Контрольная работа по дисциплине «*Спецглавы математики*».

При выполнении контрольной работы студент должен руководствоваться следующими указаниями:

- 1) Контрольная работа выполняется в отдельной тетради. На внешней стороне должны быть написаны фамилия, имя, отчество студента, номер группы, номер варианта, фамилия преподавателя и его инициалы.
- 2) Студент выполняет тот вариант контрольной работы, который совпадает с его номером в списке группы (или две последние цифры в номере зачетной книжки).
- 3) Контрольные задачи располагайте в указанном порядке. Перед решением задачи надо переписать ее условие.
- 4) При решении задач следует делать ссылки на вопросы теории с указанием необходимых формул, теорем, свойств.
- 5) На каждой странице тетради необходимо оставлять поля для замечаний преподавателя.
- 6) Контрольные работы должны выполняться самостоятельно. Несамостоятельно выполненная работа лишает студента возможности проверить степень своей подготовленности по данным темам.

Рекомендованная литература

- 1. Гмурман В.Е. Руководство к решению задач по теории вероятностей и математической статистике. М.: Высш. шк., 1997.
- 2. Ниворожкина Л.И., Морозова З.А. Математическая статистика с элементами теории вероятностей в задачах с решениями. М.: ИКЦ «МарТ», 2005.
- 3. Методические указания к проведению практических занятий по теории вероятностей и математической статистике. Глазов: ГИЭИ ИжГТУ, 1999.
- 4. Кремер Н.Ш. Теория вероятностей и математическая статистика. М.: ЮНИТИ, 2000.
- 5. Баврин И.И., Матросов В.Л. Общий курс высшей математики: Учеб. для студентов физмат. спец. пед. вузов. М.: Просвещение, 1995.
- 6. Данко П.Е., Попов А.Г., Кожевникова Т.Я. Высшая математика в упражнениях и задачах. М.: Высшая школа, 2008.
- 7. Фадеева Л.Н. Математика для экономистов. Теория вероятностей и математическая статистика. Задачи и упражнения М: ЭксМО, 2006

ЗАДАНИЯ ДЛЯ КОНТРОЛЬНОЙ РАБОТЫ

При решении задач 1,3,4,5,7 необходимо сначала вычислить N и M для вашего варианта. Если ваш номер по списку равен xy (например 12), то N=x+y (N=1+2=3), M=2x+3y (M=2*1+3*2=8). Если полученные значения больше 10, то берется последняя цифра полученного значения. *Например*, для номера 15 имеем N=1+5=6, M=2*1+3*5=17, т.е. M=7. Если N или M равны нулю, то их значения меняются на 2.

1. Решить задачу о выборке.

Среди студентов группы, в которой 10+N девочек и 10+M мальчиков выбирается делегация на конференцию в размере 6 человек. Найти вероятность того, что в делегацию попадут: а) все девочки; б) 3 девочки и 3 мальчика.

2. Решить задачу по теме «Теоремы сложения и умножения вероятностей»:

