
[image: Logo dstu(конечный)]
МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ
РОССИЙСКОЙ ФЕДЕРАЦИИ
ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ
ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ
«ДОНСКОЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»
(ДГТУ)
ТЕХНОЛОГИЧЕСКИЙ ИНСТИТУТ (ФИЛИАЛ) ДГТУ В Г. АЗОВЕ

Кафедра «Вычислительная техника и программирование»

МЕТОДИЧЕСКИЕ УКАЗАНИЯ
к контрольной работе по дисциплине
«Тестирование программного обеспечения»

для обучающихся направления подготовки
09.03.02 Информационные системы и технологии
заочной формы обучения

Составитель:
старший преподаватель
Бабушкина Н.Е.

Азов
2025
Введение

Дисциплина «Тестирование программного обеспечения» входит в модуль профиля дисциплин части, формируемой участниками образовательных отношений направления подготовки бакалавров 09.03.02 Информационные системы и технологии.
Основными задачами, решаемыми в процессе освоения дисциплины, являются:
· обучить основным методам, способам и принципам тестирования программных средств;
· обучить проектированию и выполнению комплексных тестов программных средств;
· обучить проведению испытаний надежности сложных программных средств;
· обучить составлению протоколов и отчетов по проведенному тестированию программных средств.
Контрольная работа выполняется в печатной форме. При оценке контрольной работы учитывается:
1 Правильность оформления контрольной работы.
2 Уровень сформированности компетенций.
3 Уровень усвоения теоретических положений дисциплины, правильность формулировки основных понятий и закономерностей.
4 Уровень знания фактического материала в объеме программы.
5 Логика, структура и грамотность изложения письменной работы.
6 Умение связать теорию с практикой.
7 Умение делать обобщения, выводы.
Методические указания включают методические указания к выполнению практических занятий, рекомендации по выполнению контрольной работы.

МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ВЫПОЛНЕНИЮ КОНТРОЛЬНОЙ РАБОТЫ

После теоретического лекционного курса и практических занятий, каждый студент выполняет индивидуальное задание. Выполнение контрольной работы требует серьезной подготовки. Перед написанием контрольной работы следует обратиться к конспекту лекций по раскрываемым в ней вопросам, ознакомиться с ними в учебной и специальной литературе, в том числе в периодических журнальных изданиях.
Успешное выполнение контрольной работы во многом зависит от правильной организации работы по ее подготовке и написанию, а также от соблюдения основных требований, которые к ней предъявляются.

Структура контрольной работы
Контрольная работа состоит из следующих обязательных разделов.
1. Титульный лист.
2. Основная часть.
3. Список использованной литературы.
4. Приложения.
Титульный лист является первой страницей и оформляется по стандартному образцу.
Основная (теоретическая) часть предполагает изложение сущности вопросов, дополненное, по мере необходимости, примерами из практики; статистическими данными; ссылками на современные нормативно-правовые документы.
Список использованной литературы должен быть оформлен в соответствии с общепринятыми стандартами и содержать не менее 8 – 10 источников. В список включаются только те источники, которые использовались при подготовке контрольной работы и на которые имеются ссылки в основной части.
Выполненная контрольная работа должна быть представлена преподавателю в распечатанном виде и в электронном виде на флешке в день собеседования по контрольной работе.

Требования к оформлению работы
Контрольная работа должна быть оформлена в соответствии с образцом. Она должна содержать титульный лист (Приложение 1), основную часть, список использованной литературы и приложения (если есть необходимость).
Список литературы начинается с нормативно-правовых документов в алфавитном порядке, затем следуют монографии, учебники, в алфавитном порядке авторов или названий работ. Обратите внимание на правильное библиографическое описание используемых источников. Целесообразно воспользоваться библиографическим описанием, приводимым на обороте титульного листа конкретного здания. Затем указываются статьи из периодических изданий: автор, название статьи, название журнала, год, номер. Далее следуют электронные ресурсы. При включении их в список сначала указывается название ресурса, затем – URL.
Работа выполняется на компьютере. Набор текста осуществляется шрифтом Times New Roman, 14 через 1,5 интервала на стандартных листах белой бумаги формата А4 размером 297х210 мм. Поля: верхнее, нижнее – 20 мм., правое – 15 мм., левое – 25 мм. Выравнивание текста – по ширине, абзацный отступ – 1,25 см. Страницы должны быть пронумерованы. Допускается использование в работе только общепринятых аббревиатур, например: ТК РФ – Трудовой кодекс Российской Федерации.

