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Abstract—A neurointerface is a nonlinear filtering system
based on neural networks (NNs) that serves as a coupler between
a human operator and a nonlinear system or plant that is to
be controlled or directed. The purpose of the coupler is to ease
the task of the human controller. The equations of the plant are
assumed to be known. If the plant is unstable, it must first be sta-
bilized by feedback. Using the plant equations, off-line automatic
learning algorithms are developed for training the weights of the
neurointerface and the weights of an adaptive plant disturbance
canceller. Application of these ideas to backing a truck with two
trailers under human direction is described. The “truck backer”
has been successfully demonstrated by computer simulation and
by physical implementation with a small radio-controlled truck
and trailers.

Index Terms—Adaptive control, man–machine interfaces,
neural networks (NNs).

I. INTRODUCTION

FOR MANY tasks, productivity, safety, and liability con-
ditions require a considerable degree of skill from human

operators. In order to overcome lack of skill, special man–ma-
chine interfaces may be adopted. The basic idea is to change the
operational space through a neural network (NN) [1]–[4], al-
lowing the human operator to interact with the process through
less-specialized commands. Hence, the operator devotes his at-
tention to solving a less complex problem, directly at the task
level. The objective is to improve the productivity and safety
levels of such tasks even in the case of unskilled operators.

This paper intends to show how NNs can be applied to the
design of man–machine interfaces for practical real-time prob-
lems. The term “neurointerface” is chosen to emphasize the use
of NNs for the solution of man–machine interface problems.
Neurointerfaces can be regarded as circuitries, algorithms, and
devices implementing NNs to facilitate the human operation of
complex systems.

The design of neurointerfaces involves the training of NNs,
which are incorporated in nonlinear adaptive filters. This work
applies the inverse modeling technique to designing neuroint-
erfaces. In the past, many works have described training pro-
cedures and design techniques for inverse modeling using NNs
(see [5], [6], and references therein). This study will apply the
inverse modeling technique to the design of man–machine in-
terfaces for complex dynamic systems.
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In the work of Narendra and Parthasarathy [7], NNs were
proposed for the identification and control of nonlinear dy-
namic systems. As a result, a considerable number of papers
have appeared on the general subject of control with NNs.
Training schemes based on the backpropagation algorithm [8]
and its variations were proposed and applied to NN control.

This work applies dynamic optimization [9], [10] to the
training of a multilayer NN with a tapped delay line (neuroin-
terface) cascaded with the plant model. The neurointerface
training is formulated as a constrained optimization problem
and is solved through dynamic optimization. The technique
assumes the nonlinear plant is continuous, minimum phase,
and controllable with bounded states (Lagrangian stability). If
the plant is unstable, it must first be stabilized by feedback. The
backpropagation algorithm is used in one of the steps of the
neurointerface training method. For the interested reader, the
application of dynamic optimization to state-feedback control
with NNs can be found in the works of Lamego [11], Shen
[12], and Plumer [13].

The neurointerface training is done off-line. This is mainly
because the dynamic optimization algorithm is computation-
ally very expensive and it also needs the plant model. In ad-
dition, depending on the system (plant model plus neurointer-
face) under study, the time of convergence may be too lengthy
for real-time adaptive schemes. Nonetheless, the neurointerface
design can be often extended to integrated off-line schemes,
wherein a system identification algorithm obtains a continuous
representation of the plant model (probably, using an NN) from
on-line acquired data. Then, the dynamic optimization algo-
rithm uses the plant model for training the neurointerface, which
in turn controls the plant. The processes of plant identification
and neurointerface training can be repeated periodically using
real-time acquired data.

In order to keep the neurointerface training description
simple, this paper focus solely on pure off-line training. Once
the basic concepts related to plant inversion and dynamic
optimization applied to NNs are understood, extensions to
real-time learning schemes can be readily made.

A neurointerface is used to facilitate the backing of a truck
connected to a double-trailer configuration under human
steering control. The steering commands of the human driver
are fed to the neurointerface whose output controls the steering
angle of the front wheels of the truck.

II. WHAT IS A NEUROINTERFACE?

A neurointerface may be thought of as a form of inverse of
the plant to be controlled. The desired plant response can be
realized by driving the plant with an inverse controller whose
input consists of simple command signals applied by a human

1063-6536/02$17.00 © 2002 IEEE

Authorized licensed use limited to: Southern Federal University. Downloaded on September 16,2024 at 17:32:54 UTC from IEEE Xplore.  Restrictions apply. 



