## Контрольное задание для гр. ММТ-24-7, ММТ-24-13-ПИШ (3 семестр 2025 г.)

# по разделу «Фазовые диаграммы многокомпонентных систем» дисциплины «Материаловедение и термическая обработка металлов и сплавов» преподаватель – проф. Белов Николай Александрович

## nikolay-belov@yandex.ru

|     | ФИО студента                                  | Вариа |
|-----|-----------------------------------------------|-------|
|     |                                               | нт КЗ |
| 1.  | Funiaran Durgan Danadananan                   | 2     |
| 1.  | Бирюков Виктор Вячеславович                   | 2     |
| 2.  | Букоткин Антон Ильич                          | 3     |
| 3.  | Владыкин Александр Олегович                   | 4     |
| 4.  | Гриднев Вадим Юрьевич                         | 5     |
| 5.  | Гундерова Софья Дмитриевна                    | 6     |
| 6.  | Гусев Александр Андреевич                     | 7     |
| 7.  | Дулесов Антон Павлович                        | 8     |
| 8.  | Елманова Дарья Сергеевна                      | 9     |
| 9.  | Каляшина Алина Алексеевна                     | 10    |
| 10. | Кирсанов Сергей Романович                     | 11    |
| 11. | Курбанов Комиль Абдусатторович                | 12    |
| 12. | Лупов Роман Сергеевич                         | 13    |
| 13. | Селиверстов Евгений Васильевич                | 14    |
| 14. | Синельникова Анастасия Викторовна             | 15    |
| 15. | Скорик Наталья Анатольевна                    | 16    |
| 16. | Удалов Максим Александрович                   | 17    |
| 17. | Федулаев Артем Борисович                      | 18    |
| 18. | Финогеева Мария Викторовна                    | 19    |
| 19. | Чурсина Анна Тихоновна                        | 20    |
| 20. | Шарипов Акмалжон Хаким Угли                   | 21    |
| 21. | Шарипов Ибрахим Ильдусович                    | 22    |
| 22. | Юхимчук Иван Иванович                         | 23    |
| 23. | Бакиров Кайрат Келесбаевич – <i>МТМО-24-5</i> | 24    |
| 24. | Ханаев Фаррух Шахарбой Угли – МТМО-24-5       | 25    |
| 25. | Ханаева Шахноза Абдулхамид Кизи МТМО-         | 26    |

# Группа ММТ-24-13-ПИШ

| ФИО студента                          | Вариант КЗ |
|---------------------------------------|------------|
| 1. Ардашева Татьяна Анатольевна       | 27         |
| 2. Деветьяров Дмитрий Анатольевич     | 28         |
| 3. Карпенко Илья Сергеевич)           | 29         |
| 4. Моисеев Даниил Николаевич          | 30         |
| 5. Назаров Иван Вячеславович          | 31         |
| 6. Перевозчиков Сергей Алексеевич     | 32         |
| 7. Перевозчикова Наталия Владимировна | 33         |
| 8. Пешин Андрей Николаевич            | 34         |
| 9. Проневич Галина Михайловна         | 35         |
| 10. Туктарев Алексей Львович          | 36         |
| 11. Фомин Лев Юрьевич                 | 37         |
| 12. Хлебников Павел Владимирович      | 38         |
| 13. Чернецкий Антон Александрович     | 39         |

- 1. Построить кривую охлаждения сплава Y (указать реакции) см. рис.1
- 2. Определить температуру солидуса сплава Al–4%Si–0,5%Fe (обосновать ответ) рис.5
- 3. Определить относительные концентрации Si, Mg и Fe в сплаве Al–2%Si–5%Mg–1%Fe и определить его фазовый состав при комнатной температуре (нанести точку состава на диаграмму) рис.12

#### Вариант 2

- 1. Построить кривую охлаждения сплава A-10%B-20%C (указать реакции) см. рис.1
- 2. Определить температуру солидуса сплава Al–1%Si–2%Fe (обосновать ответ) puc.5
- 3. Определить относительные концентрации Si, Mg и Fe в сплаве Al–20%Si– 5%Mg–1%Fe и определить его фазовый состав при комнатной температуре (нанести точку состава на диаграмму) рис.12

- 1. Оценить фазовый состав сплава A-1%B-9%C при 710 °C (см. рис.1). Ответ обосновать.
- 2. Построить кривую охлаждения сплава Al-8,5%Si-5%Cu (указать реакции) puc.9
- 3.Оценить минимальную температуру солидуса в алюминиевых сплавах системы Al–Cu–Mg–Fe (см. рис.16). Ответ обосновать.

- 1. Построить кривую охлаждения сплава С-10%В-50%А (указать реакции) см. рис.1
- 2. Определить фазу, с которой начинается кристаллизация сплава Al–2%Si–3,5%Fe (обосновать ответ) рис.5
- 3. Определить относительные концентрации Si, Cu и Fe в сплаве Al–2%Si–10%Cu–1%Fe и определить его фазовый состав при комнатной температуре (нанести точку состава на диаграмму) рис.13

## Вариант 5

- 1. Построить кривую охлаждения сплава B–20%C–70%A (указать реакции) см. рис.1
- 2. Определить температуру солидуса сплава Al–2%Mn–0,5%Fe (обосновать ответ) рис.56
- 3. Определить относительные концентрации Si, Cu и Fe в сплаве Al–14%Si– 5%Cu–1%Fe и определить его фазовый состав при комнатной температуре (нанести точку состава на диаграмму) рис.13

- 1. Построить кривую охлаждения сплава A-10%C-20%B (указать реакции) см. рис.1
- 2. Определить фазу, с которой начинается кристаллизация сплава Al–2%Fe–2%Mn (обосновать ответ) рис.6
- 3. Определить относительные концентрации Si, Cu и Fe в сплаве Al–3%Si–5%Cu–2%Fe и определить его фазовый состав при комнатной температуре (нанести точку состава на диаграмму) рис.13