Подготовка к собеседованию по контрольной работе
Выполненная работа сдается студентом на кафедру в установленные кафедрой сроки. Срок проверки работы – 2 недели с момента сдачи на кафедру. Проверенную контрольную работу студент получает также на кафедре. По результатам проверки контрольной работы выставляется оценка «Допущена к собеседованию» или «Не допущена к собеседованию». В случае допуска к собеседованию, которое проводится перед экзаменационной сессией, студенту следует подготовить ответы на замечания и вопросы рецензента, при необходимости – выполнить письменное дополнение к работе. Работы, не допущенные к собеседованию, выполняются повторно с устранением всех отмеченных недостатков и предоставляются на проверку вместе с первой контрольной работой.
В процессе защиты студент должен кратко обосновать актуальность темы, раскрыть цель и основное содержание работы. Особое внимание необходимо уделить сделанным выводам и предложенным в работе рекомендациям. Ответы на вопросы и критические замечания должны быть краткими и касаться только существа дела. В ответах и выводах следует оперировать фактами и практическими результатами, полученными по итогам выполнения работы. Оценка контрольной работы производится на основании определения точности и развернутости ответов студента на вопросы. По результатам собеседования по контрольной работе ставится «зачет» или «незачет». Оценку «незачет» студент получает в том случае, если не владеет материалом, не может правильно ответить на поставленные вопросы и не в состоянии дать объяснения своим письменным ответам. Получив оценку «незачет» студент снова готовится к собеседованию и приходит его повторно. Оценка «зачет» означает допуск к зачету по дисциплине. Консультацию по выполнению контрольной работы и по подготовке к собеседованию по полученным замечаниям можно получить, обратившись к ведущему дисциплину преподавателю.

Выбор варианта контрольной работы

Контрольная работа состоит из 3-х практических заданий.
1-е задание предполагает самостоятельный выбор предметной области приложения, на основе которой будут составлены поля для заполнения значений.
2-е задание предполагает самостоятельный выбор обучакющимся любого web-приложения для тестирования.
3-е задание является общим для всех обучающихся.
Выбор варианта в задании проводится в зависимости от двух последних цифр номера зачетной книжки студента с помощью таблицы 1. В таблице по вертикали размещены цифры от 0 до 9, каждая из которых – предпоследняя цифра зачетной книжки студента. По горизонтали также размещены цифры от 0 до 9, каждая из которых – последняя цифра зачетной книжки. Пересечение вертикальной и горизонтальной линий определяет клетку с номерами вопросов и практических заданий.
Например, две последние цифры номера зачетной книжки 18 (1- по вертикали, 8- по горизонтали). На пересечении горизонтальной и вертикальной линий определяем: – номера теоретических вопросов 28,37,68.

ТАБЛИЦА ВАРИАНТОВ КОНТРОЛЬНОЙ РАБОТЫ

Выбор варианта задания:
	Последняя цифра зачетной книжки

	Предпоследняя цифра зачётной книжки
	
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9

	
	1
	1,31,61
	3,32,62
	35,2,80
	43,4,79
	79,5,63
	19,34,65
	57,6,66
	51,7,67
	28,37,68
	62,18,38

	
	2
	13,39,63
	2,39,64
	36,19,65
	44,20,66
	80,8,45
	20,41,71
	52,21,72
	29,42,73
	71,30,43
	63,44,31

	
	3
	54,1,61
	11,2,67
	3,12,63
	45,4,64
	53,5,65
	21,6,66
	30,7,67
	6,8,68
	72,9,69
	64,10,70

	
	4
	14,11,71
	12,15,7
	37,16,73
	4,17,74
	31,18,75
	22,19,76
	58,20,77
	7,21,78
	73,22,79
	65,23,80

	
	5
	15,24,1
	13,25,2
	38,26,3
	32,27,4
	5,28,52
	23,29,5
	55,30,6
	8,31,7
	74,32,8
	66,33,9

	
	6
	16,34,10
	14,35,11
	33,36,12
	46,37,13
	1,38,14
	6,39,15
	56,40,16
	9,41,17
	75,42,18
	67,43,19

