Темы контрольных работ по дисциплине «Информатика» и требования

Требования к оформлению контрольной работы:

Контрольная работа выполняется в текстовом редакторе. Цвет шрифта черный, шрифт Times New Roman, 14 пт, между строками 1.5 пт интервал, объем **10-15 листов**. Размеры полей: верхнее и нижнее — 20 мм, левое — 30 мм, правое — 10 мм. Абзацный отступ должен быть одинаковым по всему тексту и составлять 1,25 см. Выравнивание текста по ширине. Все страницы обязательно должны быть пронумерованы, кроме титульного листа. Номер страницы на титульном листе не проставляется. Работа должна содержать титульный лист, оглавление, введение, 2-3 параграфа, заключение, список литературы. Оценка зависит от двух составляющих: содержание и оформление.

Вариант контрольной работы определяется по <u>сумме последних трех цифр зачётки</u> (например, № 3/к 20182047, тогда номер к/р будет 0+4+7=11).

По контрольной работе будет собеседование на экзамене.

- 1. Браузеры, работа в них.
- 2. Работа с облачными хранилищами.
- 3. Работа с документами онлайн на примере GoogleDoc.
- 4. Отечественные графические редакторы.
- 5. Зарубежные графические редакторы.
- 6. Инфографика. Топ сервисов для создания.
- 7. Обзор конструкторов сайтов.
- 8. Современные программы-переводчики.
- 9. Онлайн-сервисы исправления орфографических ошибок в тексте.
- 10. Смартфон и ПК: функции и возможности. Может ли смартфон заменить компьютер?
- 11. Эволюция носителей компьютерной информации: от дискеты до «облака».
- 12. Как работает Wi-Fi: принципы работы беспроводной сети.
- 13. Виртуальная лаборатория. Химия.
- 14. Виртуальная лаборатория. Физика.
- 15. Современные операционные системы для мобильных устройств.
- 16. Социальные сети. История появления.
- 17. Социальные сети: плюсы и минусы.
- 18. Электронные платежные системы: классификация и сравнительные характеристики.
- 19. Видео-телеконференции в системе дистанционного обучения.
- 20. Спам: история возникновения, методы борьбы.
- 21. Баннер как основной носитель Интернет-рекламы.
- 22. Видеохостинги. Youtube.
- 23. Онлайн-платформы для обучения.
- 24. Хештег: история появления и развития.
- 25. Презентации: шаблоны, сервисы для создания.
- 26. Лайфхаки работы в текстовом редакторе.
- 27. Самые востребованные профессии в интернете: обзор.
- 28. Этические нормы поведения в информационной сети.
- 29. Правонарушения в области информационных технологий.
- 30. Разновидности поисковых систем в Интернете.

Практическая часть

«Решение задач в MS Excel»

Задача 1. Найти все корни уравнения с помощью надстройки *Поиск решения* в *MS Excel*.

$N_{\underline{0}}$	Уравнение	№	Уравнение
1.	$x^3 + 0.2x^2 + 0.5x - 2 = 0$	16.	$x^3 - 3x^2 + 6x + 3 = 0$
2.	$x^5 - 4x - 2 = 0$	17.	$x^3 - 6x - 8 = 0$
3.	$x^7 + 3x^5 - 4x^2 + 10 = 0$	18.	$3x^3 + 10x^2 + 2x - 3 = 0$
4.	$x^3 - 19x - 30 = 0$	19.	$x^3 - 12x + 10 = 0$
5.	$x^3 + 3x^2 - 3x^2 - 14 = 0$	20.	$x^3 - x^2 + 3x - 10 = 0$
6.	$x^3 + x^2 - 12x = 0$	21.	$x^3 - 4x^2 + 2 = 0$
7.	$x^4 + 3x^3 - x^2 - 4x - 3 = 0$	22.	$x^3 + 6x^2 - 9x - 14 = 0$
8.	$x^3 - 3x^2 + 3 = 0$	23.	$2x^3 + 9x^2 - 6 = 0$
9.	$2x^5 - x^4 - 3x^3 + x - 3 = 0$	24.	$x^3 - 7x^2 + 7x + 15 = 0$
10.	$2x^3 + 9x^2 - 21 = 0$	25.	$x^3 - 12x - 10 = 0$
11.	$x^3 - 0.1x^2 + 0.3x - 0.6 = 0$	26.	$x^3 + 3x^2 + 6x - 1 = 0$
12.	$2x^3 + 9x^2 - 10 = 0$	27.	$x^3 - 3x^2 + 3,5 = 0$
13.	$x^3 - 3x^2 + 9x - 8 = 0$	28.	$x^3 + 0.1x^2 + 0.4x - 1.2 = 0$
14.	$x^3 - 3x^2 + 1,5 = 0$	29.	$x^3 - 2x + 2 = 0$
15.	$x^3 - 3x^2 + 12x - 9 = 0$	30.	$x^3 + 0.2x^2 + 0.5x + 0.8 = 0$

Задача 2. По наблюдаемым значениям величин x и y (x – неделя, y – объём реализации) найти математическую модель, наилучшим образом описывающую изменение объемов реализации некоторого вида товара за последние несколько недель, используя MS Excel.

