ГРАФОАНАЛИТИЧЕСКИЙ МЕТОД ОПРЕДЕЛЕНИЯ ЭДУ

Аналитическое выражение для ЭДУ не сообщает нам, куда результирующая сила приложена и как она распределена по проводнику. На рисунке 1 изображена эпюра сил. По проводнику длиной l протекает ток i_1 , проводник взаимодействует с магнитным полем тока i_2 . В результате чего на проводник действует ЭДУ. ЭДУ как-то распределена по длине проводника, что и показано на рисунке.

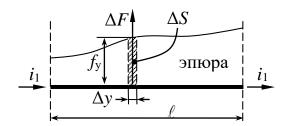


Рисунок 1. Эпюра сил

Эпюру можно описать через удельную силу f_y на единицу длины проводника. Если взять достаточно короткий отрезок проводника Δy , то можно считать, что удельное усилие на нем постоянно. Тогда суммарная сила ΔF , действующая на этот короткий участок, будет равна площади ΔS : $\Delta F = \Delta S = f_y \cdot \Delta y$, т.е.:

$$F = \int_{\ell} f_{y} dy.$$

Из последнего выражения следует, что для описания распределения силы по проводнику нужно знать закон распределения удельного усилия. Сравнивая, полученное ранее аналитическое выражение для силы с последней формулой можно сказать следующее:

$$F = \frac{\mu_0}{4\pi} i_1 i_2 \int_{\ell} \frac{\cos \alpha_1 + \cos \alpha_2}{h_y} dy = A \int_{\ell} K_r' dy$$

— график изменения $K_{\rm r}'$ с точностью до постоянной A отображает изменение $f_{\rm y}$. На основе этого создан графоаналитический метод построения эпюры сил.

Алгоритм метода

- 1. Строим чертеж системы взаимодействующих отрезков с током в выбранном нами масштабе длины m_l .
- 2. Отрезок длиной l_1 , распределение усилия по которому ищем, делим на n частей. Для ручного расчета с приемлемой точностью: n > 8.

$$\Delta l_j = \frac{l_1}{n}$$

где $1 \le j \le n$.

3. По рисунку в масштабе m_l для первого участка Δl_1 определяем значения: α_{11} , α_{21} , h_{y1} . Для нахождения углов α_{11} , α_{21} из середины первого участка проводим линии к концам токового отрезка, который оказывает воздействие. Для нахождения h_{y1} из середины первого участка опускаем перпендикуляр на линию токового отрезка, оказывающего воздействие. На рисунке 2 показаны эти построения. Легко заметить по рисунку 3.2, что для последующих участков величины углов и расстояния будут отличаться, что и определит отличия в удельной силе на каждом участке.

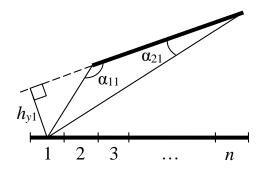


Рисунок 2. Нахождение α_{11} , α_{21} , h_{y1}

4. По найденным значениям углов и расстояния вычисляем производную от геометрического коэффициента для первого участка:

$$K'_{\rm rl} = \frac{\cos \alpha_{11} + \cos \alpha_{21}}{h_{\rm yl}}.$$

- 5. Выбираем масштаб для производной геометрического коэффициента $m_{K'_{\mathrm{r}}}$ и строим в масштабе перпендикулярный к проводнику отрезок K'_{rl} .
- 6. Вычисляем интеграл от производной геометрического коэффициента по первому участку. Считаем, что удельное усилие на протяжении участков постоянно, поэтому интеграл тут это площадь прямоугольника:

$$\Delta S_1 = K'_{r1} \cdot \Delta l_1.$$

7. Вычисляем полное усилие, действующее на первый участок:

$$\Delta F_1 = A \cdot \Delta S_1,$$

где
$$A = \frac{\mu_0}{4\pi} i_1 i_2 = i_1 i_2 \cdot 10^{-7}$$
.

8. Повторяем пункты с 3-го по 7-й для остальных участков: $2 \le j \le n$. В результате этих действий получится эпюра распределения K'_{Γ} по проводнику, вид которой (совместно с реальной эпюрой) показан на рисунке 3.

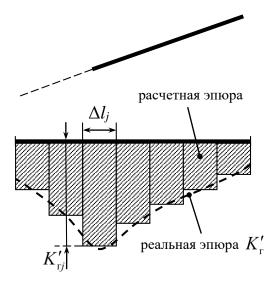


Рисунок 3.3. Эпюра K'_r

9. Находим результирующее усилие, именно это значение вычисляется по аналитической формуле:

$$F = \sum_{j=1}^{n} \Delta F_j = \frac{\mu_0}{4\pi} i_1 i_2 K_{\rm r}.$$

10. Вычислим момент силы (вращающий момент) для каждого участка, относительно любой выбранной оси. Ось вращения наиболее целесообразно (для упрощения расчетов) выбрать на линии проводника. Если ось совместить с началом проводника, то расчет длин плеч при известных Δl_j будет элементарным. На рисунке 4 показаны ось О (совмещенная с началом проводника) и момент вращения ΔM_j для произвольного j-ого участка, y_j — это плечо вращения. Формула для расчета: $\Delta M_j = \Delta F_j \cdot y_j$.