	
	7
	34,44,20
	15,45,21
	39,46,22
	47,48,23
	2,49,24
	24,50,25
	7,51,26
	10,52,27
	76,53,28
	68,54,29

	
	8
	17,55,30
	16,56,31
	40,57,32
	48,58,33
	3,59,34
	25,60,35
	59,61,36
	8,68,37
	77,69,38
	69,70,39

	
	9
	18,71,40
	17,72,41
	41,73,42
	49,74,43
	4,75,44
	26,76,45
	60,77,46
	11,78,47
	9,79,48
	70,80,49

	
	0
	19,1,50
	18,2,49
	42,3,48
	50,4,47
	5,55,75
	27,6,46
	61,7,45
	12,8,44
	78,9,43
	10,60,70

ЗАДАНИЕ КОНТРОЛЬНОЙ РАБОТЫ

Задание 1. «Классы эквивалентности и анализ граничных значений»

Введение
Тестирование программного обеспечения является одним из важнейших этапов жизненного цикла разработки, так как позволяет выявить дефекты в системе до её ввода в эксплуатацию. Одним из эффективных подходов к созданию тестов является использование методов классов эквивалентности и анализа граничных значений.
Метод классов эквивалентности основан на разделении входных данных на группы (классы), в пределах которых предполагается одинаковое поведение системы. Это позволяет сократить количество тестов, сохраняя при этом высокий уровень покрытия. Анализ граничных значений фокусируется на проверке системы в точках, где происходят изменения поведения (границах классов), так как именно на границах наиболее вероятно возникновение ошибок.

Теоретическая часть
Тест-дизайн — это этап процесса тестирования, в ходе которого мы создаем тест-кейсы и намечаем структуру действий, связанных с тестированием проекта. На этом этапе команда определяет, как с минимальными усилиями расширить тестовое покрытие.
Что собой представляют техники тест-дизайна? Это стратегии, которые помогают лучше писать тест-кейсы. Их использование позволяет создавать меньше тестов, обеспечивая при этом широкий охват требований.
Техник тест-дизайна довольно много, но в данной работе мы рассмотрим две из них:
· Эквивалентное разделение
· Анализ граничных значений
Эквивалентное разделение подразумевает разбиение тестовых данных на классы по какому-то признаку. Этот метод имеет смысл только в том случае, если компоненты чем-то похожи и могут войти в общую группу.
Если мы выбираем в качестве техники тест-дизайна эквивалентное разделение, это означает, что мы будем тестировать только несколько значений из каждого класса элементов. Помните, что это не гарантирует отсутствия ошибок в остальных значениях, не охваченных тестами. Мы лишь предполагаем, что использование нескольких элементов из каждой группы будет достаточно показательным.
Пример эквивалентного разделения:
Допустим, есть интернет-магазин, который предлагает разные тарифы на доставку в зависимости от стоимости корзины. Например:
1. Стоимость доставки для заказов на сумму менее 1000₽ составляет 300₽
2. Стоимость доставки для заказов на сумму более 1000₽ составляет 150₽
3. При заказе от 3000₽ доставка бесплатна
У нас имеются следующие ценовые категории для работы:
1. От 1₽ до 1000₽
2. От 1000₽ до 3000₽
3. 3000₽ и выше
РИС
При использовании техники эквивалентного разбиения мы получаем три набора данных для тестирования
От 1₽ до 1000₽:
· Допустимые значения: любая цена в диапазоне от 1 до 999
· Недопустимые значения: любая цена ниже 1 или выше 999
От 1000₽ до 3000₽
· Допустимые значения: любая цена в диапазоне от 1000 до 2999
· Недопустимые значения: любая цена ниже 1000 или выше 2999
3000₽ и выше:
· Допустимые значения: любая цена выше 2999
· Недопустимые значения: любая цена ниже 3000
РИС
Таким образом, мы можем выбрать несколько числе из каждого диапазона цен и предположить, что остальные числа этих диапазонов будут давать такие же результаты.
Анализ граничных значений в чем-то похож на эквивалентное разделение. Можно даже сказать, что оно лежит в основе анализа граничных значений. Но есть некоторые отличия.
При анализе граничных значений мы тоже группируем данные по эквивалентным классам, но проверяем не значения из определенного класса, а граничные значения — те, которые находятся на «границах» классов.
Эта логика применяется для интеграционного тестирования. Мы проверяем отдельные элементы во время юнит-тестирования, а на следующем уровне ошибки, скорее всего, появятся на «стыках» юнитов.
Пример анализа граничных значений
Возьмем предыдущий сценарий с различными тарифами на доставку. У нас те же данные, но другой подход к их использованию. Предполагая, что ошибки наиболее вероятны на границах диапазонов, мы тестируем только «граничные» числа:
От 1₽ до 1000₽:
· Допустимые граничные значения: 1, 2, 999
· Недопустимые граничные значения: 0, 1000, 1001
От 1000₽ до 3000₽
· Допустимые граничные значения: 1000, 1001, 2999
· Недопустимые граничные значения: 999, 3000
3000₽ и выше:
· Допустимые граничные значения: 3000, 3001
Недопустимые граничные значения: 2999