1.	x	1	2	3	4	5	6	7	8
	y	145	135	130	128	128	100	95	85

							7	
y	13	19	26	30	37	44	49	55

3.	x	1	2	3	4	5	6	7	8	9	10	11	12
	у	145	111	135	130	122	98	100	85	90	79	15	68

4.											
	у	9	16	20	27	34	39	44	52	58	64

5.	x	1	2	3	4	5	6	7	8	9	10
	y	12	35	23	65	34	67	24	34	87	90

6.	x	1	2	3	4	5	6	7	8	9			
	y	7	17	19	28	35	42	41	52	57			
7.	x	1	2	3	4	5	6	7	8	9]		
	у	12	21	30	36	44	54	61	70	78			
0		1	2	3	4	5		7	8	9	1.0	\Box	
8.	y	98	54	108							10		
	<u>, y</u>	70	31	100	03		1 03	07	100	1/2	, , , ,		\neg
9.	x	1	2	3	4	5	6	7	8	9	10	11	
	y	12	17	23	30	35	40	48	54	59	65	72	
10.	x	1	2	3		4	5	6	7		8	9	10
	у	76	134	15	5 1	67	153	152	: 14	8 1	30	148	178
11		1		2	4			7			1		
11.	x	10	2 18	3 22	4 28	5 34	6 39	7 46	8 51	9 54			
	y	10	10	22	20	34	37	40	31	J -1]		
12.	x	1	2	3	4	5	6	7	8	9	10		
	y	87	80	75	80	70	65	68	62	57	54		
13.	x	1	2	3	4	5	6	7	8				
	y	26	27	29	30	32	33	35	36				
					4	-				, 1			
14.	<i>x</i>	1 68	2 66	3 64	60	5 57	53	7 49	8 47				
	y	00	00	04	00	37	33	47	47				
15.	x	1	2	3	4	5	6	7	8	9	10	11	12
	y	86	81	77	74	70	67	63	60	57	54	52	49
16.	x	1	2	3	4	5	6	7	8	9	10	1	
	y	37	36	33	28	27	24	22	17	14	11		
15		1		2	4						10	<u>-</u> 1	
17.	x	33	34	36	38	5 40	6 42	7 44	8 46	9 49	10 51		
	y	33	34	30	36	40	42	44	40	47	31		
18.	x	1	2	3	4	5	6	7	8	9			
	y	86	82	79	76	73	70	68	66	63			
19.	x	1	2	3	4	5	6	7	8	9	1		
	y	35	36	37	39	42	45	48	52	56			
20		1		2	4	-					10	7	
20.	x "	1 55	59	3 63	4 66	5 68	69	7 70	8 69	9 67	10 65		
	y	33	39	03	00	08	09	70	09	07	0.5		
21.	x	1	2	3	4	5	6	7	8	9	10	11	
	y	44	52	70	99	40	93	59	39	34	43	68	
22.	x	1	2	3	4	5	6	7	8	9	10]	
_•	y	86	82	79	76	73	70	68	66	61	63	1	
22		1		2	4							_	
23.	x	1	2	3	4	5	6	7	8	9]		

	y	39	42	44	46	49	52	55	57	63			
24.	x	1	2	3	4	5	6	7	8	9	10		
	y	17	23	28	35	39	39	45	50	54	56		
25.	x	1	2		3	4	5	6	5	7	8		
	y	100	10	2	105	104	106	10)9	111	115		
26.	x	1	2	3	4	5	6	7	8				
	y	56	58	54	52	50	54	58	60)			
27.	x	1	2	3	4	5	6	7	8	9	10	11	12
	y	44	49	54	60	66	73	81	90	99	110	121	134
		1			1	1	1			ı			
28.	\boldsymbol{x}	1	2	3	4	5	6	7	8	9	10		
	y	17	30	39	46	59	61	62	50	42	32		
		1			1	1	1						
29.	x	1	2	3	4	5	6	7	8	9 1	0		
	y	20	19	18	17	14	12	8	7	6 5	5		
							•						
30.	x	1	2		3	4	5	6	5	7	8	9	
	y	106	11	3	119	125	130	13	34	138	142	145	
									_			_	

Задача 3. Предприятие выпускает два вида продукции: Изделие 1 и Изделие 2. На изготовление единицы Изделия 1 требуется затратить a_{11} кг сырья первого типа, a_{21} кг сырья второго типа, a_{31} кг сырья третьего типа. На изготовление единицы Изделия 2 требуется затратить a_{12} кг сырья первого типа, a_{22} кг сырья второго типа, a_{32} кг сырья третьего типа. Производство обеспечено сырьем каждого типа в количестве b_1 кг, b_2 кг, b_3 кг соответственно. Рыночная цена единицы Изделия 1 составляет c_1 тыс. руб., а единицы Изделия $2-c_2$ тыс. руб.

Требуется:

- 1) построить экономико-математическую модель задачи;
- 2) составить план производства изделий, обеспечивающий максимальную выручку от их реализации, используя надстройку «Поиск решения» в среде MS Excel.

Вариант №1									
$a_{11} = 2$	$a_{12} = 5$	$b_1 = 432$	$c_1 = 34$						
$a_{21} = 3$	$a_{22} = 4$	$b_2 = 424$	$c_2 = 50$						
$a_{31} = 5$	$a_{32} = 3$	$b_3 = 582$							

$a_{11} = 4$	$a_{12} = 1$	$b_1 = 240$	$c_1 = 40$
$a_{21} = 2$	$a_{22} = 3$	$b_2 = 180$	$c_2 = 30$
$a_{31} = 1$	$a_{32} = 5$	$b_3 = 251$	

Вариант №2

Вариант №3

$a_{11} = 2$	$a_{12} = 7$	$b_1 = 560$	$c_1 = 55$
$a_{21} = 3$	$a_{22} = 3$	$b_2 = 300$	$c_2 = 35$

Вариант №16

$a_{11} = 1$	$a_{12} = 3$	$b_1 = 330$	$c_1 = 48$
$a_{21} = 8$	$a_{22} = 2$	$b_2 = 800$	$c_2 = 66$
$a_{31} = 6$	$a_{32} = 5$	$b_3 = 745$	

Вариант №17

$a_{11} = 4$	$a_{12} = 3$	$b_1 = 600$	$c_1 = 13$
$a_{21} = 1$	$a_{22} = 3$	$b_2 = 357$	$c_2 = 21$
$a_{31} = 5$	$a_{32} = 1$	$b_3 = 600$	

<i>a</i> ₁₁ =	- 4	$a_{12} = 5$	$b_1 = 810$	$c_1 = 18$
<i>a</i> ₂₁ =	= 2	$a_{22} = 4$	$b_2 = 980$	$c_2 = 17$

$a_{31} = 5$	$a_{32} = 1$	$b_3 = 332$	
Вариант №4			
$a_{11} = 1$	$a_{12} = 3$	$b_1 = 300$	$c_1 = 52$
$a_{21} = 3$	$a_{22} = 4$	$b_2 = 477$	$c_2 = 39$
$a_{31} = 4$	$a_{32} = 1$	$b_3 = 441$	

Вариант Л	<u>6</u> 5
-----------	------------

$a_{11} = 2$	$a_{12} = 3$	$b_1 = 298$	$c_1 = 22$
$a_{21} = 6$	$a_{22} = 2$	$b_2 = 600$	$c_2 = 40$
$a_{31} = 1$	$a_{32} = 5$	$b_3 = 401$	

$a_{11} = 3$	$a_{12} = 1$	$b_1 = 330$	$c_1 = 33$
$a_{21} = 2$	$a_{22} = 8$	$b_2 = 800$	$c_2 = 24$
$a_{31} = 5$	$a_{32} = 6$	$b_3 = 745$	

Вариант №7

$a_{11} = 3$	$a_{12} = 4$	$b_1 = 600$	$c_1 = 42$
$a_{21} = 3$	$a_{22} = 1$	$b_2 = 357$	$c_2 = 26$
$a_{31} = 1$	$a_{32} = 5$	$b_3 = 600$	

Вариант №8

$a_{11} = 5$	$a_{12} = 4$	$b_1 = 810$	$c_1 = 34$
$a_{21} = 4$	$a_{22} = 2$	$b_2 = 980$	$c_2 = 36$
$a_{31} = 2$	$a_{32} = 6$	$b_3 = 786$	