	задачу по теме «Теоремы сложения и умножения вероятностей»:
Вариант	
1.	Вероятность того, что первый телевизор потребует ремонта в течение
	гарантийного срока, равна $0,2$; для второго $-0,1$; для третьего $-0,3$. Найти
	вероятность того, что в течение гарантийного срока из 3 телевизоров: а)
	только один потребует ремонта; б) все три потребуют ремонта; в) ни один
	не потребует ремонта; г) хотя бы один телевизор потребует ремонта.
2.	Три стрелка стреляют по цели. Вероятность попадания в цель для первого
	стрелка равна 0.75 ; для второго -0.8 ; для третьего -0.9 . Найти вероятность
	того, что: 1) все три стрелка попадут в цель; 2) только одни попадет в цель;
	3) все трое промахнутся; 4) хотя бы одни попадет в цель.
3.	Вероятность того, что книга находится в фондах первой библиотеки равна
	0.8; во второй -0.9 ; в третьей -0.6 . Найти вероятность того, что книга
	имеется а) во всех трех библиотеках; б) только в одной библиотеке; в) ни в
	одной библиотеке; г) хотя бы в одной библиотеке.
4.	Студент разыскивает нужную ему формулу в трех справочниках.
	Вероятности того, что формула содержится в первом, втором, третьем
	справочнике, соответственно равны 0,6; 0,5; 0,8. Найти вероятности того,
	что формула содержится: а) только в одном справочнике; б) во всех трех
	справочниках; в) ни в одном справочнике; г) хотя бы в одном справочнике.
5.	Для сигнализации об аварии установлены три независимо работающих
	сигнализатора. Вероятность того, что при аварии сигнализатор сработает,
	равна 0.95 для первого сигнализатора; для второго -0.9 ; для третьего -0.8 .
	Найти вероятность того, что при аварии сработают: а) все три
	сигнализатора; б) только один сигнализатор; в) ни один не сработает; г)
	хотя бы один сработает.
6.	Вероятность купить билет на ближайший сеанс в кино в кассе первого
0.	кинотеатра рана 0.7 ; в кассе второго кинотеатра -0.8 ; для третьего -0.6 .
	Найти вероятность того, что билет можно купить: а) в кассах всех трех
	кинотеатров; б) только в одном кинотеатре; в) ни в одном кинотеатре; г)
	хотя бы в одном кинотеатре.
7.	Вероятность того, что первый телевизор потребует ремонта в течение
, .	гарантийного срока, равна 0,3; для второго – 0,2; для третьего – 0,4. Найти
	вероятность того, что в течение гарантийного срока из 3 телевизоров: а)
	только один потребует ремонта; б) все три потребуют ремонта; в) ни один
	не потребует ремонта; г) хотя бы один телевизор потребует ремонта.
8.	Вероятность того, что студент сдаст первый экзамен, равна 0,8; второй –
0.	0.95; третий -0.7 . Найти вероятность того, что студентом будут сданы: а)
	все три экзамена; б) только один экзамен; в) хотя бы один экзамен.
9.	Вероятность того, что нужная сборщику деталь находится в первом,
) .	втором, третьем ящике, соответственно равны 0,6; 0,7; 0,8. Найти
	вероятность того, что деталь содержится: а) только в одном ящике; б) во
	всех трех ящиках; в) ни в одном ящике; г) хотя бы в одном ящике.
10.	
10.	Студент разыскивает нужную ему формулу в трех справочниках.
	Вероятности того, что формула содержится в первом, втором, третьем
	справочнике, соответственно равны 0,8; 0,6; 0,4. Найти вероятности того,
	что формула содержится: а) только в одном справочнике; б) во всех трех
1 1	справочниках; в) ни в одном справочнике; г) хотя бы в одном справочнике.
11.	Для сигнализации об аварии установлены три независимо работающих
	сигнализатора. Вероятность того, что при аварии сигнализатор сработает,
	равна 0,7 для первого сигнализатора; для второго – 0,95; для третьего –
	0,85. Найти вероятность того, что при аварии сработают: а) все три
	сигнализатора; б) только один сигнализатор; в) ни один не сработает; г)
	хотя бы один сработает.