Задание:
Необходимо самостоятельно выбрать предметную область для создания полей при заполнении экранной формы тестовыми значениями. Форма должна содержать не менее 5 полей! Задача состоит в том, чтобы определить классы эквивалентности и граничные значения для каждого из полей. Так же стоит помнить, что классы делятся на позитивные и негативные.

Пример составленной формы:
В таблице 2 приведены требования к системе по сбору пожертвований. Имеется четыре поля, которые должны быть заполнены валидными значениями.
Таблица 2 – Требования к системе
	Поле
	Условия
	Позитивный класс
	Позитивные граничные значения
	Негативный класс
	Негативные граничные значения

	Имя
	2-64 буквы (только латиница, прописные)
	
	
	
	

	Логин
	1-20 символов (допускаются буквы, цифры, специальные символы, без регистра, все раскладки)
	
	
	
	

	День рождения
(ДД.ММ.ГГГГ)
	Только после 01.01.1993 (01.01.1993 включительно)
	
	
	
	

	Пожертвование
	10.00 - 1000.00
	
	
	
	

Порядок выполнения работы
1. Ознакомиться с теоретическими материалами по методам классов эквивалентности и анализа граничных значений
2. Составить таблицу, содержащую поля для заполнения значений пользователем.
3. Определить диапазоны допустимых и недопустимых значений для входных параметров
4. Разделить входные данные на классы эквивалентности. Для каждого класса выберите одно значение, которое будет представлять весь класс в тестировании
5. Определить точки, где поведение системы изменяется (границы диапазонов)
6. Обосновать выбор значений для тестирования. Оформить результат выполненной работы.

Задание 2. «Чек-лист, тест-кейсы»

Введение
Тестирование программного обеспечения — это важный процесс, направленный на выявление дефектов и ошибок в программном продукте с целью обеспечения его качества и соответствия требованиям. Одними из самых распространенных инструментов для систематизации тестирования являются чек-листы и тест-кейсы.
Чек-лист — это простой список, в котором перечислены шаги, действия или аспекты, которые должны быть проверены в процессе тестирования. Он является удобным инструментом для контроля выполнения тестов и обеспечения того, чтобы все критически важные элементы системы были протестированы.
Тест-кейсы — это более детализированные и формализованные тесты, которые содержат описание конкретных шагов, входных данных, ожидаемых результатов и условий выполнения. Тест-кейсы позволяют систематизировать и документировать процесс тестирования, а также обеспечивают возможность повторного использования сценариев для проверки изменений в будущем.

Теоретическая часть
Чек-лист (checklist) представляет собой список проверок, которые планируется провести для оценки качества цифрового продукта. Хотя нет единых жёстких правил по оформлению документа, любой хороший артефакт структурирован и разбит на смысловые блоки и секции.
При создании качественного артефакта необходимо следовать нескольким рекомендациям:
· Придерживаться коротких, но понятных формулировок
· Один пункт списка – это один конкретный шаг
· Убедиться, что результаты оценки программного продукта по каждому из пунктов можно изменить или предельно точно оценить.