Вариант №9 $a_{11} = 2$ $a_{12} = 4$ $b_{1} = 580$ $c_{1} = 30$

$a_{21} = 4$	$a_{22} = 4$	$b_2 = 680$	<i>c</i> ₂ =
$a_{31} = 3$	$a_{32} = 2$	$b_3 = 438$	

Вариант №10

$a_{11} = 5$	$a_{12} = 2$	$b_1 = 750$	$c_1 = 30$
$a_{21} = 4$	$a_{22} = 5$	$b_2 = 807$	$c_2 = 49$
$a_{31} = 1$	$a_{32} = 3$	$b_3 = 840$	

Вариант №11

$a_{11} = 5$	$a_{12} = 2$	$b_1 = 432$	$c_1 = 25$
$a_{21} = 4$	$a_{22} = 3$	$b_2 = 424$	$c_2 = 17$
$a_{31} = 3$	$a_{32} = 5$	$b_3 = 582$	

Вариант №12

$a_{11} = 1$	$a_{12} = 4$	$b_1 = 240$	$c_1 = 15$
$a_{21} = 3$	$a_{22} = 2$	$b_2 = 180$	$c_2 = 20$
$a_{31} = 5$	$a_{32} = 1$	$b_3 = 251$	

$a_{31} = 6$	$a_{32} = 2$	$b_3 = 786$	

Вариант №19

$a_{11} = 4$	$a_{12} = 2$	$b_1 = 580$	$c_1 = 22$
$a_{21} = 4$	$a_{22} = 4$	$b_2 = 680$	$c_2 = 15$
$a_{31} = 2$	$a_{32} = 3$	$b_3 = 438$	

Вариант №20

$a_{11} = 2$	$a_{12} = 5$	$b_1 = 750$	$c_1 = 98$
$a_{21} = 5$	$a_{22} = 4$	$b_2 = 807$	$c_2 = 60$
$a_{31} = 7$	$a_{32} = 1$	$b_3 = 840$	

Вариант №21

$a_{11} = 5$	$a_{12} = 2$	$b_1 = 505$	$c_1 = 7$
$a_{21} = 3$	$a_{22} = 3$	$b_2 = 393$	$c_2 = 4$
$a_{31} = 2$	$a_{32} = 3$	$b_3 = 348$	

Вариант №22

$a_{11} = 7$	$a_{12} = 3$	$b_1 = 1365$	$c_1 = 6$
$a_{21} = 6$	$a_{22} = 3$	$b_2 = 1245$	$c_2 = 5$
$a_{31} = 1$	$a_{32} = 2$	$b_3 = 650$	

Вариант №23

$a_{11} = 6$	$a_{12} = 2$	$b_1 = 600$	$c_1 = 6$
$a_{21} = 4$	$a_{22} = 3$	$b_2 = 520$	$c_2 = 3$
$a_{31} = 3$	$a_{32} = 4$	$b_3 = 600$	

Вариант №24

$a_{11} = 5$	$a_{12} = 3$	$b_1 = 750$	$c_1 = 5$
$a_{21} = 4$	$a_{22} = 3$	$b_2 = 630$	$c_2 = 6$
$a_{31} = 3$	$a_{32} = 4$	$b_3 = 700$	

Вариант №25

$a_{11} = 8$	$a_{12} = 2$	$b_1 = 840$	$c_1 = 6$
$a_{21} = 6$	$a_{22} = 3$	$b_2 = 870$	$c_2 = 2$
$a_{31} = 3$	$a_{32} = 2$	$b_3 = 560$	

Вариант №26

$a_{11} = 2$	$a_{12} = 5$	$b_1 = 412$	$c_1 = 35$
$a_{21} = 3$	$a_{22} = 4$	$b_2 = 424$	$c_2 = 46$
$a_{31} = 5$	$a_{32} = 3$	$b_3 = 592$	

$a_{11} = 3$	$a_{12} = 1$	$b_1 = 240$	$c_1 = 40$
$a_{21} = 2$	$a_{22} = 9$	$b_2 = 182$	$c_2 = 45$
$a_{31} = 1$	$a_{32} = 5$	$b_3 = 249$	

Вариант №13

$a_{11} = 7$	$a_{12} = 2$	$b_1 = 560$	$c_1 = 70$
$a_{21} = 3$	$a_{22} = 3$	$b_2 = 300$	$c_2 = 110$
$a_{31} = 1$	$a_{32} = 5$	$b_3 = 332$	

$a_{11} = 3$	$a_{12} = 1$	$b_1 = 300$	$c_1 = 39$
$a_{21} = 4$	$a_{22} = 3$	$b_2 = 477$	$c_2 = 52$
$a_{31} = 1$	$a_{32} = 4$	$b_3 = 441$	

Вариант №15

$a_{11} = 3$	$a_{12} = 2$	$b_1 = 298$	$c_1 = 20$
$a_{21} = 2$	$a_{22} = 6$	$b_2 = 600$	$c_2 = 11$
$a_{31} = 5$	$a_{32} = 1$	$b_3 = 401$	

Вариант №28

$a_{11} = 2$	$a_{12} = 97$	$b_1 = 560$	$c_1 = 52$
$a_{21} = 4$	$a_{22} = 3$	$b_2 = 365$	$c_2 = 33$
$a_{31} = 5$	$a_{32} = 4$	$b_3 = 331$	

Вариант №29

$a_{11} = 4$	$a_{12} = 3$	$b_1 = 303$	$c_1 = 50$
$a_{21} = 3$	$a_{22} = 1$	$b_2 = 459$	$c_2 = 34$
$a_{31} = 4$	$a_{32} = 6$	$b_3 = 441$	

Вариант №30

$a_{11} = 2$	$a_{12} = 4$	$b_1 = 290$	$c_1 = 22$
$a_{21} = 3$	$a_{22} = 1$	$b_2 = 645$	$c_2 = 46$
$a_{31} = 1$	$a_{32} = 5$	$b_3 = 400$	

Задача 4. Решить системы линейных уравнений $A^2X = B$, $A^{10}X = B$ проверку (для решения использовать формулы МУМНОЖ и МОБР), а также найти значение квадратичной формы $z = Y^T A^2 A A^T A A^2 Y$ (использовать формулы МУМНОЖ и ТРАНСП), если:

Вариант №1
$$A = \begin{pmatrix} 1 & 4 & 2 & 5 \\ 4 & 4 & 5 & 3 \\ 1 & 2 & 6 & 8 \\ 3 & 7 & 3 & 2 \end{pmatrix}, B = \begin{pmatrix} 3 \\ 8 \\ 1 \\ 7 \end{pmatrix}, Y = \begin{pmatrix} 1 \\ 2 \\ 5 \\ 1 \end{pmatrix}$$