12.	Вероятность купить билет на ближайший сеанс в кино в кассе первого
	кинотеатра рана 0.8 ; в кассе второго кинотеатра -0.85 ; для третьего -0.6 .
	Найти вероятность того, что билет можно купить: а) в кассах всех трех
	кинотеатров; б) только в одном кинотеатре; в) ни в одном кинотеатре; г)
	хотя бы в одном кинотеатре.
13.	Рабочий обслуживает три станка. Вероятность того, что в течение смены
	станок потребует его внимания, равна для первого станка 0,3, для второго –
	0,6, для третьего $-0,8$. Найти вероятность того, что в течение смены: a) все
	станки потребуют внимания рабочего; б) только один станок потребует
	внимания рабочего; в) хотя бы один станок потребует его внимания.
14.	Устройство состоит из трех элементов, работающих независимо.
14.	Вероятность выхода из строя первого – 0,4; второго – 0,3; третьего – 0,25.
	Найти вероятность того, что а) из строя выйдет только один прибор; б)
	выйдут из строя все приборы; в) все будут работать; г) выйдет из строя
	хотя бы один прибор.
15.	Три стрелка стреляют по цели. Вероятность попадания в цель для первого
	стрелка равна 0.5 ; для второго -0.7 ; для третьего -0.9 . Найти вероятность
	того, что: 1) все три стрелка попадут в цель; 2) только одни попадет в цель;
	3) все трое промахнутся; 4) хотя бы одни попадет в цель.
16.	Вероятность того, что нужная сборщику деталь находится в первом,
	втором, третьем ящике, соответственно равны 0,6; 0,5; 0,8. Найти
	вероятность того, что деталь содержится: а) только в одном ящике; б) во
	всех трех ящиках; в) ни в одном ящике; г) хотя бы в одном ящике.
17.	
1/.	Студент разыскивает нужную ему формулу в трех справочниках.
	Вероятности того, что формула содержится в первом, втором, третьем
	справочнике, соответственно равны 0,3; 0,9; 0,6. Найти вероятности того,
	что формула содержится: а) только в одном справочнике; б) во всех трех
	справочниках; в) ни в одном справочнике; г) хотя бы в одном справочнике.
18.	Для сигнализации об аварии установлены три независимо работающих
	сигнализатора. Вероятность того, что при аварии сигнализатор сработает,
	равна 0.7 для первого сигнализатора; для второго -0.25 ; для третьего -0.9 .
	Найти вероятность того, что при аварии сработают: а) все три
	сигнализатора; б) только один сигнализатор; в) ни один не сработает; г)
	хотя бы один сработает.
19.	Вероятность купить билет на ближайший сеанс в кино в кассе первого
17.	кинотеатра рана 0.6 ; в кассе второго кинотеатра -0.9 ; для третьего -0.75 .
	Найти вероятность того, что билет можно купить: а) в кассах всех трех
	кинотеатров; б) только в одном кинотеатре; в) ни в одном кинотеатре; г)
20	хотя бы в одном кинотеатре.
20.	Рабочий обслуживает три станка. Вероятность того, что в течение смены
	станок потребует его внимания, равна для первого станка 0,55, для второго –
	0,6, для третьего $-0,75$. Найти вероятность того, что в течение смены: а) все
	станки потребуют внимания рабочего; б) только один станок потребует
	внимания рабочего; в) хотя бы один станок потребует его внимания.
21.	Вероятность того, что книга находится в фондах первой библиотеки равна
	0,4; во второй $-0,6$; в третьей $-0,7$. Найти вероятность того, что книга
	имеется а) во всех трех библиотеках; б) только в одной библиотеке; в) ни в
	одной библиотеке; г) хотя бы в одной библиотеке.
22.	Вероятность того, что нужная сборщику деталь находится в первом,
22.	втором, третьем ящике, соответственно равны 0,6; 0,7; 0,8. Найти
	вероятность того, что деталь содержится: а) только в одном ящике; б) во
	всех трех ящиках; в) ни в одном ящике; г) хотя бы в одном ящике.
23.	Для сигнализации об аварии установлены три независимо работающих
	сигнализатора. Вероятность того, что при аварии сигнализатор сработает,
	равна 0.9 для первого сигнализатора; для второго -0.7 ; для третьего -0.8 .

	Найти вероятность того, что при аварии сработают: а) все три сигнализатора; б) только один сигнализатор; в) ни один не сработает; г) хотя бы один сработает.
24.	Устройство состоит из трех элементов, работающих независимо. Вероятность выхода из строя первого -0.1 ; второго -0.2 ; третьего -0.25 . Найти вероятность того, что а) из строя выйдет только один прибор; б) выйдут из строя все приборы; в) все будут работать; г) выйдет из строя хотя бы один прибор.
25.	Три исследователя, независимо друг от друга, производят измерения некоторой физической величины. Вероятность того, что первый исследователь допустит ошибку при считывании показаний прибора, равна 0,1. Для второго и третьего вероятности равны 0,15 и 0,2 соответственно. Найти вероятность того, что: а) все три исследователя допустят ошибку при измерении величины; б) только один допустит ошибку; в) хотя бы один допустит ошибку.
26.	Три стрелка стреляют по цели. Вероятность попадания в цель для первого стрелка равна 0,8; для второго – 0,8; для третьего – 0,85. Найти вероятность того, что: 1) все три стрелка попадут в цель; 2) только одни попадет в цель; 3) все трое промахнутся; 4) хотя бы одни попадет в цель.
27.	Вероятность того, что студент сдаст первый экзамен, равна 0,9; второй – 0,9; третий – 0,8. Найти вероятность того, что студентом будут сданы: а) все три экзамена; б) только один экзамен; в) хотя бы один экзамен.
28.	Три стрелка стреляют по цели. Вероятность попадания в цель для первого стрелка равна 0,5; для второго – 0,7; для третьего – 0,85. Найти вероятность того, что: 1) все три стрелка попадут в цель; 2) только одни попадет в цель; 3) все трое промахнутся; 4) хотя бы одни попадет в цель.
29.	Вероятность того, что книга находится в фондах первой библиотеки равна $0,6$; во второй $-0,7$; в третьей $-0,8$. Найти вероятность того, что книга имеется а) во всех трех библиотеках; б) только в одной библиотеке; в) ни в одной библиотеке; г) хотя бы в одной библиотеке.
30.	Рабочий обслуживает три станка. Вероятность того, что в течение смены станок потребует его внимания, равна для первого станка 0,45, для второго – 0,5, для третьего – 0,3. Найти вероятность того, что в течение смены: а) все станки потребуют внимания рабочего; б) только один станок потребует внимания рабочего; в) хотя бы один станок потребует его внимания.

