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В методических  указаниях рассмотрены: динамика вращательного дви-

жения твердого тела; момент инерции твѐрдых тел и  закон сохранения момен-

та импульса; элементы статики и условия равновесия тел, понятие центра тяже-

сти; момент инерции твердого тела относительно произвольной оси и теорема 

Гюйгенса — Штейнера, понятие колебания тела и его характеристики, гармо-

нические колебания  и понятие гармонического осциллятора, виды маятников: 

математический маятник и  физический маятник, изучение свободных колеба-

ний физического маятника, определение ускорения свободного падения с по-

мощью физического маятника.  

 

Методические  указания предназначены для студентов 1 курса, обучаю-

щихся  по направлениям подготовки бакалавров: 151900 Конструкторско-

технологическое обеспечение автоматизированных машиностроительных  про-

изводств, 220700 Автоматизация технологических процессов и производств, 

280700  Техносферная безопасность   для лабораторных работ по дисциплине 

«Физика». 
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Изучение колебаний физического маятника 
 

1 Цель работы:  изучение свободных колебаний физического маятника. 

2 Оборудование: лабораторная установка, метровая линейка, электронный 

секундомер 

 

3 Содержание работы 

3.1 Изучить теоретический материал. 

3.2 Проверить изохронность колебаний маятника. Определить период ко-

лебаний для 5—6 значений амплитуды в пределах  от 2-3° до 10-15°. 

3.3 Оценить влияние затухания на амплитуду колебаний. С этой целью 

определить число колебаний N, за которое амплитуда колебаний умень-

шается примерно в три раза. 

3.4 Определить с помощью микрокалькулятора значения у(х) по формуле 

(51) не менее чем при десяти различных  значениях х в интервале 0 < х 

≤1/2. Результаты вычислений занесите в таблицу 2. 

3.5 Построить по точкам график теоретически ожидаемой зависимости 

периода колебаний стержня от параметра ε=a/l в области значений 0 < ε  

1/2.     График  строится в координатной плоскости  х =ε, y=T/T0. 

3.6 Провести экспериментальную проверку  теоретических соотношений 

(49) и (51). Провести измерение периода колебаний Т для выбранных 

значений ε=a/l. Результаты измерений занести в таблицу 3. 

3.7 Построить по точкам график полученной экспериментально зависи-

мости в плоскости х=ε, у == Т/Т0.  

3.8 Сравнить полученные графики. Сделать вывод.  

3.9 Оформить отчет. 

 

4 Теоретические сведения к работе 
 

4.1 Момент инерции твѐрдых тел. Динамика вращательного движения 

твердого тела вокруг неподвижной оси: Закон Ньютона для вращательного 

движения 
 

Второй закон Ньютона для частицы, движущейся под действием силы 

F


, может быть записан в виде: 

 

F
dt

pd 

  (1) 

 

где 


mp  – импульс частицы. Умножим это уравнение векторно на радиус-

вектор частицы r


. Тогда 

 

  Frpr
dt

d 
  (2) 
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Введем теперь новые величины – момент импульса prL


  и момент 

силы FrM


  Тогда полученное уравнение принимает вид: 

 

M
dt

Ld 


  (3) 

 

Для частицы, совершающей круговое движение в плоскости (x, y), век-

тор момента импульса направлен вдоль оси z (т.е. вдоль вектора угловой скоро-

сти 


) и равен по модулю 

 

L = mυr = mr
2
ω,  (4) 

 

поэтому 

 




2mrL . (5) 

 

Введем обозначение: I = mr
2
. Величина I называется моментом инер-

ции материальной точки относительно оси, проходящей через начало ко-

ординат.  

Твердое тело является системой материальных точек, расстояние между 

которыми при движении не изменяется. При движении вокруг неподвижной 

оси все материальные точки, образующие твердое тело, вращаются с одинако-

вой угловой скоростью ω. Тело называется абсолютно твердым, если рас-

стояние между любой парой его точек неизменно. 
Для системы точек, вращающихся вокруг оси z с одинаковой угловой 

скоростью, можно обобщить определение момента инерции, взяв сумму момен-

тов инерции всех точек относительно общей оси вращения:  

I = Σmiri
2
. (6) 

С помощью понятия интеграла можно определить и момент инерции произ-

вольного тела относительно оси вращения. 