Вариант №1
$$A = \begin{pmatrix} 1 & 4 & 2 & 5 \\ 4 & 4 & 5 & 3 \\ 1 & 2 & 6 & 8 \\ 3 & 7 & 3 & 2 \end{pmatrix}, B = \begin{pmatrix} 3 \\ 8 \\ 1 \\ 7 \end{pmatrix}, Y = \begin{pmatrix} 1 \\ 2 \\ 5 \\ 1 \end{pmatrix}$$
$$A = \begin{pmatrix} 2 & 4 & 7 & 4 \\ 4 & 1 & 6 & 2 \\ 8 & 3 & 6 & 7 \\ 6 & 3 & 5 & 7 \end{pmatrix}, B = \begin{pmatrix} 2 \\ 0 \\ 3 \\ 1 \end{pmatrix}, Y = \begin{pmatrix} 2 \\ 1 \\ 4 \\ 1 \end{pmatrix}$$

Вариант №3
$$A = \begin{pmatrix} 3 & 3 & 4 & 5 \\ 2 & 6 & 4 & 6 \\ 3 & 4 & 5 & 5 \\ 1 & 9 & 3 & 6 \end{pmatrix}, B = \begin{pmatrix} 1 \\ 4 \\ 0 \\ 3 \end{pmatrix}, Y = \begin{pmatrix} 1 \\ 2 \\ 1 \\ 2 \end{pmatrix}$$

Вариант №3
$$A = \begin{pmatrix} 3 & 3 & 4 & 5 \\ 2 & 6 & 4 & 6 \\ 3 & 4 & 5 & 5 \\ 1 & 9 & 3 & 6 \end{pmatrix}, B = \begin{pmatrix} 1 \\ 4 \\ 0 \\ 3 \end{pmatrix}, Y = \begin{pmatrix} 1 \\ 2 \\ 1 \\ 2 \end{pmatrix}$$

$$A = \begin{pmatrix} 2 & 1 & 5 & 2 \\ 5 & 2 & 2 & 6 \\ 2 & 2 & 1 & 2 \\ 1 & 3 & 3 & 1 \end{pmatrix}, B = \begin{pmatrix} 1 \\ 3 \\ 0 \\ 2 \end{pmatrix}, Y = \begin{pmatrix} 3 \\ 1 \\ 2 \\ 1 \end{pmatrix}$$

Вариант №5
$$A = \begin{pmatrix} 3 & 6 & 5 & 2 \\ 4 & 6 & 3 & 5 \\ 2 & 3 & 2 & 6 \\ 2 & 4 & 3 & 6 \end{pmatrix}, B = \begin{pmatrix} 3 \\ 0 \\ 4 \\ 3 \end{pmatrix}, Y = \begin{pmatrix} 2 \\ 0 \\ 1 \\ 1 \end{pmatrix}$$

Вариант №5
$$A = \begin{pmatrix} 3 & 6 & 5 & 2 \\ 4 & 6 & 3 & 5 \\ 2 & 3 & 2 & 6 \\ 2 & 4 & 3 & 6 \end{pmatrix}, B = \begin{pmatrix} 3 \\ 0 \\ 4 \\ 3 \end{pmatrix}, Y = \begin{pmatrix} 2 \\ 0 \\ 1 \\ 1 \end{pmatrix}$$

$$A = \begin{pmatrix} 7 & 0 & 2 & 7 \\ 4 & 9 & 5 & 5 \\ 2 & 3 & 4 & 9 \\ 1 & 5 & 6 & 9 \end{pmatrix}, B = \begin{pmatrix} 3 \\ 2 \\ 0 \\ 2 \end{pmatrix}, Y = \begin{pmatrix} 1 \\ 1 \\ 3 \\ 3 \end{pmatrix}$$

$$A = \begin{pmatrix} 5 & 1 & 7 & 1 \\ 0 & 1 & 2 & 9 \\ 2 & 4 & 1 & 6 \\ 2 & 8 & 0 & 8 \end{pmatrix}, B = \begin{pmatrix} 3 \\ 5 \\ 4 \\ 6 \end{pmatrix}, Y = \begin{pmatrix} 9 \\ 8 \\ 8 \\ 6 \end{pmatrix}$$

$$A = \begin{pmatrix} 5 & 1 & 7 & 1 \\ 0 & 1 & 2 & 9 \\ 2 & 4 & 1 & 6 \\ 2 & 8 & 0 & 8 \end{pmatrix}, B = \begin{pmatrix} 3 \\ 5 \\ 4 \\ 6 \end{pmatrix}, Y = \begin{pmatrix} 9 \\ 8 \\ 8 \\ 6 \end{pmatrix} \begin{vmatrix} A = \begin{pmatrix} 8 & 7 & 8 & 6 \\ 7 & 0 & 3 & 0 \\ 7 & 5 & 3 & 8 \\ 5 & 2 & 3 & 3 \end{pmatrix}, B = \begin{pmatrix} 8 \\ 1 \\ 8 \\ 10 \end{pmatrix}, Y = \begin{pmatrix} 1 \\ 1 \\ 5 \\ 8 \end{vmatrix} \end{vmatrix}$$

$$A = \begin{pmatrix} 3 & 1 & 6 & 6 \\ 9 & 8 & 7 & 4 \\ 2 & 3 & 2 & 5 \\ 7 & 8 & 3 & 7 \end{pmatrix}, B = \begin{pmatrix} 9 \\ 1 \\ 7 \\ 8 \end{pmatrix}, Y = \begin{pmatrix} 7 \\ 2 \\ 6 \\ 6 \end{pmatrix}$$

$$A = \begin{pmatrix} 3 & 1 & 6 & 6 \\ 9 & 8 & 7 & 4 \\ 2 & 3 & 2 & 5 \\ 7 & 8 & 3 & 7 \end{pmatrix}, B = \begin{pmatrix} 9 \\ 1 \\ 7 \\ 8 \end{pmatrix}, Y = \begin{pmatrix} 7 \\ 2 \\ 6 \\ 6 \end{pmatrix}$$
$$A = \begin{pmatrix} 5 & 1 & 5 & 4 \\ 9 & 1 & 7 & 9 \\ 6 & 4 & 3 & 3 \\ 9 & 2 & 8 & 3 \end{pmatrix}, B = \begin{pmatrix} 8 \\ 9 \\ 3 \\ 6 \end{pmatrix}, Y = \begin{pmatrix} 3 \\ 8 \\ 0 \\ 8 \end{pmatrix}$$