3. Решить задачу по теме «Повторение испытаний».

Вероятность появления события в каждом из 100 независимых испытаний равна 0,7. Найти вероятность того, что событие появится: а) ровно 75+N раз; б) не менее $75 - \min\{N; M; 3\}$ и не более $75 + \max\{N; M; 5\}$ раз; в) не менее половины.

4. Дан ряд распределения дискретной случайной величины X:

<u>/ 1 / 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</u>	7 1	1 /			
X	1	3	6	9	M
P	0,1	0,2	0,3	0,2	0,2

Найти: а) математическое ожидание, дисперсию и среднее квадратическое отклонение случайной величины X; б) вероятность того, что CB X примет значение из интервала (3; 8), т.е. P(3 < X < 8).

Замечание: перепишите предварительно закон распределения, поставив столбцы на свои места. Если значение М совпало с уже имеющимся, то оно меняется на значение на 1 больше.

5. Случайная величина X задана функцией распределения:

$$F(x) = \begin{cases} 0, & \text{при } x \le -1 \\ (x+1)/3, & \text{при } -1 \le x \le 2 \\ 1, & \text{при } x > 2. \end{cases}$$

Найти: а) плотность вероятности f(x); б) вероятность того, что X примет значение, заключающееся в интервалах: $\left(\frac{2}{M};\ 3\right)$; $\left(0;\ \frac{1}{N}\right)$, т.е. $P\left(\frac{2}{M} < X < 3\right)$, $P\left(0 < X < \frac{1}{N}\right)$.

6. Непрерывная случайная величина имеет **нормальное распределение**. Ее математическое ожидание равно a, среднеквадратичное отклонение равно σ_x . Найти вероятность того, что в результате испытания случайная величина примет значение в интервале (α , β).

Вариант	а	σ_{x}	α	β	Вариант	а	σ_{x}	α	β
1	10	1	8	14	16	40	4	36	43
2	12	2	8	14	17	38	2	35	40
3	14	3	10	15	18	42	4	40	43
4	16	2	15	18	19	44	5	41	45
5	18	1	16	21	20	45	5	43	48
6	20	2	17	22	21	16	2	15	18
7	24	1	20	26	22	26	3	23	27
8	26	3	23	27	23	10	1	8	14
9	28	2	24	30	24	40	2	39	42
10	30	1	27	32	25	24	1	20	26
11	32	3	30	35	26	40	4	36	43
12	34	1	30	36	27	14	3	10	15
13	36	2	34	37	28	36	2	34	37
14	38	3	37	41	29	28	2	24	30
15	40	2	39	42	30	42	4	40	43

7. Дана выборка объема n = 100:

x_{i}	0,1	0,5	0,6	0,8
$m_{\rm i}$	20+N	30+M	25	С

Найти: а) значение параметра C; б) среднюю выборочную \overline{X} ; в) выборочную дисперсию $\tilde{D}(X)$ и исправленную выборочную дисперсию S^2 ; г) исправленное среднее квадратическое отклонение S; д) построить полигон частот.

8. Построить гистограмму частот для интервального статистического ряда, где m_i — частота попадания вариант в промежуток $(x_t, x_{t+1}]$

Вариан'г	į	$x_i \le X \le x_{i+1}$	m_i	Вариант	î	$x_i \le X \le x_{i+1}$	m_i
	1	2-4	5	i	1	10—12	4
	2	46	8		2	12—14	12
1	3	6—8	16	16	3	14—16	8
	4	8-10	12		4	16—18	8
	5	10—12	9		ā :	18—20	18
_	1	3—7	4		1	3—7	6
	2	7-11	6		2	7—11	8
2	3	11 - 15	9	17	3	11—15	10
	4	1519	10		4	15—19	12
ľ	5	19—23	11		5	1923	4
	-					<u>.</u>	