- 1. Построить кривую охлаждения сплава Z (указать реакции) см. рис.2
- 2. Построить кривую охлаждения сплава Al–1%Mn–0,5%Fe (указать реакции) рис.6
- 3. Определить относительные концентрации Si, Mg и Fe в сплаве Al–1%Si–8%Cu–1%Fe (нанести точку состава на диаграмму) и определить, какая фаза кристаллизуется в составе двойной эвтектики (т.е. после первичной кристаллизации (Al)) рис.13

#### Вариант 8

- 1. Построить кривую охлаждения сплава A-15%B-15%C (указать реакции) см. рис.2
- 2. Определить температуру солидуса сплава Al-2%Fe-4%Ni (обосновать ответ) рис.7
- 3. Определить относительные концентрации Si, Mg и Cu в сплаве Al–12%Si–2%Mg–6%Cu и определить его фазовый состав при комнатной температуре (нанести точку состава на диаграмму) рис.14

- 1. Оценить фазовый состав сплава A-20%B-20%C при 440 °C (см. рис.2). Ответ обосновать.
- 2. Построить кривую охлаждения сплава Al–20%Mg–1%Cu (указать реакции) рис.10
- 3. Определить относительные концентрации Si, Mn и Cu в сплаве Al–12%Si– 1%Mn–3%Cu и определить его фазовый состав при комнатной температуре (нанести точку состава на диаграмму) рис.17

- 1. Построить кривую охлаждения сплава С-10%В-40%А (указать реакции) см. рис.2
- 2. Определить фазу, с которой начинается кристаллизация сплава Al—4%Ni— 3%Fe (обосновать ответ) рис.7
- 3. Определить относительные концентрации Si, Mg и Cu в сплаве Al–2%Si–15%Mg–3%Cu и определить его фазовый состав при комнатной температуре (нанести точку состава на диаграмму) рис.14

#### Вариант 11

- 1. Построить кривую охлаждения сплава A-10%C-30%B (указать реакции) см. рис.2
- 2. Определить температуру солидуса сплава Al-4%Si-1%Mg (обосновать ответ) рис.8
- 3. Определить относительные концентрации Si, Mg и Cu в сплаве Al–8%Si–1%Mg–1%Cu (нанести точку состава на диаграмму) и определить, какая фаза кристаллизуется в составе двойной эвтектики (т.е. после первичной кристаллизации (Al))– рис.14

- 1. Построить кривую охлаждения сплава B–50%A–20%C (указать реакции) см. рис.2
- 2. Определить температуру солидуса сплава Al-10%Mg-1%Si (обосновать ответ) рис.8
- 3. Определить относительные концентрации Cu, Mg и Mn в сплаве Al–7%Cu–2%Mg–1%Mn и определить его фазовый состав при комнатной температуре (нанести точку состава на диаграмму) рис.15

- 1. Построить кривую охлаждения сплава X (указать реакции) см. рис.3
- 2. Определить фазу, с которой начинается кристаллизация сплава Al–3%Si–4%Mg (обосновать ответ) рис.8
- 3. Определить относительные концентрации Cu, Mg и Mn в сплаве Al–1%Cu–8%Mg–1%Mn и определить его фазовый состав при комнатной температуре (нанести точку состава на диаграмму) рис.15

## Вариант 14

- 1. Построить кривую охлаждения сплава A-10%B-30%C (указать реакции) см. рис.3
- 2. Определить фазу, с которой начинается кристаллизация сплава Al-14%Si-0.5%Mg (обосновать ответ) рис.8
- 3. Определить относительные концентрации Cu, Mg и Mn в сплаве Al–12%Cu–3%Mg–1%Mn (нанести точку состава на диаграмму) и определить, какая фаза кристаллизуется в составе двойной эвтектики (т.е. после первичной кристаллизации (Al)) рис.15

- 1. Оценить фазовый состав сплава A-20%B-20%C при 740 °C (см. рис.1). Ответ обосновать.
- 2. Оценить состав первой капли жидкости при нагреве сплава Al–5,5%Si–3%Fe (обосновать ответ) рис.5
- 3. Определить относительные концентрации Si, Mg и Fe в сплаве Al–6%Si–1,2%Mg–0,8%Fe (нанести точку состава на диаграмму) и определить, какая фаза кристаллизуется в составе двойной эвтектики (т.е. после первичной кристаллизации (Al)) рис.12.

- 1. Построить кривую охлаждения сплава С-10%В-60%А (указать реакции) см. рис.3
- 2. Определить температуру солидуса сплава Al–3%Cu–0,5%Si (обосновать ответ) рис.9
- 3. Определить относительные концентрации Cu, Mg и Fe в сплаве Al–2%Cu–12%Mg–2%Fe и определить его фазовый состав при комнатной температуре (нанести точку состава на диаграмму) рис.16

## Вариант 17

- 1. Построить кривую охлаждения сплава B-10%C-50%A (указать реакции) см. рис.3
- 2. Построить кривую охлаждения сплава Al-10%Si-5%Cu (указать реакции) рис.9
- 3. Определить относительные концентрации Cu, Mg и Fe в сплаве Al–2%Cu–4%Mg–4%Fe и определить его фазовый состав при комнатной температуре (нанести точку состава на диаграмму) рис.16

- 1. Построить кривую охлаждения сплава B-70%F-20%C (указать реакции) см. рис.3
- 2. Построить кривую охлаждения сплава Al-10%Cu-2%Si (указать реакции) puc.9
- 3. Определить относительные концентрации Cu, Mg и Fe в сплаве Al–4%Cu–4%Mg–2%Fe и определить его фазовый состав при комнатной температуре (нанести точку состава на диаграмму) рис.16

