
Курсовой проект

«Разработка интерактивной 3D-сцены с использованием OpenGL ES 2.0»

Цель: приобрести практические навыки построения 3D-объектов,

применения материалов и текстур, настройки освещения и камеры, а также

научиться использовать нативный код на C++, библиотеки Assimp и GLM.

Задание: Разработать мобильное приложение для Android, отображающее

трёхмерную сцену в соответствии с индивидуальным вариантом задания.

Использовать OpenGL ES 2.0 для рендеринга моделей и шейдеров.

Необходимо использовать текстуры для реалистичного отображения

объектов, модели в формате .obj для представления 3D-объектов и

библиотеку Assimp для их загрузки и обработки. Камера должна вращаться

вокруг сцены. Файлы моделей можно скачать с любого бесплатного

источника, например, https://open3dmodel.com/3d-models/obj/page/3.

Номер варианта соответствует последней цифре Вашего пароля.

Среда разработки: Android Studio.

Язык: Java, С++.

Варианты задания:

Задание 1: "Холодильник".

Реализовать 3D-сцену, изображающую внутреннее пространство

холодильника. На сцене должны быть:

 Статическое изображение холодильной камеры.

 Апельсин (сфера с текстурой).

 Пакет молока (прямоугольная призма с текстурой).

 Сосиски (цилиндр или овал).

 Бутылка (конус + цилиндр).

 Освещение внутри холодильника с легким мерцанием лампочки.

 Дверца как статическая модель.

Задание 2: "Железнодорожный вокзал"

Создать 3D-модель железнодорожного вокзала с поездом и окружением.

На сцене должны быть:

 Статическое здание вокзала с информационным табло и скамейками.

 Поезд из 3 вагонов (платформа, цистерна, крытый вагон) — каждый

вагон как отдельная модель.

 Простая анимация движения поезда (перемещение вдоль платформы).

 Текстуры для здания и вагонов.

 Равномерное освещение и мигание часов.

Задание 3: "Супермаркет"

Реализовать 3D-сцену торгового зала с полками и товарами. На сцене

должны быть:

https://open3dmodel.com/3d-models/obj/page/3

 Несколько стеллажей с разными товарами.

 Коробки (кубы), банки (цилиндры), бутылки (конус+цилиндр),

консервные банки (цилиндры).

 Применение текстур для имитации этикеток и упаковок.

 Верхнее освещение с мерцанием вывески над кассами.

Задание 4: "Городской ландшафт с фонтаном"

Создать 3D-сцену городской площади с фонтаном и другими объектами. На

сцене должны быть:

 Фонтан с анимацией с помощью простого движения частиц.

 Клумбы (плоские объекты с текстурой цветов).

 Декоративные ели (текстурированные пирамиды).

 Здание библиотеки и остановка общественного транспорта.

 Направленный дневной свет.

Задание 5: "Аэропорт"

Создать 3D-сцену аэропорта с терминалом и взлетно-посадочной полосой. На

сцене должны быть:

 Терминал с информационным табло (без обновления).

 Самолёт на взлётной полосе.

 Башня управления и вращающиеся световые маячки на ней.

 Простые фигуры людей (цилиндры или кубы).

 Ночное освещение.

Задание 6: "Магазин бытовой техники"

Реализовать 3D-сцену магазина с электроприборами. На сцене должны быть:

 Полки с разной техникой.

 Телевизоры (прямоугольники с текстурой экрана), микроволновки

(прямоугольники с текстурой), утюги, холодильники (кубы с

текстурами).

 Вращение вентилятора на полке.

 Применение текстур для имитации металла и пластика.

 Освещение с подсветкой от техники.

Задание 7: "Автомобильная парковка"

Создать 3D-сцену многоуровневого паркинга с автомобилями. На сцене

должны быть:

 Парковочные места и машины разных форм: кубы, цилиндры,

эллипсоиды.

 Лестницы и указатели направления (без сложных моделей).

 Перемещение одной машины на свободное место (движение по

прямой).

 Верхнее освещение.

Задание 8: "Игровая площадка"

Реализовать 3D-сцену детской игровой площадки. На сцене должны быть:

 Карусель, качели, горки (простые модели).

 Вращение карусели и колебание качелей.

 Минималистичные фигурки детей (цилиндры с головой).

 Деревья, песочница, скамейки (текстурированные модели).

 Мягкий дневной свет.

Задание 9: "Лаборатория научного оборудования"

Реализовать 3D-сцену интерьера научной лаборатории. На сцене должны

быть:

 Столы с различным оборудованием.

 Микроскопы, колбы, пробирки (цилиндры, конусы, сферы с

текстурами).

 Изменение цвета жидкости в колбе.

 Компьютеры (прямоугольники с текстурой экрана).

 Простое освещение.

Задание 0: "Кафе в стиле ретро"

Создать 3D-сцену интерьера кафе в ретро-стиле. На сцене должны быть:

 Стулья, столы, барная стойка (текстурированные модели).

 Посуда: чашки, тарелки, графины (цилиндры, конусы, кубы с

текстурами).

 Элементы декора: виниловые пластинки, старинные часы, неоновая

вывеска.

 Вращение проигрывателя.

 Мягкий свет от люстры.

Методические указания к выполнению курсового проекта

Прежде чем начать выполнение курсового проекта, необходимо получить

положительную оценку за лабораторные работы, а также изучить лекцию №8.

Затем реализовать задание по варианту, следуя рекомендациям по шагам:

 Шаг 1: Создайте проект в Android Studio.

В процессе создания нового проекта убедитесь, что вы выбрали шаблон Empty

Activity и включили поддержку C++ при помощи флажка Include C++ support.

Это обеспечит автоматическую настройку NDK, CMake и компилятора C++.

Также необходимо скачать и установить последнюю версию Android NDK через

SDK Manager внутри Android Studio и установить CMake (доступен через SDK

Tools в Android Studio).

 Шаг 2: Настройте структуру проекта.

Создайте структуру проекта, включающую Java-часть (для взаимодействия с

Android API) и нативную часть на C++ (для работы с OpenGL). В Java-коде

понадобятся классы MainActivity, MySurface, MyRenderer и LoadLibJNIWrapper.

В папке cpp будут находиться все нативные файлы: native-lib.cpp, Model.cpp/h,

Mesh.cpp/h, Shader.cpp/h, model_loading.cpp/h, а также сторонние библиотеки

Assimp и GLM. Правильно настройте CMakeLists.txt, чтобы он включал все

необходимые модули и пути к библиотекам. В нём нужно указать все исходные

файлы, пути к заголовочным файлам сторонних библиотек, а также зависимости,

необходимые для работы OpenGL ES 2.0.

 Шаг 3: Подключите библиотеку GLM.

Библиотека GLM используется для работы с матрицами, векторами и

преобразованиями в 3D-пространстве. Скачайте GLM с официального сайта

(https://github.com/g-truc/glm/tags) и разархивируйте ее в каталог «dependencies»,

добавьте путь к заголовочным файлам в CMakeLists.txt. Эта библиотека не

требует компиляции — она полностью состоит из заголовочных файлов и готова

к использованию сразу после подключения.