Вариант	i	$x_i < X \le x_{i+1}$	m_i	Вариант	t	$x_i < X \le x_{t+1}$	m_i
	1	-6 - - 2	2		1	5—7	4
	2	-2-2	8		2	7-9	14
3	3	2—6	14	18	3	9—11	12
	4	6—10	6		4	11-13	8
	5	10—14	10		5	13—15	2
	1	4—8	5		1	11—14	3
4	2	8—12	7		2	14—17	8
	3	12—16	10	19	3	17-20	14
	4	16-20	12		4	20-23	15
	5	2024	6	l	5	2326	10
	1	7—9	5		1	2-5	6
	2	9—11	4		2	5—8	24
5	3	11—13	8	20	3	8—11	13
	4	13—15	12		4	11—14	1
	5	15—17	11		5	14-17	6
	1	5—8	5		1	10—14	5
	2	8—11	7		2	14—18	14
6	3	11—14	4	21	3	18-22	26
	4	14-17	1		4	22—26	9
-	5	17—20	3		5	2630	6
<u> </u>	1	46	3		1	5—10	3
	2	6—8	9		2	1015	9
7	3	8—10	7	22	3	15—20	18
	4	10-12	22		4	20—25	14
	5	12—14	9	<u> </u>	5	25-30	16
	1	1—5	4		1	10—20	12
_	2	59	5		2	20—30	17
8	3	9—13	9	23	3	30—40	46
	4	13-17	10		4	40-50	12
	5	1721	2	<u> </u>	5	50-60	13
	1	10-14	3		1	15—30	8
	2	14—18	16		2	30—45	16
9	3	18—22	8	24	3	45—60	12
	4	22—26	7		4	60—75	4
	5	2630	6		5	75—90	10
	1	20-22	4		1	20-40	8
	2	22—24	6.		2	4060	14
10	3	24—26	10	25	3	6080	10
	4	26—28	4		4	80—100	9
	5	28—30	6		5	100—120	19

Вариант	i	$x_i \leq X \leq x_{i+1}$	m_i	Вариант	i	$x_i \le X \le x_{i-1}$	m_i
	1	2-6	. 5		1	410	4
	2	6-10	3		2	10-16	5
11	3	10—14	18	26	3	16-22	12
	4	1418	9		4	22 - 28	14
	5	18-22	5		5	2834	5
	1	1416	3		1	12—16	7
	2	16—18	12		2	1620	15
12	3	18—20	10	27	3	20-24	13
	4	2022	15		4	24—28	8
j	5	22 - 24	10		5	2832	7
	1	5—10	2		1	8—10	5
	2	1015	14	28	2	10-12	16
13	3	15 - 20	11		3	12-14	11
	4	. 20—25	9		4	14—16	8
	5	25—30	4		5	16—18	10
	1	3-5	1		1	100110	7
	2	5—7	6		2	110120	16
14	3	7—9	14	29	3	120 - 130	12
	4	9-11	7		4	130—140	11
	5	11—13	2		5	140—150	4
	1	4-9	5		1	100-120	10
	2	9—14	9	30	2	120 - 140	34
15	3	1419	13		3	140—160	25
	4	19—24	6		4	160—180	21
ļ	5	2429	7		5	180 - 200	10

Таблица значений функции $\phi(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}$

	0	1	2	3	4	5	6	7	8	9
0,0	0,3989	3989	3989	3988	3986	3984	3982	3980	3977	3973
0,1	3970	3965	3961	3956	3951	3945	3939	3932	3925	3918
0,2	3910	3902	3894	3885	3876	3867	3857	3847	3836	3825
0,3	3814	3802	3790	3778	3765	3752	3739	3726	3712	3697
0,4	3683	3668	3652	3637	3621	3605.	3589	3572	3555	3538
0,5	3521	3503	3485	3467	3448	3429	3410	3391	3372	3352
0,6	3332	3312	3292	3271	3251	3230	3209	3187	3166	3144
0,7	3123	3101	3079	.3056	3034	3011	2989	2966	2943	2920
0,8	2897	2874	2850	2827	2803	2780	2756	2732	2709	2685
0,9	2661	2637	2613	2589	2565	2541	2516	2492	2468	2444
									2000	
1,0	0,2420	2396	23.71	2347	2323	2299	2275	2251	2227	2203
1,1	2179	2155	2131	2107	2083	2059	2036	2012	1989	1965
1,2	1942	1919	1895	1872	1849	1826	1804	1781	1758	1736
1,3	1714	1691	1669	1647	1626	1604	1582	1561	1569	1518
1,4	1497	1476	1456	1435	1415	1394	1374	1354	1334	1315
1,5	1295	1276	1257	1238	1219	1200	1182	1163	1145	1127
			1							
	ı	1	ı	ı	1	I	ł	1	1	i