222 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 10, NO. 2, MARCH 2002

Fig. 1. A cascade of the trained neurointerface and the plant.

operator. Thus, an unskilled operator using a neurointerface can
reproduce the actions of an experienced operator.

While cases might exist in which the neurointerface provides
only an approximation to the actions taken by an expert oper-
ator, the change of operational space made by the neurointerface
allows the human operator to interact with the process through
easier, less specialized actions. This is the case, for instance, in
backing a truck and multiple trailers. The neurointerface may be
considered as a black box that takes commands from the driver
(desired direction of the trailer back part) and provides the nec-
essary actions (steer the wheels) in order to achieve such a goal.

It should be noted that the driver is not eliminated in this work.
Nguyen and Widrow [14] proposed an NN that provided full
automation in backing a trailer truck to a loading dock and in-
deed, eliminating the presence of the driver. In the present work,
the human action is essential. In fact, the driver is concerned
with providing the desired spatial trajectory, free of obstacles
and normally the shortest one.

The truck-backing-up exercise is a kinematic inverse mod-
eling problem. Kinematic, in this sense, means that the dynamic
effects that may occur during the operation are not significant.
The neurointerface can also be applied to dynamic inverse
modeling problems. A good example of a dynamic system that
could be controlled by a neurointerface is a human-operated
construction crane. A flexible cable does the coupling between
the trolley and the load. Normally, movements in the trolley
generate oscillations in the load. Thus, the crane operator
is concerned about achieving movement free of oscillations
when shifting the load from one point to another. Here, the
neurointerface may be regarded as a black box that takes
commands from the crane operator (desired trajectory of the
load) and provides the necessary actions (actuation on each
degree of freedom of the crane) in order to provide a smooth
load movement.

The neurointerface is designed to operate in real time. The
training procedure is performed off-line, before the trained neu-
rointerface is used in the real system. Fig. 1 shows a cascade
of a trained neurointerface driving the actual process (nonlinear
plant). This is the basic configuration in which the neurointer-
face is supposed to work. Feedback is provided by the human
operator sensing and observing the plant output and changing
the control input as required to get the desired plant response.
The relationship between the plant output and the neurointerface
input must be simple, however, in order for the human operator
to be able to control the plant.

The basic topology of a neurointerface is shown in Fig. 2. It is
a feedforward nonlinear adaptive transversal filter consisting of
a tapped delay line connected to a multilayer NN. The weights

of each neuron are adjusted automatically
during the training process. The filter input is, the filter
output is , the discrete-time index is, and a unit delay is
represented by the symbol.

Fig. 2. A feedforward nonlinear adaptive filter incorporating a three-layer NN.

Fig. 3. Schematic diagram of a truck and two trailers.

III. T HE TRUCK BACKER: A CASE STUDY

The kinematic equations for the motion of the truck and
double trailers are easily derived from geometric considerations
[11]. Regarding the schematic diagram of the truck and trailers
shown in Fig. 3, these equations are

(1)

where is the backing speed of the truck and, , and
are, respectively, the effective lengths of the truck, the first and
second trailers.

The truck backer is an interesting example. It represents the
control of a nonlinear unstable system. It is assumed in this work
that the plant to be controlled is known. Such is the case with
the truck backer.

The first step is to stabilize the unstable plant about an equi-
librium point. This can be done in many cases by making use
of negative feedback with fixed gains. The idea is illustrated in
Fig. 4.
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Fig. 4. The plant state-space representation, including stabilization feedback.

In Fig. 4, the plant is represented in state-space form. The
plant is a single-input–single-output (SISO) system. The thin
lines carry scalar signals, and the heavy lines carry vector sig-
nals. The box C is a linear combiner with fixed weights that
converts the plant state variables into the plant output. The box
K is another linear combiner with fixed weights that converts
the state variables into a scalar stabilizing signal. For the truck
backer example, the state variables areand . The plant input
is the steering angle of the truck’s front wheels. The Plant
output variable to be controlled is the state variable. For ex-
ample, , the truck will be backing straight back.

The gain values of the linear combiner K are calculated
through some state-feedback technique (plant linearization
around the equilibrium [15], Lyapunov energy functions
[16], etc.). In the truck-backer example, the gain values were
obtained by simple plant model linearization around the equi-
librium ( ). This approach has shown to be very
effective and it has been verified through computer simulation
and physical implementation that the Lagrangian stability is
achieved in the operating region in which the truck and multiple
trailers are supposed to work. Alternatively, the linear combiner
may be replaced with a nonlinear feedback topology obtained
through state-feedback linearization [17]. The advantage of
such a technique is that the domains of attraction around the
equilibrium point are usually increased, providing better and
smoother transient responses.