Обязательные части чек-листа:
Шапка: содержит информацию о названии приложения, его версии, окружении, на котором проводится тестирование (версия ОС, браузера, эмулятора), ответственного за тестирование, дату тестирования
Тестируемые модули, субмодули: например, регистрация, аутентификация авторизация
Список проверок: они должны отражать основную суть, без лишней детализации
Статус: информация о статусе прохождения проверки - пройдено/не пройдено (passed/failed)

Дополнительные части чек-листа
Ожидаемый результат: то, что мы ожидаем увидеть после запуски проверки согласно требованиям
Типы тестирования: к какому типу относится проверка?
Отчеты о дефекте: ссылки на отчеты о дефектах для прослеживаемости
Заметки: если нужно добавить комментарии
Также у проверок может быть уникальный идентификатор для прослеживаемости.
Фрагмент реального чек-листа представлен на рисунке 1.
[image:]
Рисунок 1 – Чек-лист тестирования модуля регистрации

Тест-кейс (test case) – это детальное описание проверки работоспособности программного решения.
Эти артефакты могут быть двух типов: позитивные или негативные. Для проведения позитивных проверок применяются корректные данные и оценивается ожидаемое поведение ПО. Негативный сценарий используется, когда нужно посмотреть на программу в нестандартных условиях.
В отличие от чек-листа, тест-кейс содержит в себе больше деталей: идентификатор, приоритет, заголовок, шаги и ожидаемые результаты.

Атрибуты тест-кейса
Идентификатор (ID): уникальный номер, необходимый для прослеживаемости. В системах по управлению кейсами (TMS - test management system) проставляется автоматически
Приоритет (Priority): срочность и важность выполнения задачи
Требование (Requirement): ссылка на требование, для проверки которого служит кейс
Модуль (Module): название структурной части, в которой находится предмет тестирования
Заголовок (Title): Отражает суть проверки
Тестовые данные и предусловия (input data, test data, preconditions): информация о данных, которые необходимы для тестирования (данные для ввода, файлы с определенным расширением и размером и т.д.) + специальное состояние системы до начала тестирования (пользователь зарегистрирован, созданы объекты в базе данных и т.д.)
Шаги (Steps): последовательность действий для получения ожидаемого результата
Ожидаемые результаты (Expected results): ссылка на требование, для проверки которого служит кейс. Результат должен быть для каждого шага.
Постусловия (Postconditions): возвращение систему в исходное состояние (удаление данных, пользователей, отключение виртуальной машины и т.д.)

Обязательными атрибутами для тест-кейса являются: идентификатор, приоритет, заголовок, шаги и ожидаемые результаты.
Все остальное используется в зависимости от конкретной задачи.
Фрагмент реального тест-кейса представлен на рисунке 2
[image:]
Рисунок 2 – Тест-кейс тестирования модуля регистрации

Задание
1. Создать чек-лист на проверку функциональности авторизации в любом веб-приложении. Занести чек-лист в любую TMS (Test Management System), например, TestRail или Qase.io и др.
Форма для составления чек листа (и пример) представлена в файле «Составление чек-листа.xlsx».
2. Проведите тестирование по уже составленному тест-кейсу на раздел "Кофе свежей обжарки" (https://obzharcof.ru/main). В столбец Status поставьте соответствующий статус тест-кейсу: passed / failed / skipped / broken. Не забудьте указать комментарий. Тест-кейс содержится в файле 2 «Составление тест кейса.xlsx».
3. Необходимо составить 10 тест-кейсов на разделы "Главная" "О нас" (https://obzharcof.ru/main) по существующему сайту.
4. Необходимо составленные выше в первом задании тест-кейсы перенести в любую TMS (TestRail, Qase.io или др.), провести тестирования функционала (для этого запустите test run). Скриншот пройденного тест рана прикрепите. Сделайте вывод о готовности выпуска фичи. Обоснуйте свой вывод, можно или нет катить данный функционал.

Порядок выполнения работы
1. Ознакомиться с теоретическими материалами по чек-листам и тест-кейсам, их структуре и применению в процессе тестирования
2. Определить ключевые аспекты и функциональные блоки тестируемой системы
3. Создать чек-лист, включающий список важных функций или шагов, которые необходимо проверить в процессе тестирования
4. Убедиться, что чек-лист охватывает все критически важные компоненты системы и может быть использован для проверки полноты тестирования
5. Проверить представленные тест-кейсы.
5. Разработать тест-кейсы для проверки конкретных сценариев использования согласно заданию.
6. Выполнить тест-кейсы, используя тестируемую систему
7. Оформить результат выполненной работы.