	0	1	2	3	4	5	6	7	8	9
				4057						
1,6	1109	1092	1074	1057	1040	1023	1006	0989	0973	0957
1,7	0940	0925	0909	0893	0878	0863	0848	0833	0818	0804
1,8	0790	0775	0761	0748	0734	0721	0707	0694	0681	0669
1,9	0656	0644	0632	0620	0608	0596	0584	0573	0562	0551
2,0	0,0540	0529	0519	0508	0498	0488	0478	0468	0459	0449
2,1	0440	0431	0422	0413	0404	0396	0387	0379	0371	0363
2,2	0355	0347	0339	0332	0325	0317	0310	0303	0297	0290
2,3	0283	0277	0270	0264	0258	0252	0246	0241	0235	0229
2,4	0224	0219	0213	0208	0203	0198	0194	0189	0184	0180
2,5	0175	0171	0167	0163	0158	0154	0151	0147	0143	013
2,6	0136	0132	0129	0126	0122	0119	0116	0113	0110	010
2,7	0104	0101	0099	0096	0093	0091	0088	0086	0084	008
2,8	0079	0077	0075	0073	0071	0069	0067	0065	0063	006
2,9	0060	0058	0056	0055	0053	0051	0050	0048	0047	004
3,0	0,0044	0043	0042	0040	0039	0038	0037	0036	0035	003
3,1	0033	0032	0031	0030	0029	0028	0027	0026	0025	002
3,2	0024	0023	0022	0022	0021	0020	0020	0019	0018	001
3,3	0017	0017	0016	0016	0015	0015	0014	0014	0013	001
3,4	0012	0012	0012	0011	0011	0010	0010	0010	0009	000
3,5	0009	0008	0008	0008	0008	0007	0007	0007	0007	000
3,6	0006	0006	0006	0005	0005	0005	0005	0005	0005	000
3,7	0004	0004	0004	0004	0004	0004	0003	0003	0003	000
3,8	0003	0003	0003	0003	0003	0002	0002	0002	0002	000
3,9	0002	0002	0002	0002	0002	0002	0002	0002	0001	000

Таблица значений функции $\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{0}^{x} e^{-z^{2}/2} dz$

x	Φ (x)	x	Ф (х)	x	Φ (x)	x	Φ (x)
0,00	0,0000	0,32	0,1255	0,64	0.0290	0.00	0 2215
0,01	0,0040	0,32	0,1293		0,2389	0,96	0,3315
0,01	0,0040	0,33		0,65	0,2422	0,97	0,3340
- 1	0,0000		0,1331	0,66	0,2454	0,98	0,3365
0,03		0,35	0,1368	0,67	0,2486	0,99	0,3389
0,04	0,0160	0,36	0,1406	0,68	0,2517	1,00	0,3413
0,05	0,0199	0,37	0,1443	0,69	0,2549	1,01	0,3438
0,06	0,0239	0,38	0,1480	0,70	0,2580	1,02	0,3461
0,07	0,0279	0,39	0,1517	0,71	0,2611	1,03	0,3485
0,08	0,0319	0,40	0,1554	0,72	0,2642	1,04	0,3508
0,09	0,0359	0,41	0,1591	0,73	0,2673	1,05	0,3531
0,10	0,0398	0,42	0,1628	0,74	0,2703	1,06	0,3554
0,11	0,0438	0,43	0,1664	0,75	0,2734	1,07	0,3577
0,12	0,0478	0,44	0,1700	0,76	0,2764	1,08	0,3599
0,13	0,0517	0,45	0,1736	0,77	0,2794	1,09	0,3621
0,14	0,0557	0,46	0,1772	0,78	0,2823	1,10	0,3643
0,15	0,0596	0,47	0,1808	0,79	0,2852	1,11	0,3665
0,16	0,0636	0,48	0,1844	0,80	0,2881	1,12	0,3686
0,17	0,0675	0,49	0.1879	0,81	0,2910	1,13	0,3708
0,18	0,0714	0,50	0,1915	0,82	0,2939	1,14	0,3729
0,19	0,0753	0,51	0,1950	0,83	0,2967	1,15	0,3749
0,20	0,0793	0,52	0,1985	0,84	0,2995	1,16	0,37 70
0,21	0,0832	0,53	0,2019	0,85	0,3023	1,17	0,3790
0,22	0,0871	0,54	0,2054	0,86	0,3051	1,18	0,3810
0,23	0,0910	0,55	0,2088	0,87	0,3078	1,19	0,3830
0,24	0,0948	0,56	0,2123	0,88	0,3106	1,20	0,3849
0,25	0,0987	0,57	0,2157	0,89	0,3133	1,21	0,3869
0,26	0,1026	0,58	0,2190	0,90	0,3159	1,22	0,3883
0,27	0,1064	0,59	0,2224	0,91	0,3186	1,23	0,3907
0,28	0,1103	0,60	0,2257	0,92	0,3212	1,24	0,3925
0,29	0,1141	0,61	0,2291	0,93	0,3238	1,25	0,3944
0,30	0,1179	0,62	0,2324	0,94	0,3264		
0,31	0,1217	0,63	0,2357	0,95	0,3289		
		ł				į.	ł