The input command to the neurointerface controls the trajec-
tory of the truck and trailers. A constant input command causes
the truck and trailers in steady state to back along a circle of
fixed radius. A sudden step change of the input command causes
the truck and trailers to back along a circle of a different fixed
radius after a transient takes place and dies out. A zero com-
mand input causes the truck and trailers to back along a straight
line after the transient dies out.

Steering the truck system through the neurointerface is a lot
like steering a conventional automobile while driving forward.
The instantaneous angle of the steering wheel determines the ra-
dius of curvature of the circle that the car follows. Changing the
car’s steering angle causes an instantaneous change in curvature
of the trajectory, but without transients.

For the truck backer, controlling angle, the angle between
the two trailers, would be sufficient to control the trajectory. If
the angle of the truck front wheels is controlled to achieve
and maintain the correct fixed value of, the desired motion
along a circle of fixed radius would occur, after transients die
out. Thus, the truck backer is an SISO system. This would be
true even if there were more than two trailers.

Fig. 5. Off-line learning process for training the neurointerface.

IV. TRAINING A NEUROINTERFACE

A block diagram illustrating the training of the neurointerface
is shown in Fig. 5. The neurointerface is adapted so that the cas-
cade of it and an exact model of the plant would have the same
response as a chosen reference model. Assuming that the plant
is continuous, minimum phase, and controllable1 with bounded
states (Lagrangian stability), ideally the neurointerface would
develop into an inverse of the plant if the reference model were
a unit gain, and there were no limits on the absolute maximum
values of the neurointerface output signals applied to the plant
input. However, the neurointerface can only generate bounded
output signals (continuous or not), and the corresponding plant
output signals are always continuous and with certain time-re-
sponse features. Thus, the cascade of the trained neurointerface
and plant can not behave like a unit gain block. For this reason,
in Fig. 5, the reference model block is regarded as a general
dynamic system (to be defined by the designer) incorporating
the essential (desired) time-response features of the trained neu-
rointerface plus plant. An example of an essential time-response
feature would be a time delay in the plant response. Because
the neurointerface control system is causal, it cannot eliminate
plant delays, and indeed, the reference model would incorpo-
rate the same delay or more in its time-response specifications.
In Fig. 5, the reference model block is usually regarded as a
linear dynamic system. With the truck backer, for instance, a
reference model with a double pole has been used, giving ex-
ponential transients in response to step changes in the reference
model input. The idea of reference models was introduced by
Draper and Li [18] and has been widely used since then.

Training the neurointerface is done off line. A noise input
to the neurointerface is used in the training process. This noise
signal is also used to drive the input of the reference model. The
output of the reference model is compared with the plant output,
and the difference is an error signal that is to be minimized by
adjusting the weights of the NN in the neurointerface. The struc-
ture of the neurointerface is shown in Fig. 2.

In order to adapt the weights of the neurointerface, an
error signal at the neurointerface output is needed. All that
is available, however, is the error signal at the output of the
plant model. In order to get the appropriate error signal for
adapting the neurointerface, it is necessary to “backpropagate”
the available error signal through the known equations of the

1Here, the plant is assumed to be controllable in the operating region in which
it is supposed to work.
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plant model. The specific details of how this is done and how
the neurointerface is trained using dynamic optimization [10]
are given next.

The SISO nonlinear plant of Fig. 5 which is to be controlled
by the neurointerface is described by the following discrete-time
state-space equations:

specified. (2)

The variable is the time index, is the initial time, and ,
the final time. Vector represents the state variables,
and (initial values for the state variables) is assumed to be
known. is the plant input, and is the plant output.
Function is assumed to be analytic and

. The plant is considered to be controllable and La-
grangian stable [15], [17]. If not so, it is assumed that the feed-
back gain makes the plant Lagrangian stable (bounded
states) in an open bounded region containing the origins of the
state space and plant input. In this case, all the state variables
used for stabilization must be accessible.

The neurointerface is described by

where (3)

Signal is the neurointerface command input, and signal
, the neurointerface output. Vector repre-

sents the weights of the feedforward NN. The components of
the vector represent the signals generated by the neurointer-
face’s tapped delay line. They are connected to the feedforward
NN inputs as shown in Fig. 2.