$$A = \begin{pmatrix} 2 & 5 & 1 & 1 \\ 9 & 6 & 8 & 1 \\ 9 & 9 & 9 & 2 \\ 6 & 9 & 4 & 4 \end{pmatrix}, B = \begin{pmatrix} 8 \\ 9 \\ 8 \\ 7 \end{pmatrix}, Y = \begin{pmatrix} 0 \\ 7 \\ 3 \\ 2 \end{pmatrix}$$

$$A = \begin{pmatrix} 2 & 5 & 1 & 1 \\ 9 & 6 & 8 & 1 \\ 9 & 9 & 9 & 2 \\ 6 & 9 & 4 & 4 \end{pmatrix}, B = \begin{pmatrix} 8 \\ 9 \\ 8 \\ 7 \end{pmatrix}, Y = \begin{pmatrix} 0 \\ 7 \\ 3 \\ 2 \end{pmatrix}$$
$$A = \begin{pmatrix} 6 & 7 & 4 & 7 \\ 6 & 4 & 3 & 0 \\ 4 & 4 & 8 & 9 \\ 8 & 3 & 5 & 2 \end{pmatrix}, B = \begin{pmatrix} 0 \\ 6 \\ 5 \\ 2 \end{pmatrix}, Y = \begin{pmatrix} 8 \\ 2 \\ 5 \\ 3 \end{pmatrix}$$

$$A = \begin{pmatrix} 8 & 9 & 1 & 7 \\ 7 & 3 & 7 & 9 \\ 1 & 7 & 2 & 6 \\ 8 & 5 & 7 & 2 \end{pmatrix}, B = \begin{pmatrix} 6 \\ 3 \\ 6 \\ 1 \end{pmatrix}, Y = \begin{pmatrix} 0 \\ 1 \\ 2 \\ 2 \end{pmatrix}$$

$$A = \begin{pmatrix} 8 & 9 & 1 & 7 \\ 7 & 3 & 7 & 9 \\ 1 & 7 & 2 & 6 \\ 8 & 5 & 7 & 2 \end{pmatrix}, B = \begin{pmatrix} 6 \\ 3 \\ 6 \\ 1 \end{pmatrix}, Y = \begin{pmatrix} 0 \\ 1 \\ 2 \\ 2 \end{pmatrix}$$
$$A = \begin{pmatrix} 8 & 0 & 2 & 5 \\ 9 & 5 & 8 & 3 \\ 0 & 5 & 9 & 1 \\ 6 & 2 & 2 & 7 \end{pmatrix}, B = \begin{pmatrix} 4 \\ 3 \\ 5 \\ 6 \end{pmatrix}, Y = \begin{pmatrix} 7 \\ 7 \\ 7 \\ 8 \end{pmatrix}$$

$$A = \begin{pmatrix} 5 & 5 & 1 & 0 \\ 7 & 3 & 2 & 7 \\ 9 & 3 & 9 & 9 \\ 3 & 7 & 6 & 5 \end{pmatrix}, B = \begin{pmatrix} 4 \\ 5 \\ 0 \\ 10 \end{pmatrix}, Y = \begin{pmatrix} 2 \\ 3 \\ 1 \\ 7 \end{pmatrix} \qquad A = \begin{pmatrix} 9 & 6 & 5 & 8 \\ 5 & 2 & 5 & 9 \\ 7 & 9 & 7 & 4 \\ 6 & 1 & 9 & 3 \end{pmatrix}, B = \begin{pmatrix} 3 \\ 1 \\ 4 \\ 3 \end{pmatrix}, Y = \begin{pmatrix} 1 \\ 7 \\ 6 \\ 0 \end{pmatrix}$$

$$A = \begin{pmatrix} 9 & 6 & 5 & 8 \\ 5 & 2 & 5 & 9 \\ 7 & 9 & 7 & 4 \\ 6 & 1 & 9 & 3 \end{pmatrix}, B = \begin{pmatrix} 3 \\ 1 \\ 4 \\ 3 \end{pmatrix}, Y = \begin{pmatrix} 1 \\ 7 \\ 6 \\ 0 \end{pmatrix}$$

Вариант №17
$$A = \begin{pmatrix} 5 & 0 & 5 & 0 \\ 7 & 6 & 9 & 8 \\ 0 & 0 & 3 & 0 \\ 5 & 1 & 4 & 3 \end{pmatrix}, B = \begin{pmatrix} 9 \\ 9 \\ 2 \\ 10 \end{pmatrix}, Y = \begin{pmatrix} 8 \\ 5 \\ 0 \\ 3 \end{pmatrix}$$

$$A = \begin{pmatrix} 2 & 2 & 0 & 8 \\ 4 & 5 & 0 & 4 \\ 4 & 0 & 9 & 6 \\ 5 & 0 & 0 & 5 \end{pmatrix}, B = \begin{pmatrix} 6 \\ 8 \\ 6 \\ 8 \end{pmatrix}, Y = \begin{pmatrix} 6 \\ 5 \\ 7 \\ 2 \end{pmatrix}$$

$$A = \begin{pmatrix} 2 & 2 & 0 & 8 \\ 4 & 5 & 0 & 4 \\ 4 & 0 & 9 & 6 \\ 5 & 0 & 0 & 5 \end{pmatrix}, B = \begin{pmatrix} 6 \\ 8 \\ 6 \\ 8 \end{pmatrix}, Y = \begin{pmatrix} 6 \\ 5 \\ 7 \\ 2 \end{pmatrix}$$

$$A = \begin{pmatrix} 4 & 5 & 2 & 3 \\ 3 & 3 & 7 & 1 \\ 4 & 9 & 4 & 1 \\ 5 & 1 & 2 & 9 \end{pmatrix}, B = \begin{pmatrix} 7 \\ 4 \\ 2 \\ 9 \end{pmatrix}, Y = \begin{pmatrix} 6 \\ 6 \\ 7 \\ 7 \end{pmatrix} \begin{vmatrix} A = \begin{pmatrix} 8 & 1 & 1 & 8 \\ 2 & 8 & 2 & 4 \\ 8 & 1 & 8 & 1 \\ 3 & 4 & 0 & 9 \end{pmatrix}, B = \begin{pmatrix} 2 \\ 7 \\ 6 \\ 8 \end{pmatrix}, Y = \begin{pmatrix} 8 \\ 7 \\ 6 \\ 8 \end{pmatrix}$$

$$A = \begin{pmatrix} 8 & 1 & 1 & 8 \\ 2 & 8 & 2 & 4 \\ 8 & 1 & 8 & 1 \\ 3 & 4 & 0 & 9 \end{pmatrix}, B = \begin{pmatrix} 2 \\ 7 \\ 6 \\ 8 \end{pmatrix}, Y = \begin{pmatrix} 1 \\ 2 \\ 2 \\ 3 \end{pmatrix}$$

$$A = \begin{pmatrix} 6 & 7 & 4 & 0 \\ 3 & 5 & 7 & 3 \\ 5 & 7 & 3 & 6 \\ 5 & 9 & 5 & 8 \end{pmatrix}, B = \begin{pmatrix} 6 \\ 8 \\ 6 \\ 9 \end{pmatrix}, Y = \begin{pmatrix} 1 \\ 1 \\ 3 \\ 7 \end{pmatrix}$$