 Шаг 4: Подключите библиотеку Assimp.

Assimp — это мощная библиотека для загрузки 3D-моделей различных

форматов, в том числе .obj. Чтобы её использовать, Вам нужно скачать исходный

код Assimp (https://github.com/assimp/assimp/releases), собрать его под Android с

помощью CMake и скопировать в папку app/src/main/cpp/Assimp. Скопируйте

папку assimp в корень вашего Android-проекта, создайте папку build для сборки

(<YourProjectRoot>/app/src/main/cpp/assimp/build), чтобы CMake мог туда

поместить результаты сборки и запустите CMake с указанием Android NDK и

целевой архитектуры. Пример для ABI armeabi-v7a (ARMv7):

cmake -

DCMAKE_TOOLCHAIN_FILE=$ANDROID_NDK/build/cmake/android.toolchain.c

make \

-DANDROID_ABI="armeabi-v7a" \

-DANDROID_PLATFORM=android-21 \

-DBUILD_SHARED_LIBS=OFF \

-DASSIMP_BUILD_ASSIMP_TOOLS=OFF \

-DASSIMP_BUILD_TESTS=OFF \

-DASSIMP_BUILD_ZLIB=ON \

..

Здесь $ANDROID_NDK – это полный путь к вашему Android NDK (например,

/Users/yourname/Library/Android/sdk/ndk/25.2.9539766).

Если вы хотите собрать под другую архитектуру, замените armeabi-v7a на:

arm64-v8a, x86_64 или x86 (для эмуляторов).

После успешной конфигурации запустите сборку (для этого используется

команда make в командной строке), и в результате будет создана статическая

библиотека libassimp.a (после завершения сборки она должна появиться в одной

из подпапок <YourProjectRoot>/assimp/build/code/libassimp.a), которую нужно

скопировать в проект (<YourProjectRoot>/app/src/main/cpp/libs/<ABI>/libassimp.a,

где <ABI> — это armeabi-v7a, arm64-v8a, x86_64 и т. д.). Заголовочные файлы

библиотеки переместите также в свой проект

(<YourProjectRoot>/app/src/main/cpp/include/assimp). Вы можете собрать Assimp

для нескольких ABI и положить соответствующие .a файлы в нужные папки в

https://github.com/assimp/assimp/releases

проекте. Добавьте путь к заголовкам и объектной библиотеке в CMakeLists.txt,

чтобы ваш проект мог использовать функционал Assimp для парсинга 3D-

моделей:

Добавляем подкаталог Assimp

add_subdirectory(${CMAKE_SOURCE_DIR}/src/main/cpp/assimp)

Указываем, где находятся заголовочные файлы

include_directories(${CMAKE_SOURCE_DIR}/src/main/cpp/assimp/include)

Добавляем Assimp в список линковки

target_link_libraries(

 native-lib # имя вашей нативной библиотеки

 assimp # добавляем Assimp

 ${log-lib}

 ${GL20}

 glm

)

Теперь вы можете использовать Assimp в вашем C++ коде:

#include <assimp/Importer.hpp>

#include <assimp/scene.h>

#include <assimp/postprocess.h>

Например, чтобы загрузить модель:

Assimp::Importer importer;

const aiScene* scene = importer.ReadFile("model.obj", aiProcess_Triangulate |

aiProcess_FlipUVs);

if (!scene) {

 // Обработка ошибки

}

Соберите проект и запустите его на эмуляторе или реальном устройстве. Если

ошибок компиляции нет, Assimp успешно интегрирован в проект и готов к

использованию.

 Шаг 5: Создайте Java-классы для OpenGL ES.

Создайте основные Java-классы: MainActivity, MySurface, MyRenderer и

LoadLibJNIWrapper. MainActivity создаёт экземпляр MySurface, который

использует MyRenderer для рендеринга. MyRenderer отвечает за инициализацию

OpenGL, загрузку текстур и передачу путей к 3D-файлам в C++.

LoadLibJNIWrapper содержит нативные методы, вызываемые из Java и связанные

с C++.

 Шаг 6: Реализуйте шейдеры и программу шейдеров.

Создайте вершинный и фрагментный шейдеры на языке GLSL. Вершинный

шейдер будет обрабатывать положение вершин и передавать текстурные

координаты, а фрагментный — применять текстуру к поверхности модели.

Объедините эти шейдеры в одну программу, которую вы будете использовать в

OpenGL.

 Шаг 7: Загрузите текстуры для моделей.

Подготовьте текстуры в формате .png для каждого объекта сцены и поместите их

в папку res/drawable. В методе onSurfaceChanged класса MyRenderer загружайте

текстуры с помощью GLUtils.texImage2D() и применяйте к ним стандартные

параметры: фильтрация, повторение, генерация mipmaps. Текстуры

привязываются к текстурным блокам, а затем передаются в шейдеры для

использования при отрисовке моделей.

 Шаг 8: Загрузите 3D-модели в формате .obj.

Поместите ваши 3D-модели в формате .obj вместе с соответствующими .mtl

файлами и текстурами в папку assets проекта. Файлы .mtl — это файлы

материалов, которые работают вместе с .obj моделями, чтобы задать их внешний

вид: цвета, текстуры, отражения и прочие поверхностные свойства. Через JNI

передавайте пути к этим файлам в нативный код. Используйте библиотеку

Assimp для парсинга файлов и извлечения данных о вершинах, нормалях и

текстурных координатах. Сохраните каждую модель как набор мешей (Mesh)

внутри класса Model. Меш – это минимальная единица модели, которая

содержит вершины с координатами, текстурными данными и нормалями,

индексы для построения полигонов, а также материал, определяющий её

внешний вид.

 Шаг 9: Вычислите матрицы преобразования.

Используя библиотеку GLM, вычислите три основные матрицы: модель, вид и

проекцию. Матрица модели определяет положение и ориентацию объекта,

видовая матрица задаёт точку зрения камеры, а проекционная — перспективу.

Перемножьте их, чтобы получить матрицу MVP (Model-View-Projection),

которая передаётся в шейдеры. Каждый объект должен иметь свою матрицу

модели, чтобы правильно размещаться в пространстве.

 Шаг 10: Организуйте рендеринг кадра.

В методе onDrawFrame класса MyRenderer очистите экран и глубинный буфер,

активируйте текстурные блоки и передайте текущую матрицу MVP в шейдер.

Для каждой модели вызывайте соответствующий нативный метод

on_draw_frame, где будет происходить рисование с использованием VBO и EBO.

Реализуйте анимацию камеры вокруг сцены, изменяя угол поворота камеры на

каждом кадре и обновляя видовую матрицу. Таким образом, пользователь

сможет рассмотреть сцену со всех сторон.

Далее рассмотрим пример реализации 3D-сцены, изображающей стол, на

котором лежат различные фрукты и овощи, а также стоит стакан с напитком.