Refer to Fig. 5. During the training phase, the neurointerface
output, , is connected directly to the plant model input (also
denoted by ), and the goal is to adapt the weight vector
step-by-step so the mean-square error

(4)

defined in a time window of samples, is reduced. The signal
is the reference model output, and is the desired signal that

the plant output is suppose to follow at each. The following
constrained optimization problem reflects this idea:

minimize

subject to (2) and (3)

for and specified.

(5)

Using Lagrangian multipliers, (5) can be represented as an
unconstrained optimization problem in the form

(6)

and the objective is to calculate the gradient so can be
adjusted using a small step in the direction of .
This will reduce the value of the mean-square error defined in
(4). The optimization variables are now the Lagrangian multi-
pliers and , the state variables , the
plant input , the plant output , and the weight vector .

The gradient is given by

(7)

In order to compute it, one must calculate the values of
and , for . Since
is the partial derivative of the feedforward NN

output with respect to the weight vector, it can be computed
for each using the backpropagation algorithm [8].

The computation of however follows a different approach
based on dynamic optimization [10]. The values of, for

, are obtained by applying the optimality
conditions

(8)

to (6). As a result, the plant model equations need to be com-
puted for samples of the time window. They are

and specified. (9)

Likewise, the Lagrangian variables are also computed in the
same time window. First, is computed using the error signal

and the following equation:

(10)

Second, is computed through a recursive equation running
backward in time

for and (11)

Finally, the values of , are computed
through the following equation:

(12)

With these values, it is possible to compute the gradient
using (7). The Lagrangian multiplier is the “error” signal
referred to the output of the neurointerface, needed to adapt it.

The following algorithm summarizes the steps necessary to
compute the gradient .

Algorithm 1: Given and for ;
given and
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1) for , compute

2) for and ,
compute

3) for , compute

4) Compute the gradient

The gradient is a moving average of the samples in
the window. With its value, the weight vectorcan be updated
using

(13)

where is a small positive number.
The algorithm converges to local minima. A local minimum

may be eventually a global one. However, there is no guarantee
this will be the case since by forcing optimality in (6) with re-
spect to the Lagrangian multipliers does not ensurewill be a
contraction mapping in . Therefore, depending on the initial
value of , its iterative sequence generated by (13) may or may
not reach a local minimum with an acceptable value for(a
small one). It should be noted, however, that the algorithm al-
ways converges to a local minimum provided the nonlinear plant
is continuous, minimum phase, and controllable with bounded
states, and that the parameterin equation (13) is small enough.
As a result, the designer is supposed to evaluate the value of
and check if its local-optimum value is small enough. If not so,
he or she should repeat the algorithm, using a different initial
value for , the NN weight vector.

Once the neurointerface is trained, it can be used to control
the plant. Fig. 6 shows a trained neurointerface connected to the
plant. In the neurointerface block, the term “copy” is used to
emphasize that the neurointerface is trained off-line using the
plant model, and afterwards, a digital copy of the trained neu-
rointerface is used to drive the real plant. The human command
input to the neurointerface causes the plant’s output to respond
as if the cascade of neurointerface and plant were equivalent to
the reference model.

Fig. 6. The trained neurointerface connected to the plant.

Fig. 7. A neurointerface connected to a plant with a disturbance canceller.

V. PLANT DISTURBANCE

An important subject is that of plant disturbance. The con-
figuration of neurointerface and plant of Fig. 1 does not show
this. In fact, if plant disturbances were present, it would be ap-
parent to the human operator who in some cases might be able
to modify the command input in order to counteract the dis-
turbance. Generally, this would not be easy for the operator
to do because of the effects of inherent delay in the plant dy-
namic response. Some other means for dealing with plant dis-
turbance without requiring action on the part of the human op-
erator would be desirable.

A method for cancelling plant disturbance without affecting
the plant dynamics is taught in [6, Ch. 8]. The method can be
applied to neurointerface control. The idea is illustrated by the
block diagram of Fig. 7. It can be seen that once again a copy
of the neurointerface is used to drive the plant. This diagram
is more complicated than that of Fig. 6, however, because it
includes an adaptive disturbance canceller.