Вариант №22

$$A = \begin{pmatrix} 6 & 7 & 4 & 0 \\ 3 & 5 & 7 & 3 \\ 5 & 7 & 3 & 6 \\ 5 & 9 & 5 & 8 \end{pmatrix}, B = \begin{pmatrix} 6 \\ 8 \\ 6 \\ 9 \end{pmatrix}, Y = \begin{pmatrix} 1 \\ 1 \\ 3 \\ 7 \end{pmatrix} \begin{vmatrix} A = \begin{pmatrix} 7 & 2 & 8 & 8 \\ 6 & 8 & 1 & 5 \\ 9 & 0 & 6 & 3 \\ 1 & 0 & 8 & 0 \end{vmatrix}, B = \begin{pmatrix} 7 \\ 0 \\ 4 \\ 6 \end{pmatrix}, Y = \begin{pmatrix} 3 \\ 1 \\ 1 \\ 8 \end{vmatrix}$$

Вариант №23

$$A = \begin{pmatrix} 8 & 0 & 2 & 0 \\ 8 & 1 & 3 & 2 \\ 5 & 2 & 1 & 2 \\ 6 & 1 & 2 & 8 \end{pmatrix}, B = \begin{pmatrix} 3 \\ 6 \\ 4 \\ 9 \end{pmatrix}, Y = \begin{pmatrix} 6 \\ 4 \\ 5 \\ 3 \end{pmatrix}$$

Вариант №24

$$A = \begin{pmatrix} 8 & 0 & 2 & 0 \\ 8 & 1 & 3 & 2 \\ 5 & 2 & 1 & 2 \\ 6 & 1 & 2 & 8 \end{pmatrix}, B = \begin{pmatrix} 3 \\ 6 \\ 4 \\ 9 \end{pmatrix}, Y = \begin{pmatrix} 6 \\ 4 \\ 5 \\ 3 \end{pmatrix}$$

$$A = \begin{pmatrix} 6 & 4 & 6 & 2 \\ 5 & 7 & 6 & 4 \\ 4 & 4 & 6 & 6 \\ 3 & 8 & 0 & 2 \end{pmatrix}, B = \begin{pmatrix} 0 \\ 1 \\ 7 \\ 4 \end{pmatrix}, Y = \begin{pmatrix} 3 \\ 7 \\ 3 \\ 8 \end{pmatrix}$$

Вариант №25

$$A = \begin{pmatrix} 5 & 5 & 6 & 9 \\ 2 & 0 & 8 & 5 \\ 1 & 6 & 6 & 8 \\ 0 & 9 & 9 & 8 \end{pmatrix}, B = \begin{pmatrix} 10 \\ 10 \\ 3 \\ 1 \end{pmatrix}, Y = \begin{pmatrix} 8 \\ 8 \\ 7 \\ 5 \end{pmatrix} \quad A = \begin{pmatrix} 3 & 9 & 4 & 2 \\ 9 & 3 & 8 & 4 \\ 4 & 2 & 7 & 2 \\ 4 & 9 & 2 & 5 \end{pmatrix}, B = \begin{pmatrix} 5 \\ 5 \\ 8 \\ 2 \end{pmatrix}, Y = \begin{pmatrix} 5 \\ 0 \\ 1 \\ 1 \end{pmatrix}$$

$$A = \begin{pmatrix} 3 & 9 & 4 & 2 \\ 9 & 3 & 8 & 4 \\ 4 & 2 & 7 & 2 \\ 4 & 9 & 2 & 5 \end{pmatrix}, B = \begin{pmatrix} 2 \\ 5 \\ 8 \\ 2 \end{pmatrix}, Y = \begin{pmatrix} 5 \\ 0 \\ 1 \\ 1 \end{pmatrix}$$

$$A = \begin{pmatrix} 5 & 0 & 5 & 0 \\ 9 & 4 & 1 & 0 \\ 7 & 4 & 1 & 5 \\ 0 & 1 & 6 & 4 \end{pmatrix}, B = \begin{pmatrix} 6 \\ 7 \\ 10 \\ 5 \end{pmatrix}, Y = \begin{pmatrix} 4 \\ 1 \\ 1 \\ 7 \end{pmatrix}$$

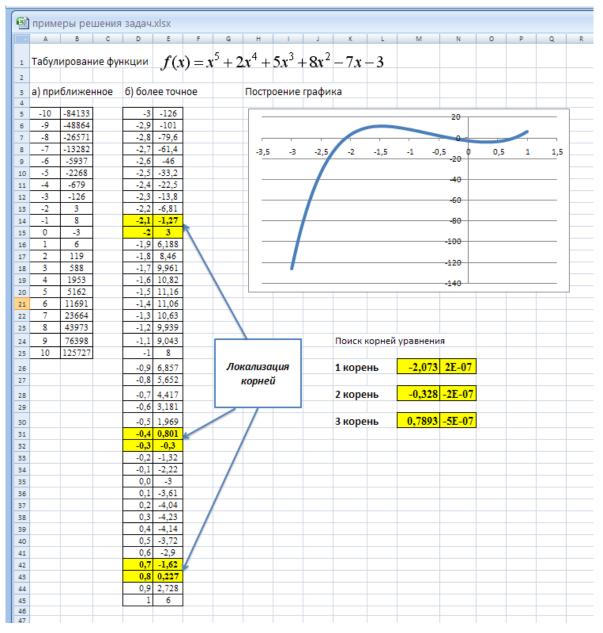
$$A = \begin{pmatrix} 5 & 0 & 5 & 0 \\ 9 & 4 & 1 & 0 \\ 7 & 4 & 1 & 5 \\ 0 & 1 & 6 & 4 \end{pmatrix}, B = \begin{pmatrix} 6 \\ 7 \\ 10 \\ 5 \end{pmatrix}, Y = \begin{pmatrix} 4 \\ 1 \\ 1 \\ 7 \end{pmatrix}$$

$$A = \begin{pmatrix} 5 & 9 & 6 & 5 \\ 2 & 0 & 6 & 4 \\ 2 & 1 & 5 & 4 \\ 4 & 4 & 1 & 5 \end{pmatrix}, B = \begin{pmatrix} 3 \\ 10 \\ 3 \\ 8 \end{pmatrix}, Y = \begin{pmatrix} 1 \\ 8 \\ 1 \\ 5 \end{pmatrix}$$