1. Точкой входа в приложение является файл MainActivity.java. Он создаёт

главное окно и устанавливает OpenGL-поверхность для отрисовки 3D-сцены.

Здесь загружается нативная библиотека opengl_kurs_modeld, которая

содержит всю логику рендеринга на C++. В методе onCreate создаётся

экземпляр MySurface, который является настраиваемой OpenGL-

поверхностью, и устанавливается как контентное представление активности.

Этот класс управляет жизненным циклом приложения и запускает OpenGL ES

рендеринг.
package com.example.opengl_kurs_model;

import androidx.appcompat.app.AppCompatActivity;

import android.os.Bundle;

public class MainActivity extends AppCompatActivity {

 static {

 System.loadLibrary("opengl_kurs_modeld"); // Загрузка нативной библиотеки

 }

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 MySurface surface = new MySurface(this); // Создание поверхности OpenGL

 setContentView(surface); // Установка как основного интерфейса

 }

}

2. Файл MySurface.java настраивает OpenGL ES 2.0 в Android и связывает Java-

часть с нативным кодом через JNI. Здесь указывается версия OpenGL (2.0),

создаётся пользовательский рендерер MyRenderer, а также устанавливается

режим постоянного рендеринга (RENDERMODE_CONTINUOUSLY). Это

позволяет приложению обновлять сцену на каждом кадре, создавая плавную

анимацию камеры вокруг объектов.
package com.example.opengl_kurs_model;

import android.content.Context;

import android.opengl.GLSurfaceView;

public class MySurface extends GLSurfaceView {

 private MyRenderer renderer;

 public MySurface(Context c) {

 super(c);

 setEGLContextClientVersion(2); // Установка версии OpenGL ES

 renderer = new MyRenderer(c);

 setRenderer(renderer); // Привязка рендерера

 setRenderMode(GLSurfaceView.RENDERMODE_CONTINUOUSLY); // Рендеринг на каждом

кадре

 }

}

3. Файл MyRenderer.java содержит класс MyRenderer, который реализует

интерфейс GLSurfaceView.Renderer и отвечает за подготовку текстур и вызов

нативных функций. Метод onSurfaceCreated вызывает нативный код для

создания шейдера. В onSurfaceChanged загружаются текстуры из ресурсов

(R.drawable.*) и копируются модели .obj из assets во временные файлы, чтобы

их можно было передать в C++. Метод onDrawFrame очищает экран и

вызывает отрисовку всех моделей, применяя соответствующие текстуры.
package com.example.opengl_kurs_model;

import android.content.Context;

import android.graphics.Bitmap;

import android.graphics.BitmapFactory;

import android.opengl.GLES20;

import android.opengl.GLUtils;

import android.util.Log;

import java.io.File;

import java.io.FileOutputStream;

import java.io.InputStream;

import javax.microedition.khronos.egl.EGLConfig;

import javax.microedition.khronos.opengles.GL10;

public class MyRenderer implements GLSurfaceView.Renderer {

 // Контекст приложения для доступа к ресурсам

 private Context context;

 // Дескриптор программы шейдера (не используется напрямую, но может быть полезен в будущем)

 private int program_Handle;

 // Общее количество объектов на сцене

 private int countObject = 6;

 // Массив идентификаторов текстур OpenGL

 private int[] textureName = new int[countObject];

 // ID ресурсов текстур в Android (R.drawable.*), соответствующих каждому объекту

 private int[] resourceID = {

 R.drawable.watermelon,

 R.drawable.apple,

 R.drawable.bannana,

 R.drawable.orange,

 R.drawable.kitchen_table__,

 R.drawable.coffee

 };

 // Имена файлов 3D-моделей формата .obj

 private String[] objName = {

 "SMK_JJ0KQAO2_Watermelon_2.91.obj",

 "Apple.obj", "Banana.obj",

 "Orange.obj", "Kitchen_Table_.obj",

 "MugL1.obj"

 };

 // Массив путей к локально скопированным .obj файлам

 private String[] objPath = new String[countObject];

 public MyRenderer(Context c) {

 this.context = c; // Сохраняем контекст для дальнейшего использования

 }

 @Override

 public void onSurfaceCreated(GL10 gl, EGLConfig eglConfig) {

 // Вызываем нативную функцию, которая создаёт и компилирует шейдеры

 String str = LoadLibJNIWrapper.on_surface_created();

 Log.i("TagShaderError", str); // Логируем возможные ошибки шейдера

 }

 @Override

 public void onSurfaceChanged(GL10 gl, int width, int height) {

 // Цикл создания текстур для всех объектов

 for (int i = 0; i < countObject; ++i) {

 // Генерация нового текстурного объекта

 int[] names = new int[1];

 GLES20.glGenTextures(1, names, 0);

 this.textureName[i] = names[0]; // Сохраняем его дескриптор

 // Привязываем текстуру к типу GL_TEXTURE_2D

 GLES20.glBindTexture(GLES20.GL_TEXTURE_2D, textureName[i]);

 // Устанавливаем параметры фильтрации текстуры

 GLES20.glTexParameteri(GLES20.GL_TEXTURE_2D, GLES20.GL_TEXTURE_MIN_FILTER,

GLES20.GL_LINEAR_MIPMAP_LINEAR);

 GLES20.glTexParameteri(GLES20.GL_TEXTURE_2D, GLES20.GL_TEXTURE_MAG_FILTER,

GLES20.GL_LINEAR);

 // Повтор текстуры по осям S и T (горизонталь и вертикаль)

 GLES20.glTexParameteri(GLES20.GL_TEXTURE_2D, GLES20.GL_TEXTURE_WRAP_S,

GLES20.GL_REPEAT);

 GLES20.glTexParameteri(GLES20.GL_TEXTURE_2D, GLES20.GL_TEXTURE_WRAP_T,

GLES20.GL_REPEAT);

 // Загрузка Bitmap из ресурса

 Bitmap bitmap = BitmapFactory.decodeResource(this.context.getResources(), this.resourceID[i]);

 // Передача текстуры в OpenGL

 GLUtils.texImage2D(GLES20.GL_TEXTURE_2D, 0, bitmap, 0);

 // Освобождаем память после загрузки

 bitmap.recycle();

 // Создаём mipmap-уровни для улучшения качества текстурирования

 GLES20.glGenerateMipmap(GLES20.GL_TEXTURE_2D);

 }

 // Подготавливаем временные файлы для хранения .obj моделей

 for (int i = 0; i < countObject; ++i) {

 File file = new File(context.getCacheDir() + "/" + objName[i]);

 if (!file.exists()) try {

 // Открываем модель из assets

 InputStream is = context.getAssets().open(objName[i]);

 // Читаем содержимое файла в буфер

 int size = is.available();

 byte[] buffer = new byte[size];

 is.read(buffer);

 is.close();

 // Записываем буфер во временный файл

 FileOutputStream fos = new FileOutputStream(file);

 fos.write(buffer);

 fos.close();