- 1. Построить кривую охлаждения сплава W (указать реакции) см. рис.4
- 2. Определить температуру солидуса сплава Al-4%Cu-10%Mg (обосновать ответ) рис.10
- 3. Определить относительные концентрации Si, Mn и Cu в сплаве Al–2%Si–1%Mn–7%Cu и определить его фазовый состав при комнатной температуре (нанести точку состава на диаграмму) рис.17

## Вариант 20

- 1. Построить кривую охлаждения сплава A-5%B-25%C (указать реакции) см. рис.4
- 2. Определить температуру солидуса сплава Al–3%Cu–1%Mg (обосновать ответ) рис.10
- 3. Определить относительные концентрации Si, Mn и Cu в сплаве Al–10%Si–2%Mn–8%Cu и определить его фазовый состав при комнатной температуре (нанести точку состава на диаграмму) рис.17

- 1. Построить кривую охлаждения сплава A-15%B-5%C (указать реакции) см. рис.4
- 2. Определить температуру солидуса сплава Al–4%Cu–16%Mg (обосновать ответ) рис.10
- 3. Определить относительные концентрации Si, Mn и Cu в сплаве Al–6%Si–2%Mn–12%Cu и определить его фазовый состав при комнатной температуре (нанести точку состава на диаграмму) рис.17

- 1. Оценить фазовый состав сплава A-10%B-30%C при 630 °C (см. рис.4). Ответ обосновать.
- 2. Определить температуру солидуса сплава Al–2%Mg–4%Si (обосновать ответ) рис.8.
- 3. Определить относительные концентрации Cu, Mg и Fe в сплаве Al–2%Cu–4%Mg–2%Fe и определить его фазовый состав при комнатной температуре (нанести точку состава на диаграмму) рис.16

## Вариант 23

- 1. Оценить фазовый состав сплава A-40%B-10%C при 530 °C (см. рис.4). Ответ обосновать.
- 2. Определить температуру ликвидуса сплава Al-1%Mg-1%Si (обосновать ответ) puc.8/
- 3. Определить относительные концентрации Cu, Mg и Fe в сплаве Al–12%Cu–3%Mg–1%Fe и определить его фазовый состав при комнатной температуре (нанести точку состава на диаграмму) рис.16

## Вариант 24

- 1. Построить кривую охлаждения сплава А-10%В-60%С (см. рис.4). Указать реакции.
- 2. Оценить фазовый состав сплава Al–18%Mg–2%Si при 460 °C (обосновать ответ) рис.8
- 3. Определить относительные концентрации Si, Mg и Cu в сплаве Al–4%Si–2%Mg–4%Cu (нанести точку состава на диаграмму) и определить, какая фаза кристаллизуется в составе двойной эвтектики (т.е. после первичной кристаллизации (Al))– рис.14

.

- 1. Оценить фазовый состав сплава A-30%B-20%C при 570 °C (см. рис.4). Ответ обосновать.
- 2. Оценить состав первой капли жидкости при нагреве сплава Al–3%Mg–3%Si (обосновать ответ) рис.8.
- 3. Определить относительные концентрации Si, Mg и Cu в сплаве Al–2%Si–2%Mg–16%Cu (нанести точку состава на диаграмму) и определить, какая фаза кристаллизуется в составе двойной эвтектики (т.е. после первичной кристаллизации (Al))– рис.14

## Вариант 26

- 1. Оценить фазовый состав сплава A-15%B-15%C при 690 °C (см. рис.4). Ответ обосновать.
- 2. Определить фазу, с которой начинается кристаллизация сплава Al–8%Si–3%Fe (обосновать ответ) рис.5.
- 3. Определить относительные концентрации Cu, Mg и Fe в сплаве Al–10%Cu–1,5%Mg–0,5%Fe и определить, какая фаза кристаллизуется в составе двойной эвтектики (т.е. после первичной кристаллизации (Al)) рис.16

- 1. Оценить фазовый состав сплава A-10%B-30%C при 1350 °C (см. рис.1). Ответ обосновать.
- 2. Оценить температуру солидуса сплава Al-7,5%Si-2%Fe (обосновать ответ) рис.5.
- 3. Определить относительные концентрации Cu, Mg и Fe в сплаве Al–12%Cu–3%Mg–2%Fe и определить его фазовый состав при комнатной температуре (нанести точку состава на диаграмму) рис.16

- 1. Оценить фазовый состав сплава A-20%B-10%C при 640 °C (см. рис.1). Ответ обосновать.
- 2. Оценить состав первой капли жидкости при нагреве сплава Al–2%Si–3,5%Fe (обосновать ответ) рис.5.
- 3. Определить относительные концентрации Si, Mg и Fe в сплаве Al–16%Si–3%Mg–1%Fe и определить его фазовый состав при комнатной температуре (нанести точку состава на диаграмму) рис.12

## Вариант 29

- 1. Построить кривую охлаждения сплава B-10%C-40%A (указать реакции) см. рис.3
- 2. Определить температуру солидуса сплава Al–4%Si–8%Cu (обосновать ответ) рис.9
- 3. Определить относительные концентрации Cu, Mg и Fe в сплаве Al–5%Cu–4%Mg–1%Fe и определить его фазовый состав при комнатной температуре (нанести точку состава на диаграмму) рис.16

- 1. Оценить фазовый состав сплава A-5%B-35%C при 1250 °C (см. рис.1). Ответ обосновать.
- 2. Оценить состав первой капли жидкости при нагреве сплава Al–5,5%Si–3%Cu (обосновать ответ) рис.9
- 3. Оценить минимальную температуру солидуса в алюминиевых сплавах системы Al–Si–Mg–Fe (см. рис.12). Ответ обосновать.