_	(x)		.			1	l _
	W (x)	*	Φ (x)	*	Φ (x)	, x	Φ (x)
1,26	0,3962	1,59	0,4441	1,92	0,4726	2,50	0,4938
1,27	0,3980	1,60	0,4452	1,93	0,4732	2,52	0,4941
1,28	0,3997	1,61	0,4463	1,94	0,4738	2,54	0,4945
1,29	0,4015	1,62	0,4474	1,95	0,4744	2,56	0,4948
1,30	0,4032	1,63	0,4484	1,96	0,4750	2,58	0,4951
1,31	0,4049	1,64	0,4495	1,97	0,4756	2,60	0,4953
1,32	0,4066	1,65	0,4505	1,98	0,4761	2,62	0,4956
1,33	0,4082	1,66	0,4515	1,99	0,4767	2,64	0,4959
1,34	0,4099	1,67	0,4525	2,00	0,4772	2,66	0,4961
1,35	0,4115	1,68	0,4535	2,02	0,4783	2,68	0,4963
1,36	0,4131	1,69	0,4545	2,04	0,4793	2,70	0,4965
1,37	0,4147	1,70	0,4554	2,06	0,4803	2,72	0,4967
1,38	0,4162	1,71	0,4564	2,08	0,4812	2,74	0,4969
4,39	0,4177	1,72	0,4573	2,10	0,4821	2,76	0,4971
1,40	0,4192	1,73	0,4582	2,12	0,4830	2,78	0,4973
1,41	0,4207	1,74	0,4591	2,14	0,4838	2,80	0,4974
1,42	0,4222	1,75	0,4599	2,16	0,4846	2,82	0,4976
1,43	0,4236	1,76	0,4608	2,18	0,4854	2,84	0,4977
1,44	0,4251	1,77	0,4616	2,20	0,4861	2,86	0,4979
1,45	0,4265	1,78	0,4625	2,22	0,4868	2,88	0,4980
1,46	0,4279	1,79	0,4633	2,24	0,4875	2,90	0,4981
1,47	0,4292	1,80	0,4641	2,26	0,4881	2,92	0,4982
1,48	0,4306	1,81	0,4649	2,28	0,4887	2,94	0,4984
1,49	0,4319	1,82	0,4656	2,30	0,4893	2,96	0,4985
1,50	0,4332	1,83	0,4664	2,32	0,4898	2,98	0,4986
1,51	0,4345	1,84	0,4671	2,34	0,4904	3,00	0,4986
1,52	0,4357	1,85	0,4678	2,36	0,4909	3,20	0,4993
1,53	0,4370	1,86	0,4686	2,38	0,4913	3,40	0,4996
1,54	0,4382	1,87	0,4693	2,40	0,4918	3,60	0,4998
1,55	0,4394	1,88	0,4699	2,42	0,4922	3,80	0,4999
1,56	0,4406	1,89	0,4706	2,44	0,4927	4,00	0,4999
1,57	0,4418	1,90	0,4713	2,46	0,4931	4,50	0,4999
1,58	0,4429	1,91	0,4719	2,48	0,4934	5,00	0,49999