 } catch (Exception e) {

 // Если произошла ошибка — выкидываем RuntimeException

 throw new RuntimeException(e);

 }

 // Сохраняем путь к созданному файлу

 objPath[i] = file.getPath();

 }

 // Передаём в C++ ширину, высоту экрана и пути к .obj файлам

 String str = LoadLibJNIWrapper.on_surface_changed(width, height, objPath);

 // Логируем результат выполнения on_surface_changed

 Log.i("TagError", str);

 }

 @Override

 public void onDrawFrame(GL10 gl) {

 // Устанавливаем цвет очистки экрана (черный)

 GLES20.glClearColor(0.0f, 0.0f, 0.0f, 0.0f);

 // Очищаем цветовой и глубинный буферы перед новым кадром

 GLES20.glClear(GLES20.GL_COLOR_BUFFER_BIT | GLES20.GL_DEPTH_BUFFER_BIT);

 // Цикл отрисовки каждого объекта сцены

 for (int i = 0; i < countObject; ++i) {

 // Активируем нужный текстурный блок

 if (i == 0) {

 GLES20.glActiveTexture(GLES20.GL_TEXTURE0);

 } else {

 GLES20.glActiveTexture(GLES20.GL_TEXTURE0 + i);

 }

 // Привязываем ранее загруженную текстуру к текущему блоку

 GLES20.glBindTexture(GLES20.GL_TEXTURE_2D, this.textureName[i]);

 // Вызываем нативную функцию для отрисовки текущего объекта

 LoadLibJNIWrapper.on_draw_frame(i);

 }

 }

}
4. Файл LoadLibJNIWrapper.java содержит класс LoadLibJNIWrapper с

нативными методами, которые позволяют Java взаимодействовать с C++

кодом через JNI. Здесь объявляются методы on_surface_created,

on_surface_changed, on_draw_frame, которые вызываются из MyRenderer. Они

используются для инициализации OpenGL ES, передачи данных о моделях и

выполнения рендеринга.
package com.example.opengl_kurs_model;

public class LoadLibJNIWrapper {

 static {

 System.loadLibrary("opengl_kurs_modeld");

 }

 public static native String on_surface_created(); // Нативный метод создания шейдера

 public static native String on_surface_changed(int width, int height, String[] paths); // Настройка

сцены

 public static native void on_draw_frame(int index); // Рендеринг кадра

}

5. Точкой входа в нативный код является файл native-lib.cpp, содержащий

реализацию JNI-функций, через которые Java вызывает C++. Функции

Java_com_example_opengl_1kurs_1model_LoadLibJNIWrapper_on_1surface_1cr

eated и другие используются для связи Java и C++. Эти функции вызывают

соответствующие функции из model_loading.h/.cpp.
#include <jni.h>

#include <string>

#include "model_loading.h"

extern "C" JNIEXPORT jstring JNICALL

Java_com_example_opengl_1kurs_1model_MainActivity_stringFromJNI(

 JNIEnv* env, jobject /* this */) {

 std::string hello = "Hello from C++";

 return env->NewStringUTF(hello.c_str());

}

extern "C" JNIEXPORT jstring JNICALL

Java_com_example_opengl_1kurs_1model_LoadLibJNIWrapper_on_1surface_1created(

 JNIEnv* env, jclass clazz) {

 std::string str = on_surface_created(); // Вызов нативной функции создания шейдера

 return env->NewStringUTF(str.c_str());

}

std::vector<const char*> nativeMas;

extern "C" JNIEXPORT jstring JNICALL

Java_com_example_opengl_1kurs_1model_LoadLibJNIWrapper_on_1surface_1changed(

 JNIEnv* env, jclass clazz, jint width, jint height, jobjectArray paths) {

 jint count = env->GetArrayLength(paths);

 for (int i = 0; i < count; ++i) {

 auto elem = (jstring)env->GetObjectArrayElement(paths, i);

 const char* str = env->GetStringUTFChars(elem, nullptr);

 nativeMas.push_back(str); // Сохранение путей к .obj файлам

 }

 std::string str = on_surface_changed(width, height, nativeMas); // Инициализация сцены

 return env->NewStringUTF(str.c_str());

}

extern "C" JNIEXPORT void JNICALL

Java_com_example_opengl_1kurs_1model_LoadLibJNIWrapper_on_1draw_1frame(

 JNIEnv* env, jclass clazz, jint index) {

 on_draw_frame(index); // Рендеринг кадра

}

6. В файле model_loading.h объявляются глобальные переменные, структуры и

функции, используемые в model_loading.cpp. Определяется шейдер, матрица

проекции, вектор моделей и т. д. Также объявляются внешние функции

on_surface_created, on_surface_changed и on_draw_frame, которые вызываются

из Java.
#pragma once

#include <GLES2/gl2.h>

#include <GLES2/gl2ext.h>

#include <GLES2/gl2platform.h>

#include <android/asset_manager.h>

#include <android/asset_manager_jni.h>

#include "Model.h"

std::string on_surface_created();

std::string on_surface_changed(int width, int height, std::vector<const char*> path);

void on_draw_frame(int index);

7. Файл model_loading.cpp содержит главные функции управления сценой:

создание шейдера, инициализация матриц преобразования, загрузка моделей

и анимация камеры. Здесь определён статический код вершинного и

фрагментного шейдера. Также вычисляются матрицы MVP, задаются

начальные позиции и масштабы моделей. В on_draw_frame реализуется

движение камеры по окружности вокруг сцены.
#include "model_loading.h"

static const char vertex_shader[] =

 "precision mediump float;"

 "uniform mat4 u_mvpMatrix;"

 "attribute vec3 a_Position;"

 "attribute vec2 a_TextureCoordinates;"

 "varying vec2 v_TextureCoordinates;"

 "void main(){"

 "v_TextureCoordinates = a_TextureCoordinates;"

 "gl_Position = u_mvpMatrix * vec4(a_Position, 1.0);"

 "}";

static const char fragment_shader[] =

 "precision mediump float;"

 "uniform sampler2D u_TextureUnit;"

 "varying vec2 v_TextureCoordinates;"

 "void main(){"

 "gl_FragColor = texture2D(u_TextureUnit, v_TextureCoordinates);"

 "}";

Shader mainShader;

int masN;

std::vector<Model> modelMas;

std::vector<glm::mat4> arrayMatrixModel;

glm::mat4 mainProjection;

double angle = 0;

std::string on_surface_created() {

 glEnable(GL_DEPTH_TEST); // Включение теста глубины

 Shader shader(vertex_shader, fragment_shader);

 mainShader = shader;

 mainShader.createProgram(); // Компиляция шейдера

 return mainShader.strError;

}

std::string on_surface_changed(int width, int height, std::vector<const char*> path) {

 std::string strSum;

 glm::mat4 view, model;

 std::vector<float> objPos = {

 -0.2, -0.23, -0.15, // Арбуз

 -0.35, -0.12, 0.2, // Яблоко

 0.3, -0.2, 0.0, // Банан

 0.0, -0.12, 0.2, // Апельсин

 0.0, -1.5, 0.0, // Стол

 0.6, -0.23, 0.1 // Чашка

 };

 mainProjection = glm::perspective(glm::radians((float)45.0f), (float)width / (float)height, (float)0.1f,