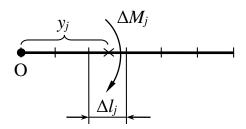


Рисунок 4. Момент вращения

11. Вычисляем полный момент вращения:

$$M = \sum_{j=1}^{n} \Delta M_{j}.$$

12. Зная результирующее усилие и полный момент вращения можно вычислить результирующее плечо, т.е. точку приложения суммарной силы.

$$M = F \cdot \ell_{p} \Longrightarrow \ell_{p} = \frac{M}{F}.$$

ПРИМЕР РАСЧЕТА ЭДУ

Дано: Проводник длиной $l_1 = 2$ м с переменным током короткого замыкания $I_1 = 10$ кА расположен под углом $\beta = 30^\circ$ к проводнику бесконечной длины с переменным током к.з. $I_2 = 15$ кА. Вычислить полную силу, действующую на первый проводник, построить эпюру распределения силы и найти точку приложения равнодействующей силы. $l_0 = 1$ м.

Решение:

1. Строим чертеж в заданном масштабе как на рисунке 5.

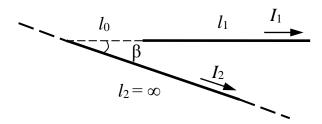


Рисунок 5. Чертеж расположения проводников

2. Делим первый проводник на n=4 частей. При этом длина одного участка:

$$\Delta \ell_j = \frac{\ell_1}{n} = \frac{2}{4} = 0.5 \,\mathrm{M}.$$

3. Определяем значения углов α_1 , α_2 и расстояния h_y для первого участка по чертежу или аналитически. Для этого из середины первого участка опускаем перпендикуляр на второй проводник и оттуда же проводим линии к концам второго участка.

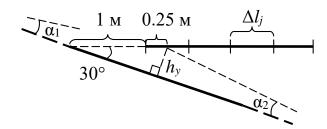


Рисунок 6. Определение параметров для первого участка

Очевидно, что для данного расположения проводников $\alpha_1 = \alpha_2 = 0$. Расстояние $h_{y1} = (1 + 0.25) \cdot \sin 30 = 0.625$ м.

4. Вычисляем значение K'_{r1} :

$$K'_{\rm r1} = \frac{\cos 0 + \cos 0}{0.625} = 3.2 \frac{1}{\rm M}.$$

5. Откладываем найденное значение $K'_{{}_{\Gamma 1}}$ для первого участка в некотором масштабе.

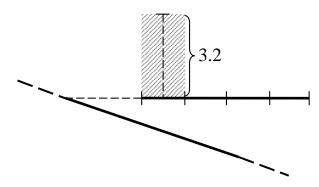


Рисунок 7. Построение производной от геометрического коэффициента

6. Вычисляем интеграл от геометрического коэффициента по первому участку:

$$\Delta S_1 = \int_{\ell_1} K'_{r1} dy = K'_{r1} \cdot \Delta \ell = 3.2 \cdot 0.5 = 1.6.$$

7. Вычисляем усилие, действующее на первый участок.

$$\Delta F_1 = A \cdot \Delta S_1 = \frac{\mu_0}{4\pi} I_1 I_2 \cdot \Delta S_1 = \frac{4\pi \cdot 10^{-7}}{4\pi} \cdot 10000 \cdot 15000 \cdot 1.6 = 24 \,\mathrm{H}.$$

8. Повторяем все действия для остальных участков и сводим результат в таблицу.

Таблица 1. Данные по всем участкам

№	α_{1j}	$\cos \alpha_{1j}$	α_{2j}	$\cos \alpha_{2j}$	h_{yj}	K'_{rj}	ΔS_j	ΔF_j	Уj	ΔM_j
1	0	1	0	1	0.625	3.200	1.600	24	1.25	30
2	0	1	0	1	0.875	2.286	1.143	17	1.75	30
3	0	1	0	1	1.125	1.778	0.889	13	2.25	30
4	0	1	0	1	1.375	1.455	0.728	11	2.75	30

- 9. Вычисляем результирующее усилие $F = \sum_{j=1}^{n} \Delta F_{j} = 65 \, \mathrm{H}.$
- 10. Вычисляем моменты силы для каждого участка, возьмем ось вращения на точке пересечения линий проводников. Тогда: $\Delta M_j = \Delta F_j \cdot y_j$. Заносим данные в таблицу 1.