- 1. Построить кривую охлаждения сплава В–60% А–20% С (указать реакции) – см. рис.1
- 2. Определить фазу, с которой начинается кристаллизация сплава Al–4%Si–2,5%Fe (обосновать ответ) рис.5
- 3. Определить относительные концентрации Si, Mg и Fe в сплаве Al–9%Si–0,8%Mg–0,2%Fe (нанести точку состава на диаграмму) и определить, какая фаза кристаллизуется в составе двойной эвтектики (т.е. после первичной кристаллизации (Al)) рис.12

## Вариант 32

- 1. Оценить фазовый состав сплава A-4%B-16%C при 670 °C (см. рис.2). Ответ обосновать.
- 2. Построить кривую охлаждения сплава Al–2,5%Si–15%Cu (указать реакции) рис.9
- 3. Оценить минимальную температуру солидуса в алюминиевых сплавах системы Al–Cu–Mg–Si (см. рис.14). Ответ обосновать.

- 1. Оценить фазовый состав сплава A-40%B-10%C при 470 °C (см. рис.2). Ответ обосновать.
- 2. Построить кривую охлаждения сплава Al–2,5%Mg–15%Cu (указать реакции) рис.10
- 3. Оценить минимальную температуру солидуса в алюминиевых сплавах системы Al–Cu–Mg–Si (см. рис.14). Ответ обосновать.

- 1. Построить кривую охлаждения сплава B-50%A-20%C (указать реакции) см. рис.2
- 2. Определить температуру солидуса сплава Al–3%Fe–3%Ni (обосновать ответ) рис.7
- 3. Определить относительные концентрации Si, Mg и Fe в сплаве Al–2%Si–2%Mg–10%Cu и определить его фазовый состав при комнатной температуре (нанести точку состава на диаграмму) рис.14

## Вариант 35

- 1. Оценить фазовый состав сплава A-25%B-15%C при 570 °C (см. рис.2). Ответ обосновать.
- 2. Оценить состав первой капли жидкости при нагреве сплава Al-18%Mg-2%Cu (обосновать ответ) рис.10
- 3. Определить относительные концентрации Si, Mn и Cu в сплаве Al–3%Si–1%Mn–4%Cu (нанести точку состава на диаграмму) и определить, какая фаза кристаллизуется в составе двойной эвтектики (т.е. после первичной кристаллизации (Al))– рис.17.

- 1. Оценить фазовый состав сплава A-15%B-25%C при 680 °C (см. рис.2). Ответ обосновать.
- 2. Оценить состав первой капли жидкости при нагреве сплава Al–2%Mg–8%Cu (обосновать ответ) рис.10
- 3. Определить относительные концентрации Si, Ni и Cu в сплаве Al–12%Si– 1%Ni–3%Cu и определить его фазовый состав при комнатной температуре (нанести точку состава на диаграмму) рис.18.

- 1. Оценить фазовый состав сплава A-4%B-16%C при 940 °C (см. рис.3). Ответ обосновать.
- 2. Построить кривую охлаждения сплава Al-1,5%Fe-2%Mn (указать реакции) рис.6
- 3. Определить относительные концентрации Si, Ni и Cu в сплаве Al–8%Si–1%Ni–3%Cu (нанести точку состава на диаграмму) и определить, какая фаза кристаллизуется в составе двойной эвтектики (т.е. после первичной кристаллизации (Al))– рис.18.

#### Вариант 38

- 1. Оценить фазовый состав сплава A-40%B-10%C при 840 °C (см. рис.3). Ответ обосновать.
- 2. Оценить состав первой капли жидкости при нагреве сплава Al–0,5%Fe–2%Mn (обосновать ответ) рис.6
- 3. Определить относительные концентрации Si, Ni и Cu в сплаве Al–2%Si–6%Ni–2%Cu и определить его фазовый состав при комнатной температуре (нанести точку состава на диаграмму) рис.18.

- 1. Оценить фазовый состав сплава A-20%B-20%C при 860 °C (см. рис.3). Ответ обосновать.
- 2. Построить кривую охлаждения сплава Al-1,5%Fe-2%Ni (указать реакции) рис.7
- 3. Определить относительные концентрации Si, Ni и Cu в сплаве Al–2%Si–4%Ni–4%Cu (нанести точку состава на диаграмму) и определить, какая фаза кристаллизуется в составе двойной эвтектики (т.е. после первичной кристаллизации (Al))– рис.18.

- 1. Оценить фазовый состав сплава A-6%B-44%C при 920 °C (см. рис.3). Ответ обосновать.
- 2. Построить кривую охлаждения сплава Al-1,5%Fe-8%Ni (указать реакции) рис.7
- 3. Определить относительные концентрации Si, Ni и Cu в сплаве Al–2%Si–2%Ni–6%Cu (нанести точку состава на диаграмму) и определить, какая фаза кристаллизуется в составе двойной эвтектики (т.е. после первичной кристаллизации (Al))– рис.18.

- 1. Оценить фазовый состав сплава A-48%B-2%C при 760 °C (см. рис.3). Ответ обосновать.
- 2. Построить кривую охлаждения сплава Al–0,5%Fe–4%Ni (указать реакции) рис.7
- 3. Определить относительные концентрации Si, Ni и Cu в сплаве Al–4%Si–4%Ni–12%Cu и определить его фазовый состав при комнатной температуре (нанести точку состава на диаграмму) рис.18.

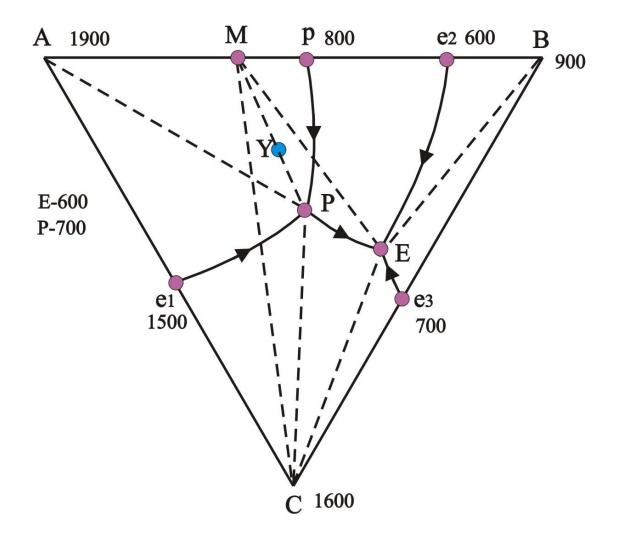



Рис.1. Диаграмма состояния тройной системы A–B–C с нонвариантным перитектическим превращением (1-1)

