1. Примеры решений по теме 1 «Сущность инвестиционного проекта и эффективности. Статические методы оценки эффективности инвестиционных проектов»

1. Финансовая математика

1. *Компаундинг*. Компаундинг — процедура определения будущих доходов сегодня.

$$S(t) = S(0) \times (1+r)^t \tag{1}$$

где S(0) – инвестиции (вложения) в момент времени t=0;

- S(t) сумма дохода, получаемая на конец периодаt. (например t=5, тогда сумма S(t) сумма дохода, получаемая через 5 лет).
 - 2. *Дисконтирование*. Дисконтирование процедура приведения будущих платежей (доходов, расходов) к базовому моменту времени (обычно к моменту времени t=0)

$$S(0) = \frac{S(t)}{(1+r)^t}$$
 (2)

где S(0) — дисконтированная (сегодняшняя) стоимость будущих потоков платежей, в момент времени t=0;

$$S(t)$$
 – то же.

При получении доходов или внесении затрат за каждый период:

$$S(0) = \sum_{t=0}^{t=T} \frac{S(t)}{(1+r)^t}$$
(3)

где T — число периодов получения доходов (внесения затрат).

3. Простые, сложные и комбинированные проценты начисления.

Простое начисление процентов имеет место, если сумма процентов выплачивается сразу после их начисления. Обычно простые проценты начисляются, если деньги вкладываются под проценты на время, меньшее периода начисления. Обычно период начисления – год.

Тогда наращивание и дисконтирование по простым процентам:

$$S(t) = S(0) \times (1 + \tau \times r) \tag{4}$$

$$S(0) = \frac{S(t)}{(1 + \tau \times r)} \tag{5}$$

где τ – продолжительность ссуды в годах.

$$\tau = \frac{d}{k} \tag{6}$$

D – число дней ссуды в днях; k – количество дней в году.

Сложные начисление процентов имеет место, если сумма процентов не выплачивается сразу после их начисления. База начисления для сложных процентов не остается постоянной.

$$S(t) o S(0) imes (1+r)$$
 — через год $S(t) o S(0) imes (1+r)$ $imes (1+r)$ — через два года $S(t) o S(0) imes (1+r)$ $imes (1+r)$ $imes (1+r)$ — через тригода $S(t) = S(0) imes (1+r)^t$ — через t лет

Наращивание по сложным процентам можно представить как периодическое реинвестирование средств, вложенных под простой процент на один период начисления. Если в условиях контракта предусматривается изменение уровня ставки процентов во времени, то для начисления процентов применяют формулу:

$$S(t) = S(0) \times (1 + r_1) \times (1 + r_2) \times \dots \times (1 + r_t)$$
 (7)

Комбинированные проценты начисляются при сроках кредитов (ссуд) не равных целым периодам начисления, но большими 1-го периода, например при t=1,5 года.

$$S(t) = S(0) \times (1+r)^{T} \times (1+\tau \times r)$$
(8)

где $t = T + \tau = 1 + 0.5 = 1.5$; τ – дробная часть периода.

Пример1. Ожидаемая норма прибыли при вложении капитала в производства нового класса видеопроигрывателей составляет 12%. Будет ли осуществляться этот проект инвестиций при ставке процента, равной 3%, 8%, 13%.

Решение: При ставке 3% - имеет смысл вкладывать в проект; при ставке 8 % - нужно дополнительно подумать и оценить свои внеэкономические затраты с дополнительной доходностью в 4%; а при ставке 13% - нужно вкладывать в банк.

Пример 2. Предприятие собирается построить завод, выпускающие электронные игрушки. Ожидаемый ежегодный доход при реализации проекта с жизненным циклом в 10 лет (T=10) — 600 тыс.долларов. Для осуществления этого проекта необходимы инвестиции в основной капитал — 5 млн.долларов, которые осуществляются единовременно в момент времени t=0. Примет ли решение предприятие, если годовая процентная ставка — 2%; - 4%.

Решение: Необходимо определить возможный суммарный доход, учитывая возможность альтернативно вложить в банк под заданный процент. (формула 3)

При r=0.02

$$S(0) = \frac{600000}{(1+0,02)^1} + \frac{600000}{(1+0,02)^2} + \frac{600000}{(1+0,02)^3} + \frac{600000}{(1+0,02)^4} + \frac{600000}{(1+0,02)^5} + \frac{600000}{(1+0,02)^6} + \frac{600000}{(1+0,02)^7} + \frac{600000}{(1+0,02)^8} + \frac{600000}{(1+0,02)^9} + \frac{600000}{(1+0,02)^{10}} = 5389 \text{ тыс. долл.}$$

При r=0.04

$$S(0) = \frac{600000}{(1+0,04)^1} + \frac{600000}{(1+0,04)^2} + \frac{600000}{(1+0,04)^3} + \frac{600000}{(1+0,04)^4} + \frac{600000}{(1+0,04)^5} + \frac{600000}{(1+0,04)^6} + \frac{600000}{(1+0,04)^7} + \frac{600000}{(1+0,04)^8} + \frac{600000}{(1+0,04)^9} + \frac{600000}{(1+0,04)^{10}} = 4866 \text{ тыс. долл.}$$

Пример 3. Контракт предусматривает следующий порядок начисления процентов:

1-й год -6%; в каждом следующем полугодии r повышается на 0,5%. Определить множитель наращивания за 2,5 года (при простом начислении процентов).

Решение:

$$(1 + \sum_{i=1}^{t} n_i \times r_i) = 1 + 0.06 + 0.5 \times 0.065 + 0.5 \times 0.070 + 0.5 \times 0.075 = 1.165$$

Пример 4. Ставка по ссуде установлена на уровне 8,5% годовых плюс маржа 0,5% (фиксированная надбавка) в первые два года; 0,75% в следующие три года. Определить множитель наращивания за 5 лет (при сложном начислении процентов).

Решение:

Множитель =
$$(1 + 0.09)^2 \times (1 + 0.0925)^3 = 1.5492351$$

Пример 5. Компания «А» собирается производить продукцию Xи Y. Величина средних переменных издержек (AVC)по продукции Xи Yсоставляет соответственно 30 д.е., 20 д.е., постоянных издержек (FC): 800 000 и 1000 000 д.е. Жизненный цикл проекта — 6 месяцев. Прогнозируемые рыночные цены реализации — 100 д.е. и 80 д.е. соответственно. Предполагается, что они стабильны в течение жизненного цикла и соответствуют месячной величине спроса: товар X — 5000 шт; товар Y—2700 шт. Являются ли производства X и Y эффективными?

Решение: Рассчитываем критический объем продаж *X* и *Y*:

$$Q_X^* = \frac{FC}{P - AVC} = \frac{800000}{100 - 30} \approx 11429 \, um$$

$$Q_Y^* = \frac{FC}{P - AVC} = \frac{1000000}{80 - 20} \approx 16667 \ um$$

При
$$AVC_Y = 10 \rightarrow Q_Y *= 14286$$

$$Q_X^* = 5000 \frac{um}{mec} \times 6 mec = 30000 \frac{um}{uukn}$$
3.

$$Q_{Y}^{*} = 2700 \frac{um}{mec} \times 6mec = 16200 \frac{um}{uukn}$$

Ответ (выводы): 30 000>> 11 429- производство эффективно.

16 200 < 16667 – производство неэффективно.

Q>>Q* min в 2 раза! – критерий эффективности по точке безубыточности.

Пример 6. Перед организацией Б стал выбор: проект X, проект Y; вложение денег в банк. Какой вариант наиболее эффективный, если r=20%, r=30%, r=50% (используя относительный метод и метод ликвидности). $I_X = 200$; $I_Y = 400$.

Исходные данные:

X:

Годы	1	2	3	4	5	6
Дt	100	200	300	300	300	300
ИΠ _t	50	100	220	255	255	290

Y:

Годы	1	2	3	4	5
Д _t	450	600	600	600	600
ИП _t	300	400	450	450	520

Решение:

X:

Годы	1	2	3	4	5	6
Π_{t}	50	100	80	45	45	10

$$ROI = \frac{1}{I \times T} \sum_{t=1}^{6} \Pi_{t} = \frac{(50 + 100 + 80 + 45 \times 2 + 10)}{6 \times 200} = 0,275$$

$$T_{o\kappa} = m + \frac{KV - S_m}{\Pi_{m+1}} = 2 + \frac{200 - 150}{80} = 2,625 \ eoda$$

Y:

Годы	1	2	3	4	5
Π_{t}	150	200	150	150	80

$$ROI = \frac{1}{I \times T} \sum_{1}^{5} \Pi_{t} = \frac{(150 + 200 + 150 + 150 + 80)}{5 \times 400} = 0,365.$$

$$T_{o\kappa} = m + \frac{KV - S_m}{\Pi_{m+1}} = 2 + \frac{400 - 350}{150} = 2,33 \, eoda$$

Вывод: Сроки окупаемости примерно одинаковы и не выходят за пределы жизненного цикла своих проектов соответственно. Поэтому следует оценивать эффективности относительным методом.

При банковской ставке r=20% оба проекта привлекательны, т.к. выполняется условие ROI>r. Проект Y является более эффективным. При ставке сравнения r=30%, проект Хотпадает, является не эффективным. При ставке сравнения r=30% выгодно вкладывать в банк (при этом не придется что-то делать вообще!!!).

Контрольные задания по теме 1

Задание 1. Банковская процентная ставка составляет: а) 13%, б) 15%; в) 7%. Ожидаемая норма прибыли от вложений в проект составляет 14%. Что предпримет разумный инвестор в этих случая? Ответ обоснуйте по каждому варианту.

Задание 2. Предприниматель собирается построить тепличное хозяйство, рассчитанное на производство огурцов с запланированной годовой выручкой 400 000 рублей в год. Инвестиционный период (жизненный цикл проекта) — составит 9 лет. Единовременные предполагаемые инвестиции в это проект составят 3 000 000 рублей (в момент t=0). Возьмется ли разумный предприниматель за этот бизнес при ставке процентов — 1%; - 6%.

Задание 3. Контракт предусматривает следующий порядок начисления процентов: 1-й год -7%; в каждом следующем квартале r повышается на 0,2%. Определить множитель наращивания за 2 года (при простом начислении процентов).

Задание 4. Ставка по ссуде установлена на уровне 7,5% годовых плюс маржа 0,75% (фиксированная надбавка) в первые три года; 0,5% в следующие два года. Определить множитель наращивания за 5 лет (при сложном начислении процентов).

Задание 5. Компания «А» собирается производить продукцию X и Y. Величина средних переменных издержек (AVC) по продукции X и Y составляет соответственно 40 д.е., 30 д.е., постоянных издержек (FC): 800 000 и 1000 000 д.е. Жизненный цикл проекта — 7 месяцев. Прогнозируемые рыночные цены реализации — 100 д.е. и 80 д.е. соответственно. Предполагается, что они стабильны в течение жизненного цикла и соответствуют месячной величине спроса: товар X — 5100 шт; товар Y — 2800 шт. Являются ли производства эффективными?

Задание 6. Перед организацией Б стал выбор: проект X, проект Y; вложение денег в банк. Какой вариант наиболее эффективный, если r=20%, r=30%, r=55% (используя относительный метод и метод ликвидности).

Исходные данные:

X:

Годы	1	2	3	4	5	6
Дt	110	220	330	330	330	330
ИП _t	50	100	220	255	255	290

Y:

Годы	1	2	3	4	5
Дt	470	640	640	640	640
ИП _t	300	400	450	450	520