Вариант №29

$$A = \begin{pmatrix} 4 & 6 & 9 & 7 \\ 0 & 2 & 6 & 4 \\ 2 & 2 & 5 & 6 \\ 7 & 4 & 7 & 6 \end{pmatrix}, B = \begin{pmatrix} 2 \\ 6 \\ 2 \\ 5 \end{pmatrix}, Y = \begin{pmatrix} 8 \\ 1 \\ 8 \\ 8 \end{pmatrix}$$

$$A = \begin{pmatrix} 4 & 6 & 9 & 7 \\ 0 & 2 & 6 & 4 \\ 2 & 2 & 5 & 6 \\ 7 & 4 & 7 & 6 \end{pmatrix}, B = \begin{pmatrix} 2 \\ 6 \\ 2 \\ 5 \end{pmatrix}, Y = \begin{pmatrix} 8 \\ 1 \\ 8 \\ 8 \end{pmatrix} \qquad A = \begin{pmatrix} 4 & 0 & 0 & 8 \\ 7 & 9 & 0 & 7 \\ 9 & 7 & 6 & 3 \\ 6 & 0 & 9 & 2 \end{pmatrix}, B = \begin{pmatrix} 2 \\ 6 \\ 1 \\ 4 \end{pmatrix}, Y = \begin{pmatrix} 6 \\ 1 \\ 8 \\ 1 \end{pmatrix}$$

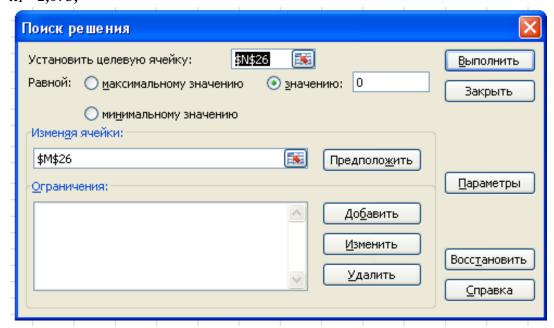

Примеры решения задач

Задача 1. Найти все корни уравнения с помощью надстройки *Поиск решения* в *MS Excel*.

$$x^5 + 2x^4 + 5x^3 + 8x^2 - 7x - 3 = 0$$

Решение:

1) Выполним приближенное табулирование функции на отрезке [- 10; 10]:


Puc. 1

- В ячейки A5:A25 введем аргумент функции значение отрезка [- 10; 10] с шагом 1:
- В ячейку В5 внесем формулу: A5^5+2*A5^4+5*A5^3+8*A5^2-7*A5-3 и скопируем ее значение на весь диапазон табулирования В5:В25;
- Вычислим значение функции f(x) на этом диапазоне (рис.1, столбец а). Определяем по результатам вычисления, что значение функции f(x)три раза меняет знак на отрезке [-3;1].
- 2) Осуществим более точное табулирование функции на заданном отрезке:

- В ячейки D5:D45 введем аргумент функции f(x) значение отрезка [- 3; 1] с шагом 0.1:
- В ячейку Е5 внесем формулу, аналогичную формуле для ячейки В5, и скопируем ее на весь диапазон значений аргумента функции: =D5^5+2*D5^4+5*D5^3+8*D5^2-7*D5-3;
- Вычислим значение функции f(x) на этом диапазоне (рис.1, столбец б) и построим график для табулированной функции.

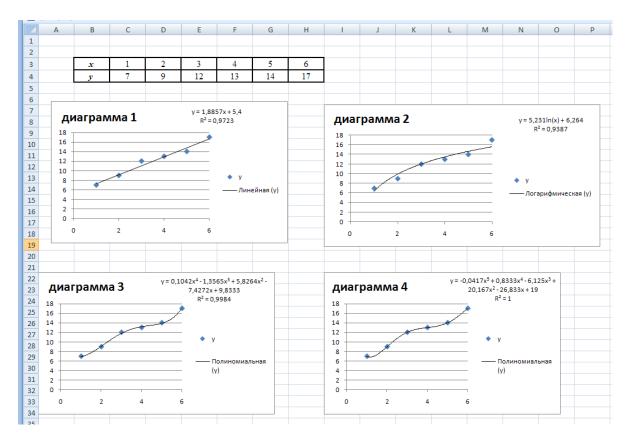
Результаты точного табулирования функции дают 3 изменения знака на отрезке [-3;1], что свидетельствует о наличии корней уравнения f(x)=0.

- 3) С помощью средства *Поиск решения* определим корни уравнения:
- Для вычисления первого корня, в ячейку M26 поместим значение аргумента -2,1;а в ячейку N26 запишем соответствующую формулу для функции *f*(*x*): =M26^5+2*M26^4+5*M26^3+8*M26^2-7*M26-3;
 - Поместим указатель в ячейку N26 и выполним команду Данные / Поиск решения (или Сервис / Поиск решения). Получим первый корень уравнения x_1 =-2,073;

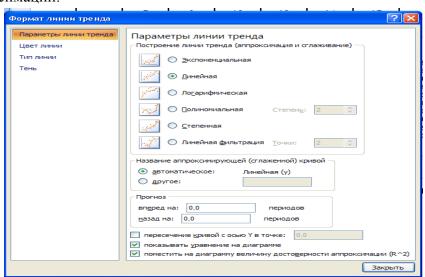
• Аналогично вычислим оставшиеся 2 корня:

 $x_2 = -0.328;$

 $x_3=0.7893.$


Ответ: $x_1 = -2.073$; $x_2 = -0.328$; $x_3 = 0.7893$.

Задача 2. По наблюдаемым значениям величин xи y (x – неделя, y – объём реализации) найти математическую модель, наилучшим образом описывающую изменение объемов реализации некоторого вида товара за последние несколько недель, используя MS Excel.


				4		
у	7	9	12	13	14	17

Решение:

1) Для имеющихся данных строим несколько линий тренда:

- Для построения Диаграммы 1, выделим диапазон ячеек В3:Н4 и выполним команду **Вставка / Диаграмма / Точечная**. Выделим точечный график, щелкнув по нему левой кнопкой мыши, затем щелкнем правой кнопкой мыши для вызова динамического меню, в котором выберем команду **Добавить** линию тренда.
- В появившемся диалоговом окне выберем тип линии тренда и установим флажки для отображения на диаграмме уравнения линии и величины достоверности аппроксимации.