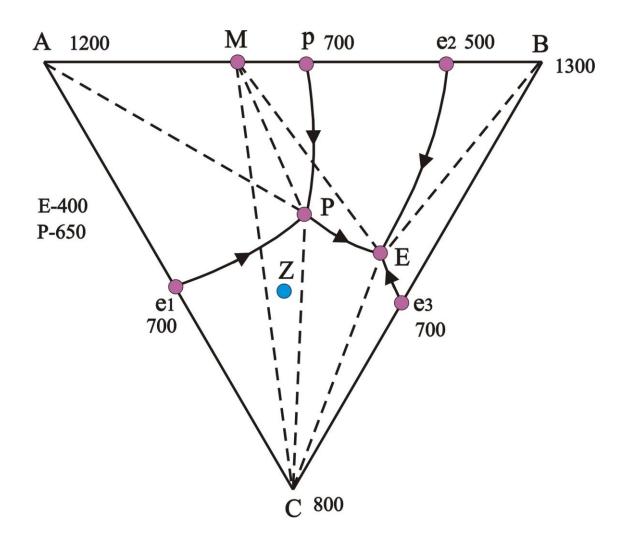



Рис.2. Диаграмма состояния тройной системы A–B–C с нонвариантным перитектическим превращением (1-2)

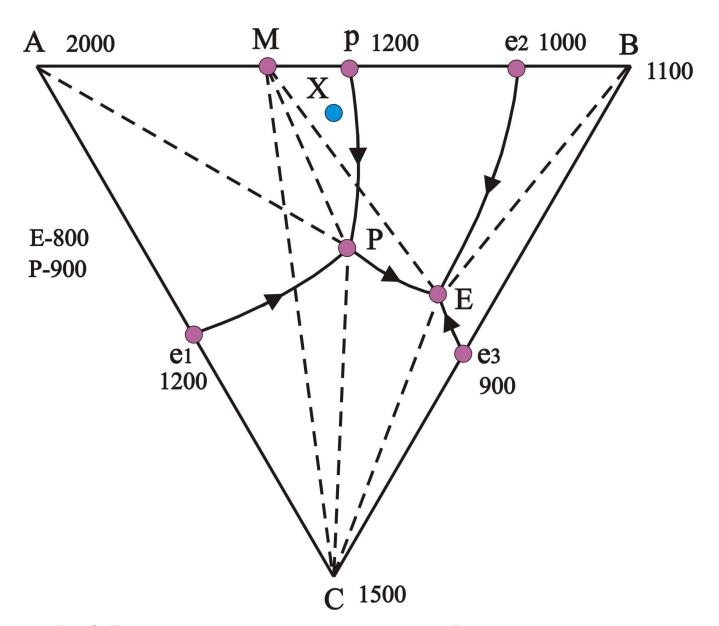



Рис.3. Диаграмма состояния тройной системы A–B–C с нонвариантным перитектическим превращением (1-3)

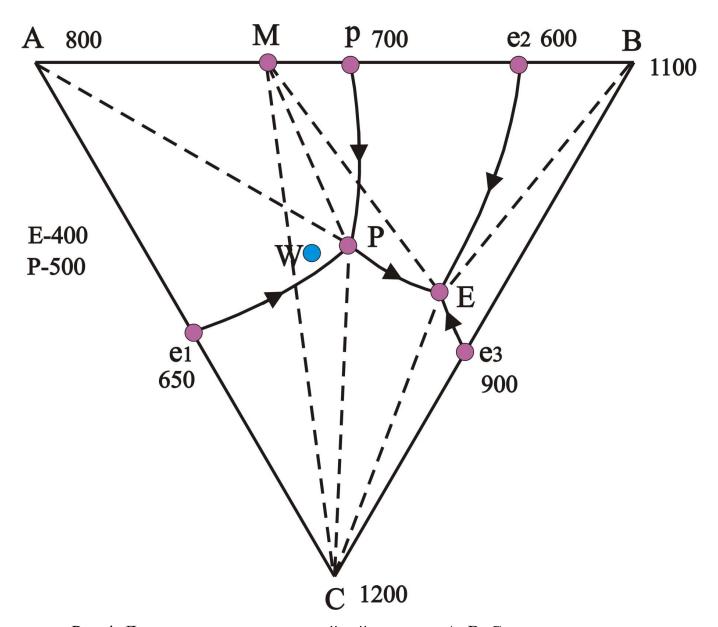



Рис.4. Диаграмма состояния тройной системы A–B–C с нонвариантным перитектическим превращением (1-4)

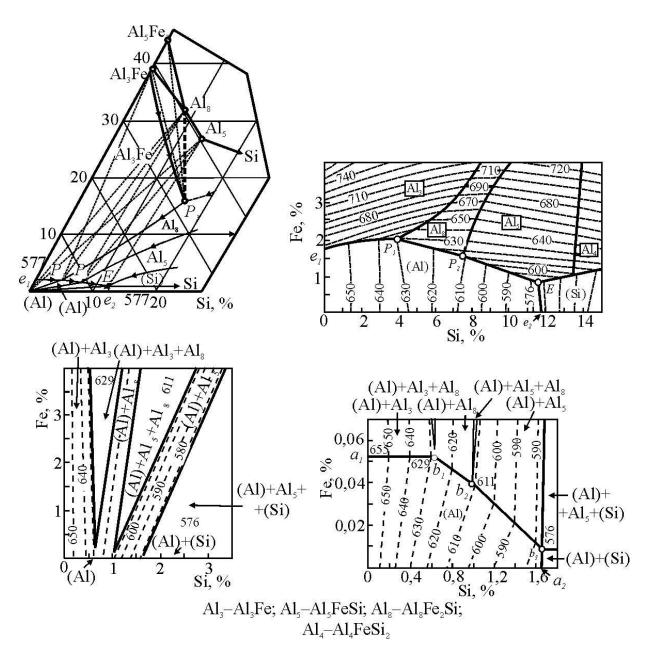



Рис. 5. Диаграмма состояния системы Al–Fe–Si: а) общий вид; б) ликвидус; в, г) солидус.