(float)100.0f); // Перспективная проекция

 view = glm::mat4(1.0f);

 view = glm::translate(view, glm::vec3(0.0f, 0.0f, -3.0f)); // Позиция камеры

 masN = (int)path.size();

 for (int i = 0, iPos = 0; i < masN; ++i) {

 std::string pStr = path.at(i);

 std::string subStr = pStr.substr(pStr.rfind('/') + 1);

 strSum += subStr;

 strSum += "\n";

 model = glm::mat4(1.0f);

 model = glm::translate(model, glm::vec3(objPos.at(iPos), objPos.at(iPos + 1), objPos.at(iPos + 2)));

 if (subStr == "SMK_JJ0KQAO2_Watermelon_2.91.obj" || subStr == "Kitchen_Table_.obj") {

 model = glm::scale(model, glm::vec3(1.5f, 1.5f, 1.5f));

 } else if (subStr == "Apple.obj" || subStr == "Banana.obj" || subStr == "Orange.obj") {

 if (subStr == "Banana.obj") {

 model = glm::rotate(model, glm::radians(-90.0f), glm::vec3(1.0f, 0.0f, 0.0f));

 }

 model = glm::scale(model, glm::vec3(0.003f, 0.003f, 0.003f));

 } else if (subStr == "MugL1.obj") {

 model = glm::rotate(model, glm::radians(-90.0f), glm::vec3(1.0f, 0.0f, 0.0f));

 model = glm::scale(model, glm::vec3(0.05f, 0.05f, 0.05f));

 } else {

 model = glm::scale(model, glm::vec3(0.1f, 0.1f, 0.1f));

 }

 arrayMatrixModel.push_back(model);

 glm::mat4 mvpMatrix = mainProjection * view * model;

 Model model1(path.at(i), mvpMatrix, width, height, mainShader);

 modelMas.push_back(model1);

 iPos += 3;

 }

 return strSum;

}

void on_draw_frame(int index) {

 glm::mat4 view = glm::mat4(1.0f);

 float radius = 4.0f;

 auto camX = (float)(sin(angle) * radius);

 auto camZ = (float)(cos(angle) * radius);

 view = glm::lookAt(glm::vec3(camX, 2.0f, camZ),

 glm::vec3(0.0f, 0.0f, 0.0f),

 glm::vec3(0.0f, 1.0f, 0.0f)); // Камера вращается вокруг сцены

 glm::mat4 mvpMatrix = mainProjection * view * arrayMatrixModel.at(index);

 modelMas.at(index).setMVP(mvpMatrix);

 modelMas.at(index).Draw(mainShader, index);

 if (angle >= 2 * M_PI) {

 angle = 0;

 } else if (index == masN - 1) {

 angle += 0.01; // Обновление угла поворота камеры

 } }

8. Объявление класса Model, который представляет 3D-модель содержится в

файле Model.h. десь определены методы загрузки модели, её отрисовки,

установки матрицы MVP. Также объявляются приватные поля: вектор мешей,

директория модели, загруженные текстуры и матрица MVP. Метод loadModel

использует Assimp для парсинга .obj файла.

#pragma once

// Подключаем стандартные библиотеки

#include <vector> // Для хранения мешей и текстур

#include <string> // Для работы с путями и именами

#include <assimp/Importer.hpp> // Assimp: для загрузки моделей из .obj файлов

#include <assimp/scene.h> // Сцена — содержит всю информацию о модели после загрузки

#include <assimp/postprocess.h> // Постобработка (например, триангуляция)

#include <stb_image.h> // Для загрузки текстур из изображений

#include <android/log.h> // Логирование на Android через __android_log_print

#include <sstream> // Для формирования сообщений об ошибках

// Подключаем собственные заголовочные файлы

#include "Mesh.h" // Класс Mesh — минимальная единица отрисовки

// Класс Model представляет собой трёхмерную модель, состоящую из одного или нескольких

мешей.

// Он использует библиотеку Assimp для загрузки моделей из .obj файлов.

class Model {

public:

 // Конструктор по умолчанию

 Model() {}

 // Основной конструктор

 // Принимает путь к .obj файлу, матрицу MVP, размеры экрана и ссылку на шейдер

 Model(const char* path, glm::mat4 mvpMatrix, int width, int height, Shader& shader) {

 this->mvpMatrix = mvpMatrix; // Сохраняем матрицу MVP

 loadModel(path, shader); // Вызываем метод загрузки модели

 }

 // Метод Draw вызывает отрисовку всех мешей модели

 void Draw(Shader& shader, int textureUnit);

 // Обновляет матрицу MVP для всей модели

 void setMVP(glm::mat4 modelViewProjectionMatrix);

 std::string strError = "Correct work!"; // Хранит информацию об ошибках загрузки модели

private:

 glm::mat4 mvpMatrix; // Матрица модели-вида-проекции

 std::vector<Mesh> meshes; // Вектор мешей — основных частей модели

 std::string directory; // Директория, где находится модель (для поиска текстур)

 std::vector<Texture> textures_loaded; // Уже загруженные текстуры, чтобы не загружать

дубликаты

 // Загружает модель из .obj файла и разбивает её на меши

 void loadModel(const std::string& path, Shader& shader);

 // Рекурсивно обрабатывает узлы модели. Assimp использует древовидную структуру.

 void processNode(aiNode* node, const aiScene* scene, Shader& shader);

 // Обрабатывает один меш модели: извлекает вершины, индексы, текстурные координаты

 Mesh processMesh(aiMesh* mesh, const aiScene* scene, Shader& shader);

};

9. Реализация класса Model находится в файле Model.cpp. Здесь происходит

загрузка модели через Assimp, обработка узлов и мешей, применение

координат вершин и текстур. Метод processMesh извлекает данные вершин и

текстурных координинат. Метод loadModel открывает .obj файл и начинает

обработку сцены.
#include "Model.h"

// Метод загружает модель из .obj файла и обрабатывает её с помощью Assimp

void Model::loadModel(const std::string& path, Shader& shader) {

 // Создаем импортер Assimp

 Assimp::Importer importer;

 // Загружаем модель. Флаги:

 // aiProcess_Triangulate — превращаем все полигоны в треугольники

 // aiProcess_GenSmoothNormals — генерируем гладкие нормали для освещения

 // aiProcess_FlipUVs — переворачиваем текстурные координаты по Y (чтобы правильно

отображалась текстура)

 // aiProcess_CalcTangentSpace — вычисляем тангентное пространство (для нормальных карт и

других эффектов)

 const aiScene* scene = importer.ReadFile(path, aiProcess_Triangulate |

 aiProcess_GenSmoothNormals |

 aiProcess_FlipUVs |

 aiProcess_CalcTangentSpace);