Задание 3. «Создание коллекций в Postman»

Введение
Postman — это мощный инструмент для разработки, тестирования и документации API (интерфейсов программирования приложений). Он позволяет автоматизировать процессы тестирования, создавать коллекции запросов, управлять различными типами запросов и интегрировать их с другими инструментами для повышения эффективности работы.
Создание коллекций в Postman является важной частью работы с API, так как позволяет организовать и структурировать тестовые запросы, а также повторно использовать их в различных сценариях. Коллекции представляют собой наборы запросов, которые могут быть сгруппированы по определенным логическим блокам или функциям, что значительно упрощает их поддержку и выполнение.

Теоретическая часть
API (Application Programming Interface) — язык, на котором приложения общаются между собой. С помощью API одно приложение может использовать возможности другого приложения. Например, интернет-магазин может вызывать банковские сервисы для оплаты покупок.
Описание правил такого языка называется спецификацией, а порции данных, которыми обмениваются приложения — сообщениями. Сообщения обычно идут парами запрос-ответ. Например, интернет-магазин отправляет запрос банковскому приложению, передавая ему реквизиты свои и покупателя, а также сумму для оплаты. А банковское приложение возвращает ответ, в котором сообщается, прошла ли оплата успешно.
В отличие от естественных разговорных языков, которые зарождались и развивались стихийно, стандарты взаимодействия приложений с самого начала строго регулируются, и это существенно облегчает жизнь разработчикам.
Одним из таких общепринятых стандартов является REST, что расшифровывается как Representational State Transfer — передача репрезентативного состояния.
Как правило, для взаимодействия между клиентом и сервером достаточно пяти методов:
· GET – получение информации об объекте
· POST – создание нового объекта
· PUT – полная замена объекта на обновленную версию
· PATCH – частичное изменение объекта
· DELETE – удаление информации об объекте
Допустим, ваш интернет-магазин работает со сторонней службой доставки и обращается к ее серверу с помощью методов REST API.
· Чтобы передать в службу доставки информацию о новом заказе, отправляется запрос с методом POST.
· Когда служба доставки соберет все необходимые товары, передаст курьеру, обозначит примерное время доставки и обновит статус заказа - данные на сервер отправятся методом PUT.
· Если служба доставки позволяет отслеживать маршрут движения курьера с заказом на карте, то координаты заказа обновляются методом PATCH.
· Если покупатель хочет проверить текущий статус заказа в личном кабинете, интернет-магазин отправляет на сервер службы доставки запрос GET.
· Если покупатель передумал сразу после отправки заказа, он может отменить его, отправив запрос DELETE — в этом случае в базе данных не сохранится никакой информации о несостоявшейся покупке. Но если интернет-магазин хочет хранить историю заказов, даже отмененных, он будет использовать метод POST.
После выполнения REST API запроса сервер вернет клиентскому приложению ответ. Он включает код ответа, заголовки и тело ответа.
· Как и в запросе, заголовки в ответе также определяют формат передаваемых данных, спецификацию и версию протокола обмена, и другие сведения, которые помогут клиентскому приложению правильно прочитать и понять ответ.
· Тело ответа — это информация, которую запрашивал клиент. Ответ тоже чаще всего передается в формате JSON. Но тело ответа может быть и пустым.
· Код ответа — это признак успешности выполнения запроса. Для унификации используются стандартные коды ответа. Они представляют собой трехзначные числа. Ответы, начинающиеся с цифры 1, обозначаются 1xx, и т.п.
Ответы вида 1хх — информационные.
Ответы вида 2хх говорят об успешном выполнении запроса. Например:
· 200 - ОК. Если клиентом были запрошены какие-либо данные, то они хранятся в заголовке или теле сообщения
· 201 - ОК. Создан новый ресурс.
Ответы вида 3xx обозначают перенаправление или необходимость уточнения. Например:
· 300 - на отправленный запрос есть несколько вариантов ответа. Чтобы получить нужный вариант, клиент должен уточнить запрос.
· 301 - запрашиваемый адрес перемещен.
· 307 - запрашиваемый адрес временно перемещен.
Ответы вида 4хх говорят о том, что при выполнении запроса возникла ошибка, и это ошибка на стороне клиента. Например:
· 400 - Bad Request. Запрос некорректный.
· 401 - Unauthorized. Запрос требует аутентификации пользователя.
· 403 - Forbidden. Доступ к сервису запрещен.
· 404 - Not found. Ресурс не найден.
Ответы вида 5хх говорят об ошибке на стороне сервера. Например:
· 503 - сервис недоступен.
· 504 - таймаут (превышено допустимое время обработки запроса).