- Аналогично строим остальные диаграммы
- 2) Сделаем вывод о подходящей математической модели:

Исходя из результатов расчета, для описания данных наблюдаемых величин наиболее достоверной представляется полиномиальная модель (полином 5-й степени)

Задача 3. Предприятие выпускает два вида продукции: Изделие 1 и Изделие 2. На изготовление единицы Изделия 1 требуется затратить a_{11} кг сырья первого типа, a_{21} кг сырья второго типа, a_{31} кг сырья третьего типа. На изготовление единицы Изделия 2 требуется затратить a_{12} кг сырья первого типа, a_{22} кг сырья второго типа, a_{32} кг сырья третьего типа. Производство обеспечено сырьем каждого типа в количестве b_1 кг, b_2 кг, b_3 кг соответственно. Рыночная цена единицы Изделия 1 составляет c_1 тыс. руб., а единицы Изделия $2 - c_2$ тыс. руб.

Требуется:

- 1) построить экономико-математическую модель задачи;
- 2) составить план производства изделий, обеспечивающий максимальную выручку от их реализации, используя надстройку «Поиск решения» в среде MS Excel.

$a_{11} = 3$	$a_{12} = 4$	$b_1 = 600$	$c_1 = 42$
$a_{21} = 3$	$a_{22} = 1$	$b_2 = 357$	$c_2 = 26$
$a_{31} = 1$	$a_{32} = 5$	$b_3 = 600$	

Решение:

1) Составим экономико-математическую модель задачи:

Обозначим:

 x_1 – объем выпуска Изделия 1,

 x_2 — объем выпуска Изделия 2.

Определим функцию цели (критерий оптимизации):

 $F = 42x_1 + 26x_2 -$ суммарная выручка от реализации х1 Изделия1 и х2 Изделия2.

Определим ограничения на переменные:

- объем производства не может быть отрицателен

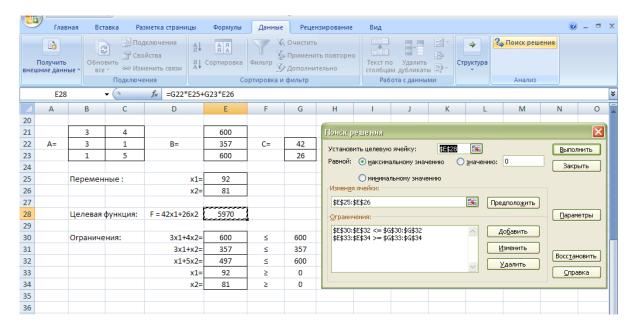
$$x_1 \ge 0; \ x_2 \ge 0;$$

- расход сырья для производства обоих видов продукции не может превосходить максимально возможного запаса:

$$3x_1 + 4x_2 \le 600;$$

 $3x_1 + x_2 \le 357;$
 $x_1 + 5x_2 \le 600;$

Таким образом, получаем следующую математическую модель задачи:


Найти максимум следующей функции:

$$F = 42x_1 + 26x_2 \rightarrow max$$

При ограничениях вида:

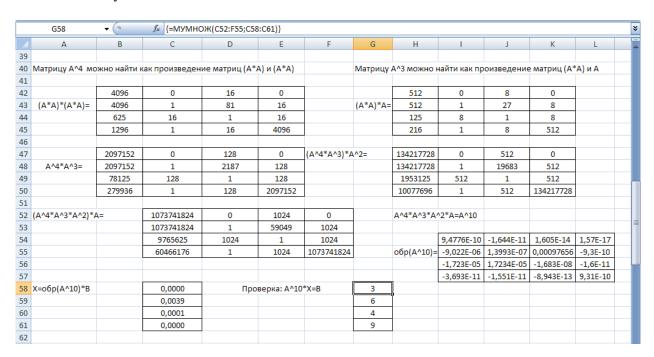
$$3x_1 + 4x_2 \le 600;$$

 $3x_1 + x_2 \le 357;$
 $x_1 + 5x_2 \le 600;$
 $x_1 \ge 0;$ $x_2 \ge 0.$

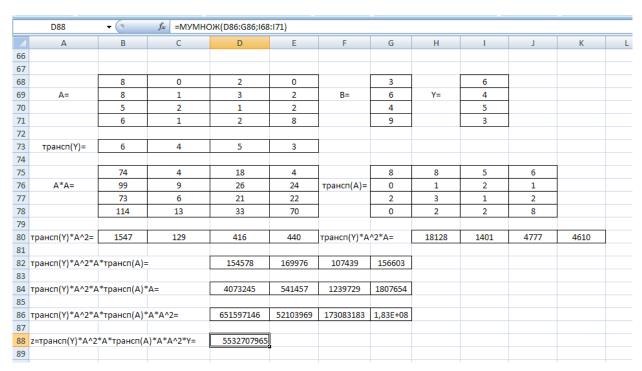
2) Составим план производства изделий, обеспечивающий максимальную выручку от их реализации, используя надстройку «Поиск решения» в среде MS Excel.

План производства Изделия1 составляет 92 единицы, Изделия2 – 81 единица; максимальная выручка равна 5970 тыс. руб.

Задача 4. Решить системы линейных уравнений $A^2X = B$, $A^4A^3A^2AX = B$ и сделать проверку (для решения использовать формулы МУМНОЖ и МОБР), а также найти значение квадратичной формы $z = Y^TA^2AA^TAA^2Y$ (использовать формулы МУМНОЖ и ТРАНСП), если:


$$A = \begin{pmatrix} 8 & 0 & 2 & 0 \\ 8 & 1 & 3 & 2 \\ 5 & 2 & 1 & 2 \\ 6 & 1 & 2 & 8 \end{pmatrix}, B = \begin{pmatrix} 3 \\ 6 \\ 4 \\ 9 \end{pmatrix}, Y = \begin{pmatrix} 6 \\ 4 \\ 5 \\ 3 \end{pmatrix}$$

Решение:


Решим систему $A^2X = B$

٠.	. ,										
	J31	▼ ()	<i>f</i> _≪ {=MУМН0	DЖ(B26:E29;I26	:129)}						
	А	В	С	D	Е	F	G	Н	1	J	
18											
19		8	0	2	0		3		6		
20	A=	8	1	3	2	B=	6	Y=	4		
21		5	2	1	2		4		5		
22		6	1	2	8		9		3		
23											
24											
25							Х=обр(А*А)*В				
26	A*A=	74	4	18	4				0,04904875		
27		99	9	26	24			X=	0,46165279		
28		73	6	21	22				-0,1444709		
29		114	13	33	70				0,03106421		
30											
31	обр(А*А)=	0,1049346	-0,019619501	-0,131985731	0,04221165		проверка	проверка: (А*А)*Х=В		3	
32		-0,4729489	0,615338882	-0,133174792	-0,1420927					6	
33		-0,2818074	-0,042211653	0,579667063	-0,1516052					4	
34		0,04979191	-0,062425684	-0,033590963	0,04340071					9	
35											

Решим систему $A^4A^3A^2AX = B$

Найдем значение квадратичной формы $z = Y^T A^2 A A^T A A^2 Y$