 // Если модель не загрузилась — выводим ошибку и сохраняем её в strError

 if (!scene) {

 std::cout << "ERROR::ASSIMP::" << importer.GetErrorString() << std::endl;

 this->strError = "ERROR::ASSIMP::";

 this->strError += importer.GetErrorString();

 return;

 }

 // Сохраняем директорию модели, чтобы можно было находить связанные файлы, например,

текстуры (.mtl)

 this->directory = path.substr(0, path.find_last_of('/'));

 // Обрабатываем корневой узел сцены рекурсивно

 processNode(scene->mRootNode, scene, shader);

}

// Рекурсивная обработка узлов сцены. Каждый узел может содержать несколько мешей.

void Model::processNode(aiNode* node, const aiScene* scene, Shader& shader) {

 // Перебираем все меши текущего узла

 for (unsigned int i = 0; i < node->mNumMeshes; ++i) {

 // Получаем сам меш из сцены по индексу

 aiMesh* mesh = scene->mMeshes[node->mMeshes[i]];

 // Обрабатываем меш и добавляем его в вектор meshes

 this->meshes.push_back(processMesh(mesh, scene, shader));

 }

 // Рекурсивно обрабатываем дочерние узлы (если они есть)

 for (unsigned int i = 0; i < node->mNumChildren; ++i) {

 processNode(node->mChildren[i], scene, shader);

 }

}

// Обработка одного меша: извлекаем вершины и индексы

Mesh Model::processMesh(aiMesh* mesh, const aiScene* scene, Shader& shader) {

 std::vector<Vertex> vertices;

 std::vector<unsigned int> indices;

 // Извлекаем данные о вершинах

 for (unsigned int i = 0; i < mesh->mNumVertices; ++i) {

 Vertex vertex;

 glm::vec3 vector;

 // Координаты вершин

 vector.x = mesh->mVertices[i].x;

 vector.y = mesh->mVertices[i].y;

 vector.z = mesh->mVertices[i].z;

 vertex.Position = vector;

 // Текстурные координаты

 if (mesh->mTextureCoords[0]) { // если доступны

 glm::vec2 vec;

 vec.x = mesh->mTextureCoords[0][i].x;

 vec.y = mesh->mTextureCoords[0][i].y;

 vertex.TexCoordinates = vec;

 } else {

 // Если текстурных координат нет — ставим нулевые значения

 vertex.TexCoordinates = glm::vec2(0.0f, 0.0f);

 }

 // Добавляем вершину в вектор

 vertices.push_back(vertex);

 }

 // Извлекаем индексы полигонов

 for (unsigned int i = 0; i < mesh->mNumFaces; ++i) {

 aiFace face = mesh->mFaces[i];

 // Каждая грань состоит из нескольких вершин — обычно это треугольник

 for (unsigned int j = 0; j < face.mNumIndices; ++j) {

 indices.push_back(face.mIndices[j]); // Добавляем индексы в список

 }

 }

 // Возвращаем созданный меш, передавая ему вершины, индексы и матрицу MVP

 return Mesh(vertices, indices, shader, this->mvpMatrix);

}

// Метод обновляет матрицу MVP для всей модели

void Model::setMVP(glm::mat4 modelViewProjectionMatrix) {

 this->mvpMatrix = modelViewProjectionMatrix;

 // Обновляем матрицу у каждого меша, чтобы он тоже использовал новую матрицу

 int meshLength = this->meshes.size();

 for (int i = 0; i < meshLength; ++i) {

 this->meshes.at(i).setMVP(this->mvpMatrix);

 }

}

// Метод Draw рисует всю модель, вызывая Draw для каждого меша

void Model::Draw(Shader& shader, int textureUnit) {

 for (unsigned int i = 0; i < this->meshes.size(); ++i) {

 meshes[i].Draw(shader, textureUnit); // Отрисовка каждого меша

 }

}

10. В файле Mesh.h находится определение структур Vertex и Texture, а также

класса Mesh. Mesh содержит VBO, EBO, атрибуты шейдера и методы для

отрисовки. Также здесь объявляются методы setMVP и Draw.
#pragma once

// Подключаем библиотеку GLM для работы с математикой 3D-графики

#include <glm/vec3.hpp> // glm::vec3 — трёхмерные векторы (для позиций вершин)

#include <glm/vec2.hpp> // glm::vec2 — двухмерные векторы (для текстурных координат)

#include <glm/glm.hpp> // Основные функции GLM

#include <glm/gtc/matrix_transform.hpp> // Функции преобразования матриц (rotate, translate, scale)

#include <glm/gtc/type_ptr.hpp> // Для передачи матриц в шейдеры через указатель

// Стандартные библиотеки C++ для хранения данных

#include <vector> // std::vector — для хранения вершин и индексов

#include <string> // std::string — для работы с путями и типами текстур

// Библиотека OpenGL ES 2.0 для работы с графикой на Android

#include <GLES2/gl2.h>

#include <GLES2/gl2ext.h>

#include <GLES2/gl2platform.h>

// Заголовочный файл Shader.h — позволяет использовать шейдеры в Mesh

#include "Shader.h"

// Структура Vertex описывает одну вершину модели:

// - Position: координаты точки в пространстве

// - TexCoordinates: текстурные координаты (UV) для наложения изображения

struct Vertex {

 glm::vec3 Position; // Позиция вершины

 glm::vec2 TexCoordinates; // Текстурные координаты (U и V)

};

// Структура Texture содержит информацию о текстуре:

// - id — уникальный идентификатор текстуры в OpenGL

// - type — тип текстуры (например, диффузная или нормальная карта)

// - path — путь к текстуре, чтобы не загружать одинаковые текстуры дважды

struct Texture {

 unsigned int id; // Уникальный номер текстуры в OpenGL

 std::string type; // Тип текстуры (например, map_Kd — диффузная)

 std::string path; // Путь к файлу текстуры

};

// Класс Mesh представляет минимальную единицу модели.

// Он содержит данные о вершинах, индексах и умеет себя отрисовать в OpenGL ES 2.0.

class Mesh {

public:

 // Вектор вершин и индексов — основные данные для рендеринга

 std::vector<Vertex> vertices;

 std::vector<unsigned int> indices;

 // Конструктор принимает вершины, индексы, шейдер и начальную матрицу MVP

 Mesh(std::vector<Vertex> vertices, std::vector<unsigned int> indices, Shader& shader, glm::mat4

mvpMatrix);

 // Метод Draw отрисовывает меш с использованием текущего шейдера и текстурного блока

 void Draw(Shader& shader, int textureUnit);

 // Обновляет матрицу MVP у меша

 void setMVP(glm::mat4 modelViewProjectionMatrix);

private:

 // Дескрипторы OpenGL объектов:

 GLuint VBO; // Vertex Buffer Object — хранит вершины

 GLuint EBO; // Element Buffer Object — хранит индексы

 GLuint programID; // ID программы шейдера

 // Текущая матрица модели-вида-проекции

 glm::mat4 mvpMatrix;

 // Локации атрибутов в шейдере:

 GLint posAttribute; // Атрибут позиции вершины

 GLint posTexAttribute; // Атрибут текстурных координат

 GLint mvpUniform; // Uniform-переменная для матрицы MVP

 // Метод setupMesh() создаёт и заполняет VBO и EBO данными вершин и индексов

 void setupMesh();

};

11. В файле Mesh.cpp находится реализация класса Mesh. Здесь происходит

инициализация буферов вершин и индексов, настройка атрибутов шейдера и

отрисовка модели. Метод setupMesh инициализирует VBO и EBO, а Draw

выполняет отрисовку модели с использованием текущего шейдера и матрицы

MVP.
#include "Mesh.h"

// Конструктор Mesh

// Принимает:

// - вершины модели (vertices)

// - индексы для соединения вершин (indices)

// - шейдер и начальную матрицу MVP

Mesh::Mesh(std::vector<Vertex> vertices, std::vector<unsigned int> indices, Shader& shader, glm::mat4

mvpMatrix) {

 // Получаем дескриптор программы шейдера, чтобы настроить атрибуты и uniform-переменные

 GLuint programHandler = shader.getProgram();

 // Сохраняем данные вершин и индексов локально

 this->vertices = vertices;

 this->indices = indices;

 // Сохраняем текущую матрицу MVP

 this->mvpMatrix = mvpMatrix;

 // Получаем локации атрибутов и uniform-переменной в шейдере

 this->posAttribute = glGetAttribLocation(programHandler, "a_Position");

 this->posTexAttribute = glGetAttribLocation(programHandler, "a_TextureCoordinates");

 this->mvpUniform = glGetUniformLocation(programHandler, "u_mvpMatrix");

 // Вызываем setupMesh(), чтобы подготовить VBO и EBO для рендеринга

 setupMesh();

}

// Метод setupMesh создаёт и заполняет буферы вершин и индексов (VBO и EBO)

void Mesh::setupMesh() {

 // Генерируем объекты буферов

 glGenBuffers(1, &this->VBO);

 glGenBuffers(1, &this->EBO);

 // Привязываем VBO как массив вершин и загружаем туда данные

 glBindBuffer(GL_ARRAY_BUFFER, this->VBO);

 glBufferData(GL_ARRAY_BUFFER,

 static_cast<int>(vertices.size() * sizeof(Vertex)),

 &vertices[0],

 GL_STATIC_DRAW); // Данные не будут меняться

 // Привязываем EBO как массив индексов и передаём данные

 glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, this->EBO);

 glBufferData(GL_ELEMENT_ARRAY_BUFFER,

 static_cast<int>(indices.size() * sizeof(unsigned int)),

 &indices[0],

 GL_STATIC_DRAW);

 // Отвязываем буферы после настройки — это хорошая практика

 glBindBuffer(GL_ARRAY_BUFFER, 0);

 glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);

}

// Обновляет матрицу MVP у меша

// Используется при движении камеры или объекта

void Mesh::setMVP(glm::mat4 modelViewProjectionMatrix) {

 this->mvpMatrix = modelViewProjectionMatrix;

}

// Основной метод отрисовки меша

void Mesh::Draw(Shader& shader, int textureUnit) {

 // Активируем программу шейдера

 shader.useProgram();

 // Передаём номер текстурного блока в униформу sampler2D в шейдере

 glUniform1i(glGetUniformLocation(shader.getProgram(), "u_TextureUnit"), textureUnit);

 // Передаём матрицу MVP в шейдер

 glUniformMatrix4fv(this->mvpUniform, 1, false, glm::value_ptr(this->mvpMatrix));

 // Привязываем буферы вершин и индексов

 glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, this->EBO);

 glBindBuffer(GL_ARRAY_BUFFER, this->VBO);

 // Включаем атрибуты вершин и текстурных координинат

 glEnableVertexAttribArray(this->posAttribute);

 glVertexAttribPointer(this->posAttribute,

 3,

 GL_FLOAT,

 GL_FALSE,

 sizeof(Vertex),

 nullptr); // Смещение 0 для позиции

 glEnableVertexAttribArray(this->posTexAttribute);

 glVertexAttribPointer(this->posTexAttribute,

 2,

 GL_FLOAT,

 GL_FALSE,

 sizeof(Vertex),

 (void*)(sizeof(float)*3)); // Смещение 3 float'а — после Position

 // Рисуем модель через индексы: используем GL_TRIANGLES и EBO

 glDrawElements(GL_TRIANGLES,

 static_cast<int>(this->indices.size()),

 GL_UNSIGNED_INT,

 nullptr);

 // После отрисовки отвязываем буферы

 glBindBuffer(GL_ARRAY_BUFFER, 0);

 glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);

}

12. В файле Shader.h объявляется класс Shader, который отвечает за компиляцию

вершинного и фрагментного шейдера, а также хранит дескриптор программы

шейдера и ошибок.
#pragma once

// Подключаем библиотеку OpenGL ES 2.0

#include <GLES2/gl2.h>

// Стандартные библиотеки C++ для работы со строками и потоками

#include <iostream>

#include <sstream> // Для формирования сообщений об ошибках

#include <string> // Для хранения шейдерных строк и ошибок

// Класс Shader отвечает за создание и использование программ шейдеров в OpenGL ES 2.0.

// Шейдеры — это небольшие программы, выполняемые на GPU:

// - Вершинный шейдер: вычисляет позиции вершин

// - Фрагментный шейдер: определяет цвет каждого пикселя

class Shader {

public:

 // Конструктор по умолчанию

 Shader();

 // Основной конструктор: принимает код вершинного и фрагментного шейдера

 Shader(const std::string& vertexStr, const std::string& fragmentStr);

 // Создаёт и компилирует программу шейдера

 void createProgram();

 // Активирует программу шейдера перед рендерингом объекта

 void useProgram() const;

 // Возвращает дескриптор программы (GLuint) для дальнейшего использования

 unsigned int getProgram() const;

 // Сообщение о состоянии шейдера (успешно или нет)

 std::string strError = "Shader is work!";

private:

 // Строки с исходным кодом шейдеров

 std::string vertexProg, fragmentProg;

 // Дескрипторы шейдеров и программы

 unsigned int vertexID, fragmentID, program_Handle;

 // Проверяет, успешно ли скомпилировался шейдер или программа

 void checkCompileError(GLuint shader, const std::string& type);

};
13. В файле Shader.cpp содержится реализация класса Shader. Здесь создаются

шейдеры, компилируются, проверяются на ошибки и объединяются в

программу. Также реализованы методы активации программы и получения

дескриптора программы.
#include "Shader.h"

// Конструктор по умолчанию — создаёт пустой шейдер

Shader::Shader() {}

// Основной конструктор — принимает код вершинного и фрагментного шейдера

Shader::Shader(const std::string& vertexStr, const std::string& fragmentStr) {

 // Преобразуем строки с кодом шейдеров в C-строки для OpenGL

 const char* vShaderCode = vertexStr.c_str();

 const char* fShaderCode = fragmentStr.c_str();