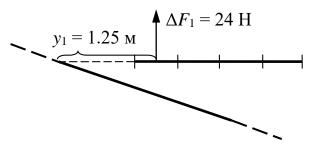


Рисунок 8. Момент силы

11. Вычисляем полный вращающий момент:

$$M = \sum_{i=1}^{n} \Delta M_{j} = 120 \,\mathrm{H} \cdot \mathrm{M}.$$

12. Вычисляем точку приложения равнодействующей силы и строим эпюру сил: $L_{\rm p}=\frac{M}{F}=\frac{120}{65}=1.85\,{\rm m}.$

Теперь учтем то, что ток в проводниках переменный и аварийный. Известно, что при переменном токе короткого замыкания максимальная величина ЭДУ называется ударной силой и ее значение определяется соотношением:

$$F_{\rm yg} = 2k_{\rm a}^2 F,$$

где $k_{\rm a}=1.8$ – это коэффициент амплитуды, тогда:

$$F_{yz} = 2 \cdot 1,8^2 \cdot 65 = 6,48 \cdot 65 = 421,2 \text{ H}.$$

Рассчитаем ударный момент:

$$M_{\text{VJ}} = F_{\text{VJ}} \cdot L_{\text{p}} = 6,48 \cdot M = 6,48 \cdot 120 = 778 \text{ H} \cdot \text{M}.$$

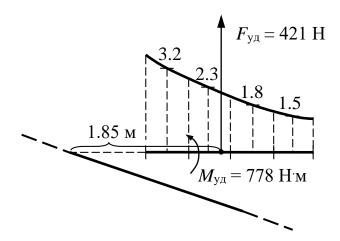


Рисунок 9. Эпюра сил

ДОМАШНЯЯ РАБОТА «РАСЧЕТ ЭДУ ГРАФОАНАЛИТИЧЕСКИМ МЕТОДОМ»

Задание

- 1. Определить воздействие проводника x на проводник y (если длина проводника x не указана, считать его полубесконечным).
- 2. Построить эпюру K'_{r} на проводник y с указанием масштаба (число участков для расчета взять n=8).
- 3. Рассчитать ударное значение силы $F_{yд}$ и точки ее приложения, а также крутящего момента M вокруг оси в указанной точке. Отметить $F_{yд}$ и $M_{yд}$ эпюре K_{Γ}' с указанием их значений.

ВАРИАНТЫ

No	<i>I</i> кз, кА	L_2 , cm	<i>L</i> ₃ , см	<i>L</i> ₄ , c _M	α	β	γ	ось	эпюра
1	40	199	93	166	140	108	121	В	L_1 на L_2
2	100	161	59	249	140	94	153	В	L_3 на L_4
3	65	154	73	224	127	112	130	A	L_5 на L_3
4	110	188	91	171	131	102	124	В	L_5 на L_2
5	85	186	55	208	139	101	145	С	L_5 на L_3
6	80	169	61	174	131	114	121	В	L_4 на L_2
7	70	169	75	183	123	120	144	В	L_3 на L_4
8	60	175	54	250	131	99	145	В	L_1 на L_4
9	110	160	97	197	142	100	131	В	L_4 на L_3
10	65	183	86	163	121	93	151	A	L_1 на L_3
11	105	187	64	228	141	110	141	A	L_1 на L_2
12	100	162	93	210	122	116	136	D	L_5 на L_4
13	90	195	96	221	145	98	158	В	L_5 на L_4
14	65	174	86	173	133	107	137	В	L_1 на L_2
15	75	191	70	173	146	108	145	D	L_1 на L_2
16	40	188	95	173	145	101	120	D	L_4 на L_3
17	75	199	89	175	127	95	152	D	L_2 на L_3
18	50	151	80	163	139	107	122	D	L_2 на L_3
19	90	159	79	169	121	115	130	C	L_3 на L_2
20	70	154	74	150	133	97	123	D	L_1 на L_4
21	85	150	74	157	128	106	146	C	L_5 на L_2
22	50	165	74	226	148	120	128	В	L_1 на L_4
23	115	158	94	163	134	96	150	A	L_1 на L_3
24	120	164	98	180	123	91	135	D	L_4 на L_3
25	110	194	66	228	138	110	142	D	L_5 на L_4
26	100	198	67	173	148	94	129	В	L_3 на L_2
27	75	189	83	167	132	105	154	В	L_3 на L_2
28	55	154	59	239	139	94	132	D	L_1 на L_4
29	120	175	62	182	137	94	137	A	L_1 на L_4
30	50	161	96	240	125	99	138	D	L ₅ Ha L ₃
31	45	167	76	241	120	97	153	C	L_3 на L_4
32	70	180	62	181	123	101	149	A	L_5 на L_4
33	65	168	78	153	148	110	156	В	L_5 на L_3
34	45	175	61	236	148	96	157	A	L_1 на L_2
35	60	198	73	182	126	112	136	D	L_3 на L_2