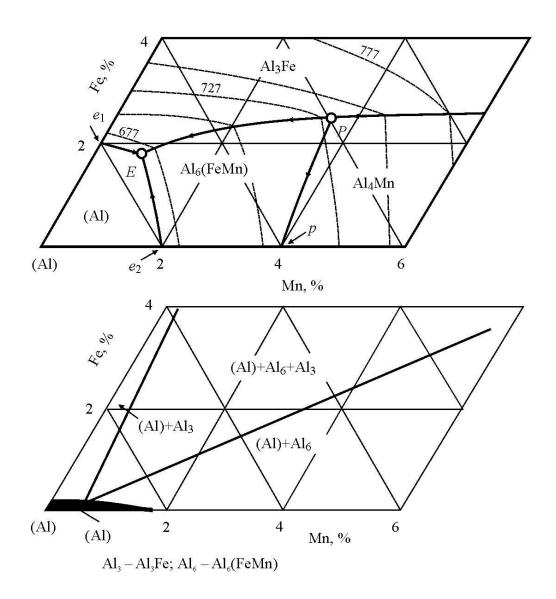



Рис.6. Диаграмма состояния системы Al–Fe–Mn: а) ликвидус, б) изотермическое сечение при 627 °C

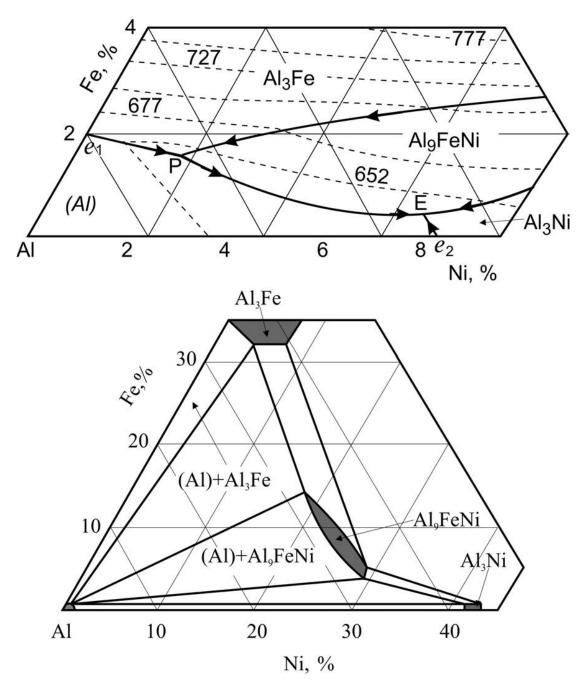



Рис.7. Диаграмма состояния системы Al–Fe–Ni: а) ликвидус; б) солидус

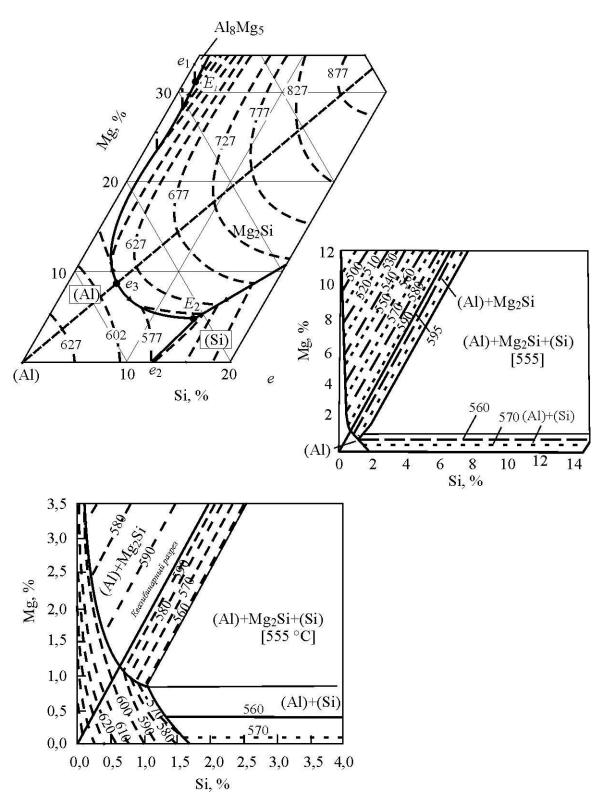
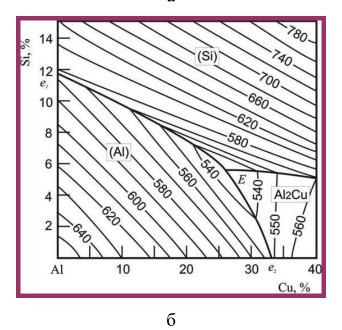
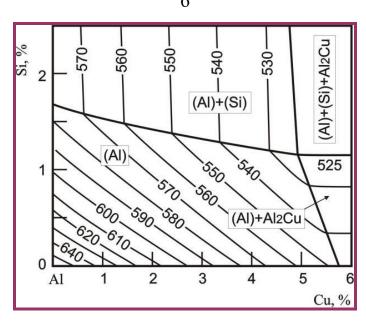