In Fig. 7, both the plant and an exact model of the plant are
driven by the neurointerface output. The output of the plant
model, which is disturbance free, is subtracted from the plant
output. The difference is pure plant disturbance, referred to the
plant output. The plant disturbance is fed to the box labeled Q
(copy). This box is an SISO nonlinear adaptive filter that has
been trained by an off line process (see Fig. 8) to be a best
least squares inverse of the plant. The output of Q is subtracted
from the plant input, but not subtracted from the plant model
input. It is shown in [6] that if the plant is linear, this feedback
noise canceller is optimal, and that it reduces the plant distur-
bance observed at the plant output to the lowest level physi-
cally possible in the least squares sense. This optimality has not
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Fig. 8. Training the filter Q for use in the plant disturbance canceller.

been proven yet for nonlinear systems, but simulation experi-
ments have shown the adaptive canceller to be highly effective.
Because the driven response of the plant and the plant model
are identical, subtracting their outputs to obtain the disturbance
signal to drive Q and to obtain feedback results in a feedback
loop with zero gain around it. Thus, the disturbance canceller
does not affect the dynamic response of the plant, whether the
plant is linear or nonlinear. The training of the box Q, shown in
Fig. 8, uses training noise to affect a learning process that makes
the cascade of Q and the plant model behave as the best possible
in the least squares sense (like a piece of wire, i.e., a unit gain).
The training process is identical to that used in Fig. 5 to train
the neurointerface. Both the filter Q and the neurointerface are
configured like the nonlinear adaptive filter shown in Fig. 2.

If the filter Q is an exact inverse of the plant, then the plant
disturbance will be perfectly cancelled. This will never happen
however, because there must always be at least one sample time
of delay around the loop. Any delay in the plant will also prevent
Q from being a perfect inverse of the plant. In the linear case, if
the plant is nonminimum phase, Q cannot be a perfect inverse,
but the adaptive disturbance canceller is nevertheless optimal.
In the nonlinear case, optimality is plausible but yet unproven.

VI. EXPERIMENTAL RESULTSWITH THE TRUCK BACKER

Application of neurointerface control has been made to the
truck backer-upper. this was done two ways: by computer
simulation and with a physical toy truck and trailer that is
approximately 1.5 m long. Backing the truck and trailers is
not a “toy” problem, however. The authors have had many
discussions with professional truck drivers, and have discov-
ered that most professional drivers would have a difficult time
backing up a tandem—a truck and two trailers. In normal use,
the trailers are uncoupled before backing one at a time.

The trailer-truck system is a continuous plant as displayed in
(1). During the neurointerface training, the plant is regarded as
a discrete-time system. Thus, to apply the off-line training pro-
cedure described in Section IV [Algorithm 1 and (13)] to both
neurointerface and disturbance canceller circuits, it is necessary
to discretize the continuous plant. Two discretization methods
were used. In step 1 (one) of Algorithm 1, the plant simulation
was accomplished using a fourth-order Runge–Kutta method,
so that the simulation results could reflect as closely as possible
the dynamical behavior of the trailer-truck continuous model.
In steps 2 (two) and 3 (three), the partial derivatives
and were computed from a discrete version of the con-
tinuous plant obtained from Euler’s method. This was done to

Fig. 9. Trajectory of truck and trailers.

(a)

(b)

Fig. 10. Time plots of truck backer. (a) Command input, reference model
output, and angle� . (b) Steering angle� .

make the computation of the partial derivatives simpler. This
introduced some small numerical errors during the computation
of the Lagrangian multipliers, and , which in turn might
have slightly changed the final solution for the weight vector.
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(a)

(b)

Fig. 11. Time plots of truck backer with disturbance. (a) Command input,
reference model output, and angle� . (b) Steering angle� .

However, once the training algorithm converged (to a local op-
timum), the discrete plant simulation response in step 1 closely
matched that of the continuous plant model.

The results of a typical simulation experiment are shown in
Figs. 9 and 10. In Fig. 9, the backing trajectory of the truck and
trailers is shown. This trajectory results from application of a
sinusoidal command input, plotted in Fig. 10(a). The command
input exercises control over the plant variable. This is the
plant output, and it is also plotted in Fig. 10(a). The motion of

versus time should match the response of the reference model
driven by the command input. This response has been computed,
and it is also plotted in Fig. 10(a). These plots are quite similar.
This indicates that the trained neurointerface, when cascaded
with the nonlinear plant model of Fig. 5, has a response that
fairly closely matches that of the linear reference model.

The truck steering angle is plotted versus time in Fig. 10(b).
This strange steering function causes the backing trajectory of
Fig. 9 and the angle response plotted in Fig. 10(a). The
variable to produce the trajectory in Fig. 9 is somewhat counter-
intuitive to the operator.

