$ $75,6 \cdot 10^{-3} \cdot \sqrt{f}$
алюминий	0,0295	34,4	1	
свинец	0,221	4,52	1	
сталь	0,139	7,23	100200	

Таблица 5. Функции, учитывающие потери на вихревые токи вследствие поверхностного эффекта и эффекта близости

kr_0	$F(kr_0)$	$G(kr_0)$	$H(kr_0)$	$Q(kr_0)$
0	0	0	0,0417	1
0,1	0	0	0,0417	1
0,2	0	0	0,0417	1
0,3	0	0	0,0417	1
0,4	0	0	0,0417	1
0,5	0,0003	0,000975	0,042	0,9998
0,6	0,001	0,00202	0,044	0,9998
0,7	0,001	0,00373	0,045	0,999
0,8	0,002	0,00632	0,046	0,999
0,9	0,003	0,0101	0,049	0,998

kr_0	$F(kr_0)$	$G(kr_0)$	$H(kr_0)$	$Q(kr_0)$
1	0,005	0,0152	0,053	0,997
1,1	0,008	0,022	0,058	0,996
1,2	0,011	0,0306	0,064	0,995
1,3	0,015	0,0413	0,072	0,993
1,4	0,02	0,0541	0,08	0,99
1,5	0,026	0,0691	0,092	0,987
1,6	0,033	0,0863	0,106	0,983
1,7	0,042	0,105	0,122	0,979
1,8	0,052	0,126	0,137	0,974
1,9	0,064	0,149	0,154	0,968
2	0,078	0,172	0,169	0,961
2,1	0,094	0,197	0,187	0,953
2,2	0,111	0,221	0,205	0,945
2,3	0,131	0,246	0,224	0,935
2,4	0,152	0,271	0,242	0,925
2,5	0,175	0,295	0,263	0,913
2,6	0,201	0,318	0,28	0,901
2,7	0,228	0,341	0,298	0,888
2,8	0,256	0,363	0,316	0,874
2,9	0,286	0,384	0,333	0,86
3	0,318	0,405	0,348	0,845
3,1	0,351	0,425	0,362	0,83
3,2	0,385	0,444	0,376	0,814
3,3	0,42	0,463	0,388	0,798
3,4	0,456	0,481	0,4	0,782
3,5	0,492	0,499	0,416	0,766
3,6	0,529	0,516	0,42	0,749
3,7	0,566	0,533	0,43	0,733
3,8	0,603	0,55	0,44	0,717
3,9	0,64	0,567	0,45	0,72
4	0,678	0,584	0,46	0,688
4,1	0,715	0,601	0,466	0,671
4,2	0,752	0,618	0,474	0,657
4,3	0,789	0,635	0,484	0,643
4,4	0,826	0,652	0,49	0,629
4,5	0,863	0,669	0,509	0,616
4,6	0,899	0,686	0,505	0,603
4,8	0,971	0,72	0,516	0,579
5	1,043	0,755	0,53	0,556
5,2	1,114	0,79	0,54	0,535
5,4	1,184	0,825	0,55	0,516
5,6	1,254	0,861	0,558	0,498

kr_0	$F(kr_0)$	$G(kr_0)$	$H(kr_0)$	$Q(kr_0)$
5,8	1,324	0,896	0,566	0,481
6	1,394	0,932	0,575	0,461
6,2	1,463	0,967	0,582	0,445
6,4	1,533	1,003	0,59	0,436
6,8	1,673	1,073	0,602	0,412
7	1,743	1,109	0,608	0,4
7,4	1,884	1,18	0,62	0,379
7,8	2,024	1,251	0,63	0,36
8	2,094	1,287	0,634	0,351
9	2,446	1,464	0,655	0,313
10	2,799	1,641	0,67	0,282
$kr_0>10$	$\frac{\sqrt{2}kr_0 - 3}{4}$	$\frac{\sqrt{2}kr_0-1}{8}$	0,75	$\frac{2\sqrt{2}}{kr_0}$

Составляющая активного сопротивления $R_{\scriptscriptstyle M}$, обусловленная потерями в окружающих металлических массах (соседних группах и металлической оболочке), на частоте 200 кГц определяется из таблицы 6 как сумма потерь в смежных четвёрках и оболочке.

Таблица 6. Значения составляющей активного сопротивления $R_{M\,200}$

	Дополнительное сопротивление R_{M200} за счёт потерь, Ом/км								
Число чет- вёрок в по- виве		иежных ах для вов		ви-		свинцовой оболоч- ке для повивов		алюминиевой обо- лочке для повивов	
	1-го	2-го	3-го	1-го	2-го	3-го	1-го	2-го	3-го
1	0	-	-	22	-	-	8,1	-	-
4	7,5	-	-	14	-	-	5,2		-
7 (1+6)	8,0	7,5	-	1,5	5,5	-	0,6	2,0	-
19 (1+6+12)	8,0	7,5	7,5	0	0	1,0	0	0	0,4

Расчёт потерь в металле на других частотах производится по формуле:

$$R_M = R_{M200} \cdot \sqrt{\frac{f}{2 \cdot 10^5}}, \, \text{Om/km}$$

где f – частота, Γ ц.