Задание
[bookmark: _GoBack]Необходимо протестировать все методы, которые представлены для сервиса https://petstore.swagger.io/ в Postman и создать соответствующие коллекции. Скриншот созданной коллекции прикрепить. Необходимо написать тесты на проверку статус кодов ответов на запросы. Результаты представить в виде скриншотов.

Порядок выполнения работы
1. Ознакомиться с теоретическими материалами по работе с Postman, основам работы с API и структурами запросов.
2. Получить доступ к API, которое будет тестироваться в рамках контрольной работы
3. Открыть Postman и создать новую коллекцию для тестирования выбранного API
4. Добавить в коллекцию первый запрос. Выбрать тип запроса (GET, POST, PUT, DELETE и т.д.), указать URL, параметры запроса, заголовки и тело запроса (если необходимо)
5. Создать переменные в Postman, которые могут быть использованы в различных запросах (например, переменная для базового URL или для авторизационных данных).
6. Оформить результат выполненной работы.

Перечень использованных информационных ресурсов

1. Лабун, Б. Дружеское знакомство с тестированием программ – СПб: БХВ-Петербург, 2022
2. Куликов, С. С. Тестирование программного обеспечения. Базовый курс – 3-е изд. – Минск: Четыре четверти, 2020.
3. Блэк, Р Ключевые процессы тестирования Планирование подготовка проведение совершенствование – Москва: Лори, 2017.
4. Майерс, Г. Баджетт, Т. Сандлер, К. Искусство тестирования программ – Москва: Диалектика, 2020

ПРИЛОЖЕНИЕ 1
[image:]

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ
ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ
«ДОНСКОЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

ТЕХНОЛОГИЧЕСКИЙ ИНСТИТУТ (ФИЛИАЛ) ДГТУ в г. Азове

Факультет «___»
					наименование факультета
Кафедра «___»
					наименование кафедры

КОНТРОЛЬНАЯ РАБОТА

Дисциплина (модуль) «__
 наименование учебной дисциплины (модуля)
___»

Направление подготовки __
код	 наименование направления подготовки
__

Направленность (профиль) ___
Номер зачетной книжки ______________ Номер варианта _________ Группа _____________

Обучающийся			_______________________ _____________________________
 подпись, дата И.О. Фамилия

Контрольную работу проверил _____________________ _________________________________
 подпись, дата 	 должность, И.О. Фамилия

Азов
2025

16
image4.jpeg

image1.jpeg

image2.png
Project

Date
Build
Tester
Environment
Module Submodule %L:r::::
Choose a location Dropdown

Alexpress
06.08.2022
1.0
Artsiom Rusau
Windows 11 Version 22H2

Google Chrome103.0.5060.134 ~ Sarari Firefox
Summary Status Status Status
All countries are loaded passed
User can choose a country failed

The country search is working
Cancel button
Input numbers > error message

Input special characters > error
message

Opera

Status

Edge

Status

image3.png
D |summary Pre-conditions

1 The registration via email by non-existed user 1. The email was created
2. The user is not registered

 Testdata
Email: test@gmail.com

Steps.

1. Go to https:/best.aliexpress.com/
2. Go to Account > Register button
3. Choose a location

4. Input email from test data

5. Input a password (6-20 symbols)
6. Click ‘Create accout’ button

7. Check a mailbox

8. Copy a verification code and filin a verification window
9. Click the 'Verify email’ button

10. Log out

1. Try to log in witn user credentials

 Expected results

1. The main page is opened

2. The registration window is opened

3. The dropdown with location is opened
User can choose a location

4.The email i displayed withoout error
message

5. The password is displayed withoout error
message. Al validations are OK

6. The verification window s dispalyed. The
Verify Email'button is disabled

7. The verification code was received

8. The 'Verify' button is active

9. The user was registered

10. The user is logged out

11. The user is logged in without error
messages