In this simulation, the total length of the truck and trailers was
1.5 m, and the truck was backing at a constant speed of 1 m/s.
The sampling rate for the simulation was 50 samples/s. For the
off-linecomputationstoobtain theneurointerfaceandthefilterQ,
the moving average window in each case contained sam-
ples.The trainingalgorithmconvergedafter935 iterations,corre-
sponding to a final value for smaller than 1% of its initial value.

Fig. 12. Trajectory of truck and trailers with disturbance.

Fig. 13. Truck with double trailer.

In the above described experiment, there was no plant dis-
turbance. The same experiment was repeated with a fairly vio-
lent plant disturbance to test the disturbance canceller of Fig. 7.
The command input, the plant response, and the computed re-
sponse of the reference model are plotted in Fig. 11(a). The
truck steering angle is plotted versus time in Fig. 11(b). The
jitter in steering angle which was needed to compensate for the
plant disturbance is very evident. In spite of the disturbance, the
system remains stable and does not jackknife. The backing tra-
jectory is shown in Fig. 12. The disturbance has caused the truck
to take a different course. A human controlling the truck could
have kept the truck on course, if he wished, without needing to
worry about jackknifing.

Experiments with the toy truck under human steering
command have been done. Instead of a computer generated
sinusoidal command input, manual steering commands have
been inputted to the neurointerface by means of a small steering
wheel connected to a radio transmitter. The received command
input was fed to a neurointerface implemented by an Intel
486 battery-operated computer. The QNX real-time operating
system [19] was used by the computer. All programming was
done in the C language. The output of the neurointerface drove
a servo that controlled the steering angleof the truck.

A photograph of the truck and double trailer is shown in
Fig. 13. At the time of this writing, the truck has been seen
dashing down the halls of Stanford University. The next phase
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of the research has a goal of including an obstacle avoidance ca-
pability in the neurointerface.

VII. CONCLUSION

Man–machine interfaces have been implemented in the past
to facilitate manual control of plants that are difficult or impos-
sible for human operators to control. Typically, plants that are
difficult to control are unstable and nonlinear. Interfaces for such
systems generally provide stabilization feedback. Examples are
unstable aircraft, for instance helicopters [20], that are only fly-
able because of stabilization provided by their autopilots.

In addition to stabilization, this paper proposes the use of a
series filter between the human operator and the stabilized plant
to further ease the task of human control. This filter is designed
to be an approximate inverse of the stabilized plant.

This paper proposes that the nonlinear series filter be imple-
mented in the form of a transversal filter consisting of a tapped
delay line with the signals at the taps providing inputs to a mul-
tilayered neural network. The filter output is the neural network
output. The filter is called a neurointerface. It can be trained by
a learning algorithm which is a form of dynamic optimization
wherein the derivatives of the neurointerface output with respect
to the weights are calculated by backpropagation.

The idea of an inverse comes from linear system theory. The
inverse has a transfer function that is the reciprocal of the transfer
function of the plant. Nonlinear plants do not have transfer func-
tions. Nevertheless, approximate inverses of nonlinear plants can
be made using adaptive algorithms that are similar to those used
formakinginversesof linearplants.Theexistenceofapproximate
inverses of nonlinear plants is at present based more on experi-
ment and experience rather than on analytical proof.

Plant disturbance makes human control more difficult, and re-
ducing disturbance to the lowest possible level is certainly de-
sirable. This paper proposes a method that feeds the disturbance
signalback to theplant input insuchawaythat theplantdynamics
areunaffected.Arelatedmethod isshownbyWidrowandWalach
[6] to be optimal for cancellation of disturbance in linear plants.
Optimality for nonlinear plants is plausible but not yet proven.

The method proposed in this paper has been applied to
the problem of backing a trailer-truck with two trailers under
human control. A backing trailer-truck is an unstable nonlinear
plant. Without a neurointerface, backing causes immediate
jackknifing. With a neurointerface, it is almost as easy for a
person to back a truck with two trailers as it is to drive a truck
forward. This has been tested and analyzed by computer simu-
lation, and has been demonstrated with a scale-model truck and
trailers steered by human control through a neurointerface. The
NN was implemented by a battery-operated computer mounted
in one of the trailers. Use of an adaptive disturbance canceller
and use of a plant inverse as an interface have greatly facilitated
the human control task.
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