Расчёт потерь в стальной оболочке можно производить как для алюминиевой оболочки, так как при наличии алюминиевого экрана под

стальной оболочкой потери определяются в основном внутренним слоем экрана.

Индуктивность симметричной цепи

Индуктивность симметричной кабельной цепи определяется как сумма внешней межпроводниковой индуктивности и внутренней индуктивности самих проводников:

$$L = \chi \left[4 \ln \frac{a - r_0}{r_0} + \mu Q(kr_0) \right] \cdot 10^{-4}, \Gamma_{\text{H/KM}},$$

где $Q(kr_0)$ – функция поверхностного эффекта, определяемая из таблицы 5.

Емкость и проводимость изоляции симметричной цепи

Ёмкость симметричной кабельной цепи определяется по формуле:

$$C = \frac{\chi \varepsilon_{3} \cdot 10^{-6}}{36 \ln \left(\frac{a}{r_{0}} \Psi\right)}, \Phi/_{KM}$$

где $\varepsilon_{\text{-}}$ — эквивалентное значение диэлектрической проницаемости, зависящее от типа изоляции и определяемое из таблицы; ψ — поправочный коэффициент.

Поправочный коэффициент ψ , характеризующий близость проводников цепи к заземлённой оболочке и другим проводникам, при звёздной скрутке определяется по формуле:

$$\Psi = \frac{(d_3 + d_1 - d_0)^2 - a^2}{(d_3 + d_1 - d_0)^2 + a^2}$$

Проводимость изоляции кабельных цепей определяется из выражения:

$$G = 2\pi \cdot f \cdot C \cdot tg \delta_{\mathfrak{I}}$$
 , CM/km,

где $tg\delta_{9}$ — тангенс угла диэлектрических потерь комбинированной изоляции, определяемый из таблицы.

Сведений о значениях $tg \delta_{\mathfrak{I}}$ в более высоком диапазоне частот для симметричных кабелей в технической литературе не имеется, однако, учитывая, что чистые полиэтилен и полистирол имеют постоянное значение $tg \delta_{\mathfrak{I}}$ в широком диапазоне частот, а потери определяются лишь наличием в изоляции примесей и загрязнений неполярного диэлектрика полярными

молекулами, при расчёте в более высоком диапазоне частот значение $tg\,\delta_{\ni}$ можно принимать равным его величине при $f=550~{\rm k\Gamma}$ ц.

4. Расчет вторичных параметров передачи симметричного ЭКС

Коэффициент распространения цепи определяется по формуле:

$$\gamma = \alpha + i\beta = \sqrt{(R + i\omega L) \cdot (G + i\omega C)}$$
,

где α – коэффициент затухания, Нп/км; β – коэффициент фазы, рад/км.

Расчёт α и β по формуле предусматривает операции с комплексными числами и весьма трудоёмок, поэтому в области высоких частот ($\frac{2\pi \cdot f \cdot L}{R}$ >3,5) расчёт можно производить по упрощённым формулам:

$$\alpha = \alpha_{M} + \alpha_{O} = \left(\frac{R}{2}\sqrt{\frac{C}{L}} + \frac{G}{2}\sqrt{\frac{L}{C}}\right) \cdot 8,69, \text{MB/KM},$$

$$\beta = \omega\sqrt{LC}, \text{pag/KM}$$

$$eta = 2\pi \cdot f \cdot L \cdot C$$
, рад/км, $2\pi \cdot f = \omega$

где α_{M} — составляющая затухания за счёт потерь в металле; $\alpha_{\mathcal{A}^{-}}$ составляющая затухания за счёт потерь в диэлектрике.

Волновое сопротивление цепи определяется по формуле:

$$Z_B = \sqrt{(R + i\omega L) \cdot (G + i\omega C)} = |Z_B| \cdot e^{i \cdot \varphi}$$

В области высоких частот ($\frac{2\pi \cdot f \cdot L}{R}$ >3,5) расчёт можно производить по упрощённой формуле:

$$Z_B = \sqrt{\frac{L}{c}}$$
, Om

Скорость распространения электромагнитной волны определяется по формуле:

$$V = \frac{2\pi \cdot f}{\beta}$$
, KM/c.

В области высоких частот ($\frac{2\pi \cdot f \cdot L}{R}$ >3,5) расчёт можно производить по упрощённой формуле:

$$v = \frac{1}{\sqrt{LC}}$$
, KM/c

Результаты расчёта первичных и вторичных параметров должны быть сведены в таблицу и отражены на графиках частотной зависимости параметров, построенных в линейном масштабе частот.

5. Выводы по полученным результатам

Полученные значения параметров передачи электрических кабелей связи следует сравнить с параметрами близкого по конструкции типового кабеля и дать анализ причин отличия параметров рассчитанного кабеля от типового, выпускаемого кабельной промышленностью.