Рис.8. Диаграмма состояния системы Al–Mg–Si: а) ликвидус; б, в) солидус





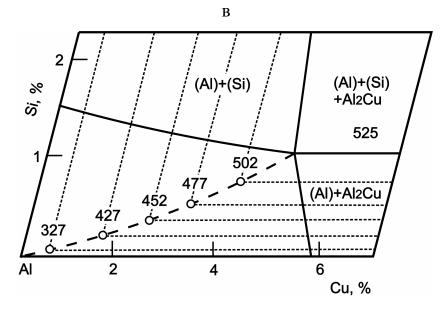
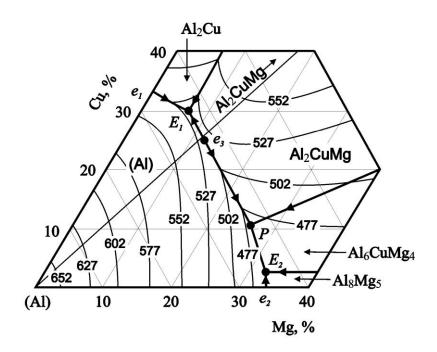




Рис.9. Диаграмма состояния системы Al-Cu-Si:

а) ликвидус; б) солидус; г) сольвус



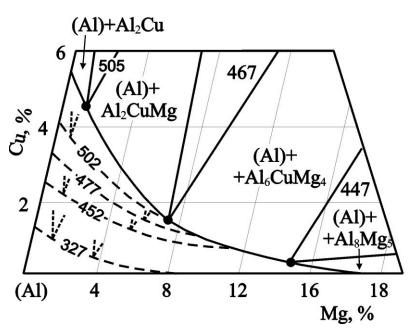



Рис.10. Диаграмма состояния системы Al–Cu–Mg: а) ликвидус; б) солидус

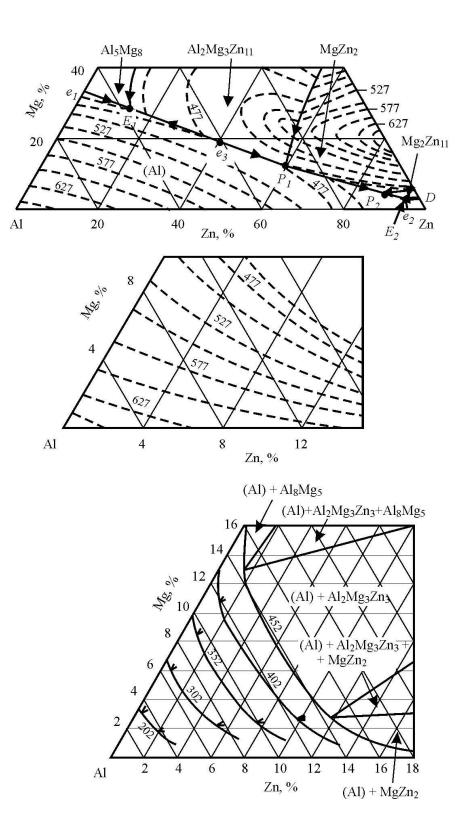



Рис.11. Диаграмма состояния системы Al–Mg–Zn: а) ликвидус; б) солидус, в) сольвус

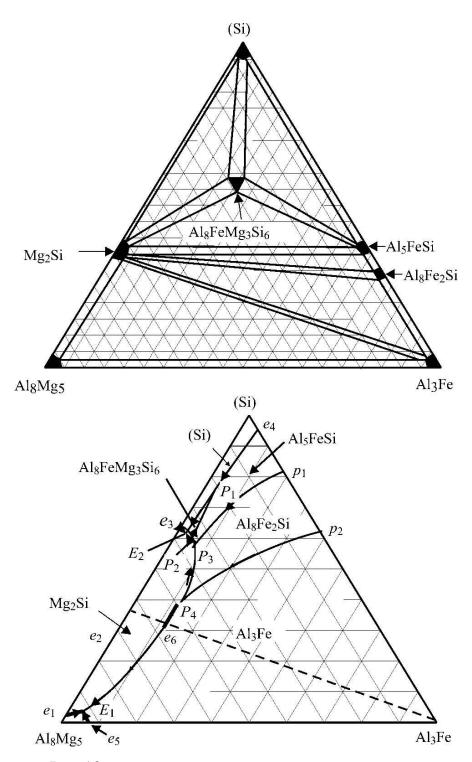



Рис.12. Диаграмма состояния системы Al-Fe-Mg-Si:

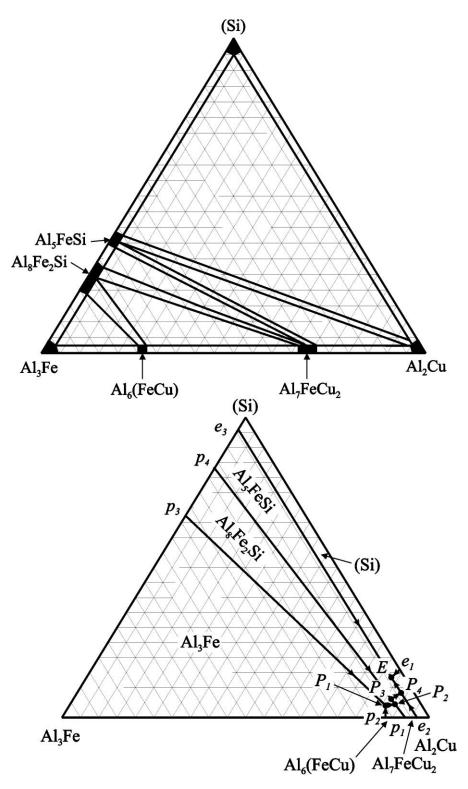



Рис.13. Диаграмма состояния системы Al-Cu-Fe-Si:

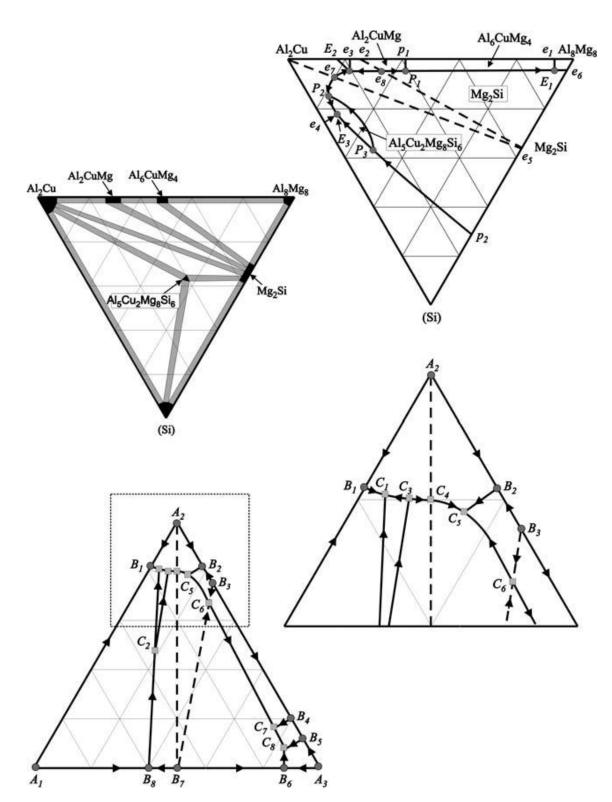



Рис.14. Диаграмма состояния системы Al-Cu-Mg-Si:

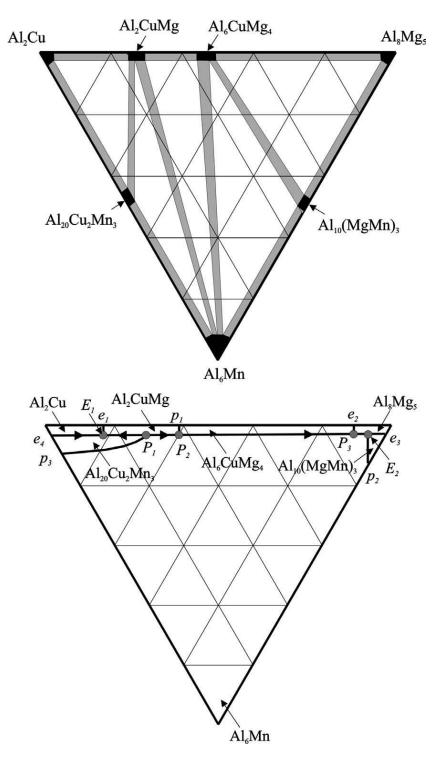



Рис.15 Диаграмма состояния системы Al-Cu-Mg-Mn:

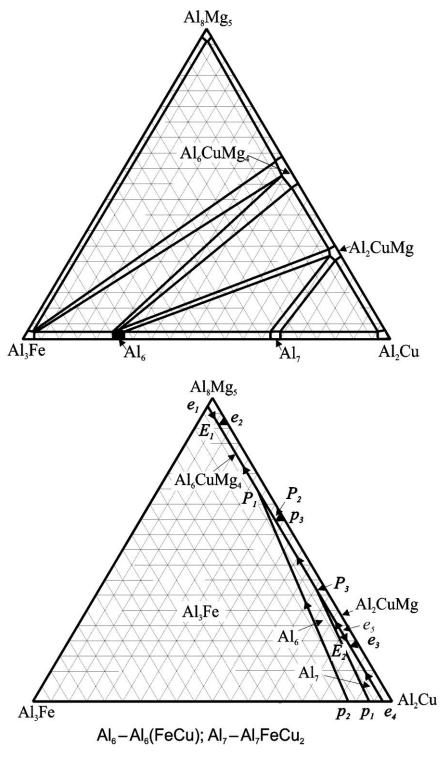



Рис.16. Диаграмма состояния системы Al-Cu-Fe-Mg:

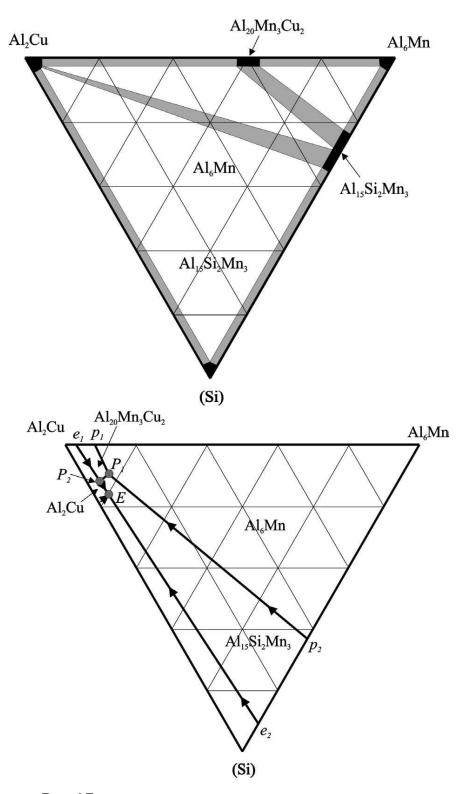



Рис.17. Диаграмма состояния системы Al-Cu-Mn-Si:

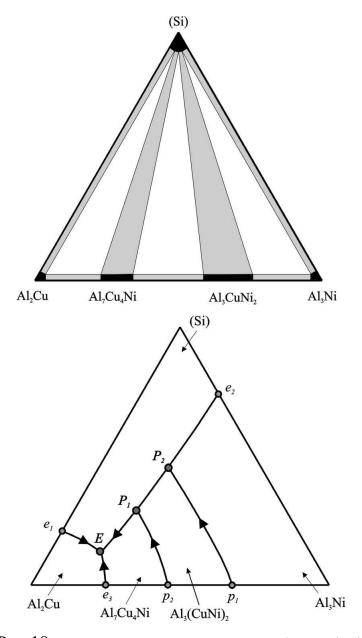



Рис.18. Диаграмма состояния системы Al-Cu-Ni-Si: