Индивидуальное домашнее задание по «Теории вероятностей и математической статистике» (группа НКАбд-02-24, осенний семестр)

- 1. Найдите вероятность того, что произведение двух последних цифр номера автомобиля:
 - а) Равно n; больше n; меньше n;
 - б) Заключено в промежутке $[n_1; n_2]$.
- 2. Из колоды в 52 карты наугад (без возвращения) извлекаются четыре. Найти вероятность указанных в варианте событий.
- 3. В треугольник с вершинами в точках $(a_1;b_1),(a_2;b_2),(a_3;b_3)$ в соответствии с принципом геометрической вероятности бросается точка. Обозначим через ξ и η координаты этой точки. Вычислите вероятность того, что квадратное уравнение $x^2 + 2(\xi c)x + d\eta + f = 0$ будет иметь действительные корни.
- 4. Из двух коробок, в каждой из которых находятся n шаров с написанных на них числами от 1 до n, наудачу извлекается по одному шару. Событие A—сумма чисел, написанных на выбранных шарах, делится на m; событие B—произведение этих чисел больше κ , событие C сумма чисел, написанных на выбранных шарах, больше l. Найти P(A|B), P(B|A), P(A|C), P(C|A), P(B|C), P(C|B), Проверить, есть ли пары независимых событий и являются ли события A, B и C независимыми в совокупности?
- 5. Система надежности состоит из 7 элементов и имеет заданную структурную схему. События A_i , i=1,...,7, отказы элементов за заданный промежуток времени.
 - а) Выразите через события A_i события A и \bar{A} , где A отказ всей системы за заданный промежуток времени.
 - б) Считая, что события A_i независимы в совокупности и имеют вероятности $P(A_i) = p_i$, $i = \overline{1,7}$, вычислите вероятность события A.
- 6. В первой урне находятся n_1 белых и m_1 черных шаров, во второй урне— n_2 белых и m_2 черных шаров. Сначала из первой урны во вторую перекладывается наугад k_1 шаров, затем так же наугад перекладывается из второй урны в первую k_2 шаров.
 - a) Определите вероятность того, что после вскрытия первой урны в ней будет столько же белых шаров, сколько было до проведения опыта.
 - б) После вскрытия первой урны оказалось, что в ней столько же белых шаров, сколько было до проведения опыта. Вычислите вероятность того, что при этом условии из первой урны во вторую переложили l черных шаров.
- 7. Вероятность попадания в цель при любом из n выстрелов равна p. Найдите вероятность того, что произойдет:
 - а) Ровно т попаданий.
 - δ) Не более m попаданий.
 - в) Не менее m попаданий
 - Γ) От m_1 до m_2 попаданий.
- 8. Известна вероятность того, что изготовленное изделие будет бракованным.
 - а) Либо вероятность равна p_1 . Определите вероятность того, что среди n изготовленных изделий бракованными окажутся:
 - а)Ровно т изделий.
 - b) По крайней мере m изделий.
 - c)Не более k изделий
 - б) Либо вероятность равна p_2 . Определите вероятность того, что среди n изготовленных изделий бракованными окажутся:
 - а)Ровно т изделий.
 - b) От m_1 до m_2 изделий.
 - c) Не менее k изделий.
- 9. Из урны, в которой находится n_1 шаров белого цвета, n_2 —черного и n_3 —синего, наудачу извлекается $m=m_1+m_2+m_3$ шаров. Вычислить вероятность того, что среди них будет m_1 белых шаров, m_2 —черных и m_3 —синих, если выбор производится с возвращением.
- 10. В наборе n_1 шаров белого цвета, n_2 шаров синего и n_3 шаров красного цвета. Из набора случайным образом без возвращения вынимают m шаров. Случайная величина ξ число вынутых красных шаров (варианты 1-10 ИДЗ), шаров синего цвета (варианты 11-20 ИДЗ), белого цвета (варианты 21-30 ИДЗ). Найдите:
 - а) Ряд распределения случайной величины ξ .
 - б) Функцию распределения случайной величины ξ и постройте ее график.
 - в) Вероятность попадания случайной величины ξ в интервалы $(x_1; x_2), [x_1; x_2), [x_1; x_2], [x_1; x_2].$
 - г) Найдите ряд распределения случайных величин η и μ
- 11. Непрерывная случайная величина ξ имеет плотность распределения p(x). Найдите:
 - a) Kohctahty A
 - б) Функцию распределения случайной величины ξ и постройте ее график.

- в) Вычислите функцию распределения и плотность распределения случайной величины $\eta = a(\xi + b)^3 + c$.
- г) Вычислите функцию распределения и плотность распределения случайной величины $\mu = a(\xi b)^2 + c$
- 12. Случайная величина $\xi \sim N(m, \sigma)$.
 - а) Найдите вероятность попадания случайной величины ξ на интервал $(a_1; a_2)$
 - б) Задана новая случайная величина $\eta = e^{a\xi + b}$ Найдите вероятность попадания случайной величины η в интервал (x_1, x_2) .
- 13. В условиях задачи 14 выбирают m шаров. Пусть ξ число вынутых белых шаров, а через η красных. Найдите:
 - а) Совместное распределение случайных величин ξ и η (ряд распределения).
 - б) Ряды распределения случайных величин ξ и η
 - в) Условные распределения случайной величины ξ при условии η , случайной величины η при условии ξ , проверить случайные величины на независимость
 - г) Значения двумерной функции распределения $F_{\xi\eta}(x;y)$ в заданных точках (x;y)
 - д) Ряд распределения новой случайной величины $\mu = f(\xi, \eta)$
 - e) Ряд распределения новой двумерной дискретной случайной величины (μ_1 ; μ_2)
- 14. В четырехугольник с вершинами в точках (a_1, a_2) , (b_1, b_2) , (c_1, c_2) , (d_1, d_2) в соответствии с принципом геометрической вероятности падает частица. Пусть ξ и η координаты по оси X и У точки падения частицы. Найдите:
 - а) Совместную функцию распределения $F_{\xi\eta}(x,y)$ случайной величины $(\xi;\eta)$ (нарисуйте все варианты пересечений) и через совместную функцию совместную плотность распределения случайной величины $(\xi;\eta)$.
 - б) Одномерные функции распределения случайных величин ξ и η , а через них одномерные плотности.
 - в) Условные функции распределения и условные плотности распределения случайной величины ξ при условии η , и случайной величины η при условии ξ . Проверьте, будут ли эти случайные величины независимыми
 - г) Значение функции распределения случайной величины $\mu = g(\xi, \eta)$ в точке z
- 15. Совместная плотность распределения случайных величин ξ и η задана формулой

$$p_{\xi,\eta}(x;y) = C(ax^{\alpha} + by^{\beta}), (x;y) \in D$$

где область *D* задана в варианте. Нарисуйте область и найдите:

- а) Постоянную C.
- б) Значения двумерной функции распределения $F_{\xi n}(x; y)$ в заданных точках (x; y)
- в) Одномерные плотности и функции распределения случайных величин ξ и η .
- г) Условные функции распределения и условные плотности распределения случайной величины ξ при условии η и случайной величины η при условии ξ . Проверьте, будут ли эти случайные величины независимыми
- д) Вычислите вероятность попадания вектора (ξ, η) в треугольник с вершинами в точках $(z_1; z_2), (u_1; u_2), (v_1; v_2)$. (Записать интеграл, расставить пределы интегрирования, считать интеграл не надо)
- е) Значение функции распределения $F_{\mu}(z)$ новой случайной величины $\mu = g(\xi, \eta)$ в точке z. (Записать интеграл, расставить пределы интегрирования, считать интеграл не надо).

Распределение баллов (20 баллов)

Задача 1	Задача 2	Задача 3	Задача 4	Задача 5
1 балл	1 балл	2 балла	1 балл	1 балл
Задача 6	Задача 7	Задача 8	Задача 9	Задача 10
1 балла	1 балл	1 балл	1 балла	2 балла
Задача 11	Задача 12	Задача 13	Задача 14	Задача 15
2 балла	1 балл	2 балла	1 балл	2 балла

	№ задачи	Данные				
	1.	$n = 27; n_1 = 9; n_2 = 36.$				
	2.	Событие A={два короля и две дамы}, событие B={два короля и две дамы, той же масти, что и короли}				
	3.	$(a_1; b_1) = (2; 4); (a_2; b_2) = (0; 2); (a_3; b_3) = (4; 0);$ c = 2; d = -2; f = 4.				
	4.	n = 10; m = 7; k = 32; l = 11.				
	5.	$p_1 = 0,3, p_2 = 0,3, p_3 = 0,3,$ $p_4 = 0,5, p_5 = 0,3, p_6 = p_7 = 0,3.$				
	6.	$n_1 = 4, m_1 = 3, n_2 = 2, m_2 = 4, k = 4, l = 2.$				
	7.	$n = 7, p = 0.6, m = 3, m_1 = 3, m_2 = 6.$				
	8.	$p_1 = 0.0052; n = 700; m = 4; k = 5$ $p_2 = 0.0725; n = 1800; m = 135; m_1 = 90; m_2 = 160; k = 150.$				
	9.	$n_1 = 4, n_2 = 4, n_3 = 2; m_1 = 2, m_2 = 2, m_3 = 2.$				
8	10.	$n_1 = 7, n_2 = 5, n_3 = 4, m = 6;$ $x_1 = 2, \qquad x_2 = 5.$ $\mu = 9 - 2\xi^2 , \qquad \eta = 3 - 4 - \xi^3 $				
	11.	$p_{\xi}(x) = \begin{cases} A(x^2 + 1), -2 \le x \le 2\\ 0, & x < -2, x > 2\\ a = 2, & b = 1, & c = -1. \end{cases}$				
	12.	$m=2$, $\sigma=3$, $a_1=-1$, $a_2=5$, $a=9$, $b=-27$, $x_1=40$, $x_2=130$.				
	13.	$(x; y) = (9; 3), (3; 7), (6; 2);$ $\mu = (\xi - 1)(\eta + 1)$ $\mu_1 = 2(\xi - (3 - \eta)); \mu_2 = 5 - \eta - \xi$				
	14.	$(a_1, a_2) = (-3; -1), (b_1, b_2) = (-3; 4), (c_1, c_2) = (4; 4), (d_1, d_2) = (4; -1);$ $\mu = -3\xi + \eta, \ z = 1$				
	15.	$a = 2, \alpha = 1, b = 1, \beta = 2,$ $D = \{(x; y): x = 3, y = 4, y = x^2, y = 0\}$ $(x; y) = (2; 2)$ $(z_1, z_2) = (0; 1), (u_1, u_2) = (2; 3), (v_1, v_2) = (4; 0);$ $\mu = 2(\xi - 2)^2 + \eta, z = 3$				