 // Создаем вершинный шейдер и загружаем в него исходный код

 this->vertexID = glCreateShader(GL_VERTEX_SHADER);

 glShaderSource(this->vertexID, 1, &vShaderCode, nullptr);

 glCompileShader(this->vertexID); // Компилируем вершинный шейдер

 checkCompileError(this->vertexID, "VERTEX"); // Проверяем ошибки компиляции

 // Создаем фрагментный шейдер и загружаем в него исходный код

 this->fragmentID = glCreateShader(GL_FRAGMENT_SHADER);

 glShaderSource(this->fragmentID, 1, &fShaderCode, nullptr);

 glCompileShader(this->fragmentID); // Компилируем фрагментный шейдер

 checkCompileError(this->fragmentID, "FRAGMENT"); // Проверяем ошибки компиляции

 this->program_Handle = 0; // Инициализируем дескриптор программы как 0

}

// Метод checkCompileError проверяет, успешно ли прошла компиляция шейдера или линковка

программы

void Shader::checkCompileError(GLuint shader, const std::string& type) {

 GLint state;

 GLchar infoLog[1024];

 std::stringstream strs;

 if (type != "PROGRAM") {

 // Если проверяем шейдер

 glGetShaderiv(shader, GL_COMPILE_STATUS, &state);

 if (!state) {

 // Если ошибка компиляции — получаем текст ошибки

 glGetShaderInfoLog(shader, 1024, nullptr, infoLog);

 strs << "ERROR::SHADER_COMPILATION_ERROR of type:" << type << "\n" << infoLog;

 this->strError = strs.str(); // Сохраняем сообщение об ошибке

 }

 } else {

 // Если проверяем программу

 glGetProgramiv(shader, GL_LINK_STATUS, &state);

 if (!state) {

 // Если ошибка линковки — получаем текст ошибки

 glGetProgramInfoLog(shader, 1024, nullptr, infoLog);

 // Добавляем информацию к строке ошибки

 this->strError += "ERROR::PROGRAM_LINK_ERROR:";

 this->strError += infoLog;

 }

 }

}

// Метод createProgram собирает программу из ранее созданных шейдеров

void Shader::createProgram() {

 this->program_Handle = glCreateProgram(); // Создаем объект программы

 // Прикрепляем скомпилированные шейдеры к программе

 glAttachShader(this->program_Handle, this->vertexID);

 glAttachShader(this->program_Handle, this->fragmentID);

 // Линкуем шейдеры в единую программу

 glLinkProgram(this->program_Handle);

 // Проверяем на ошибки линковки

 checkCompileError(this->program_Handle, "PROGRAM");

 // После линковки шейдеры больше не нужны — удаляем их

 glDeleteShader(this->vertexID);

 glDeleteShader(this->fragmentID);

}

// Активирует текущую шейдерную программу перед отрисовкой

void Shader::useProgram() const {

 glUseProgram(this->program_Handle);

}

// Возвращает дескриптор программы для использования в других частях кода

unsigned int Shader::getProgram() const {

 return this->program_Handle;

}

14. Файл CMakeLists.txt настраивает сборку проекта в CMake. Здесь

подключаются сторонние библиотеки (Assimp, GLM, stb_image), указываются

пути к исходникам, а также определяется, какие библиотеки будут

использоваться при сборке. Также указывается, что используется OpenGL ES

2.0.
cmake_minimum_required(VERSION 3.18.1)

project("opengl_kurs_model")

add_subdirectory(glm)

add_subdirectory(${CMAKE_SOURCE_DIR}/Assimp)

include_directories(${CMAKE_SOURCE_DIR}/Assimp/include)

set(ASSIMP_LIB assimp)

add_library(opengl_kurs_model SHARED

 native-lib.cpp

 Mesh.cpp

 Shader.cpp

 Model.cpp

 stb_image.cpp

 model_loading.cpp)

find_library(log-lib log)

find_path(GLES2_DIR GLES2/gl2.h HINTS ${ANDROID_NDK})

find_library(GL20 libGLESv2.so HINTS ${GLES2_DIR}/../lib)

target_link_libraries(opengl_kurs_model ${log-lib} ${GL20} glm ${ASSIMP_LIB})

Требования к отчету

Результаты выполненной курсовой работы должны быть оформлены в формате

текстового редактора Word, размером шрифта 14 пунктов. Отчет должен

содержать:

• Титульный лист.

• Содержание. В содержание включают номера и наименования разделов и

подразделов с указанием номеров страниц. В содержание также включают все

приложения, вошедшие в данный документ, с указанием номера страницы.

• Введение. Обзор предметной области по заданной теме, а также описание

среды разработки и инструментов в общем объеме 1 страница.

• Текст задания, соответствующий Вашему варианту.

• Реализация проекта. Сценарии взаимодействия пользователя со сценой;

описание элементов сцены и их геометрии; настройка освещения и камеры;

использование шейдеров и управления потоком рендеринга.

• Результаты. Описание используемых методов, скриншоты работы приложения,

демонстрирующие реализованный функционал. Ссылка на исходные коды

приложения.

• Заключение. Сделать выводы о проделанной работе, описать возникшие

проблемы в процессе выполнения работы и пути их решения.

• Приложение. Код программы с комментариями.

• Список используемых источников. Перечислить используемые источники

литературы.

Отчет о курсовой работе должен соответствовать плану задания и содержать не

менее 20 страниц поясняющего текста (не считая исходного кода программ),

подготовленного в формате текстового редактора Word, размером шрифта 14

пунктов. Код программы должен быть представлен в разделе отчета «приложение

1» и должен содержать комментарии.

Список дополнительных источников

1. Баяковский Ю. М., Игнатенко А. В., Фролов А. И. Графическая библиотека

OpenGL : учебно-методическое пособие. — Москва : Издательский отдел

факультета ВМиК МГУ, 2003. — 132 с. — ISBN 5-89407-153-4.
(https://disk.yandex.ru/i/JQez-Sm-oQI83g)

2. Официальная документация: Android NDK.

https://developer.android.com/ndk?spm=a2ty_o01.29997173.0.0.56d0c921u8Sxy8

3. JNI (Java Native Interface) — документация Oracle:

https://docs.oracle.com/javase/8/docs/technotes/guides/jni/?spm=a2ty_o01.29997173

.0.0.56d0c921u8Sxy8

4. Руководство по использованию Assimp: https://sourceforge.net/projects/assimp/

https://disk.yandex.ru/i/JQez-Sm-oQI83g
https://developer.android.com/ndk?spm=a2ty_o01.29997173.0.0.56d0c921u8Sxy8
https://docs.oracle.com/javase/8/docs/technotes/guides/jni/?spm=a2ty_o01.29997173.0.0.56d0c921u8Sxy8
https://docs.oracle.com/javase/8/docs/technotes/guides/jni/?spm=a2ty_o01.29997173.0.0.56d0c921u8Sxy8
https://sourceforge.net/projects/assimp/