 

Рисунок 1 Вращение твѐрдого тела вокруг неподвижной оси 

Пусть ri – расстояние до i-ой точки тела от оси вращения, а mi  - масса i-

ой точки тела. Тогда линейная скорость этой точки υi =ωri, а модуль момента 
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импульса относительно оси вращения Li=miυiri = miri
2
ω. Модуль момента им-

пульса L твердого тела складывается из моментов импульса всех образующих 

это тело материальных точек  

   iii rmLL  (7) 

или 

IL  , (8) 

где 

 2

iirmI  (9) 

Суммирование проводиться по всем материальным точкам, образующим 

тело. Практически вычисление такой суммы сводится к вычислению соответст-

вующего интеграла, что для однородных тел симметричной формы обычно яв-

ляется несложной задачей. 

Под действием приложенных к телу внешних сил его момент импульса 

IL


  изменяется со скоростью  

L

 = M


внеш,                    (10) 

M


внеш - сумма моментов внешних сил, приложенных к телу: 

M

внеш =∑ M


j=∑  jj Fr


,                 (11) 

Здесь M


j =  jj Fr


,  — момент относительно оси вращения j-й внешней силы, 

приложенной к телу; jF


 — проекция этой силы на плоскость, перпендикуляр-

ную оси вращения тела; rj — плечо этой силы (рисунок 2) 

 

 

Рисунок 2 Момент силы относительно оси вращения твердого тела 
 В любом случае можно записать, что вектор момента импульса системы точек 

или тела, вращающихся с одинаковой угловой скоростью вокруг общей оси, ра-

вен 

 




IL . (12) 

 

Тогда уравнение движения тела, вращающегося вокруг некоторой оси, 

принимает вид: 

 

M
dt

d
I






 (13) 
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Пусть вектор F


перпендикулярен оси вращения. Тогда момент силы M


 

– вектор, направленный вдоль оси вращения и по модулю равный произведе-

нию модуля силы на расстояние от прямой действия силы до оси вращения 

(плечо силы). 

 Следует обратить внимание на простую аналогию между уравнениями 

Ньютона для поступательного и вращательного движений. 

 

Поступательное движение Вращательное    движение 

масса m момент инерции I 

скорость 


 угловая скорость        


 

сила F


 момент силы M


 

уравнение движения  

   Fdtmd


/  

уравнение движения  

MdtId


/  

кинетическая энергия поступательного 

движения 

mυ
2
/2 

кинетическая энергия вращения 

Iω
2
/2 

 

 

4.2 Закон сохранения момента импульса. Сохранение момента импульса в 

поле центральных сил 

Если сила, действующая на тело со стороны другого тела (находящегося 

в начале координат инерциальной системы отсчѐта ), всегда направлена вдоль 

радиуса-вектора r


, соединяющего эти тела (такими силами являются сила тяго-

тения, кулоновская сила, и др.), то она называется центральной силой. В этом 

случае векторное произведение Fr


  равно нулю (как векторное произведение 

коллинеарных векторов). Следовательно, равен нулю момент силы M


 и урав-

нение вращательного движения принимает вид 0/


dtLd . Отсюда вытекает, что 

вектор L


 не зависит от времени. Иными словами, в поле центральных сил мо-

мент импульса сохраняется. 

 Утверждение, доказанное для одной частицы, можно распространить на 

замкнутую систему, содержащую произвольное число частиц. Таким образом, в 

замкнутой системе, где действуют центральные силы, сохраняется суммарный 

момент импульса всех частиц. 

 Итак, в произвольной замкнутой консервативной механической систе-

ме существуют в общем случае семь сохраняющихся величин – энергия, три 

компоненты импульса и три компоненты момента импульса, обладающих тем 

свойством, что для системы частиц значения этих величин представляют сумму 

значений, взятых для отдельных частиц. Иными словами, полная энергия сис-

темы равна сумме энергий отдельных частиц и т.д. 

 

4.3 Статика. Условия равновесия тел. Центр тяжести 
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Раздел механики, изучающий условия равновесия протяженных, абсо-

лютно твердых тел, называется статикой. По определению тело находится в 

состоянии статического равновесия, если все точки тела находятся в состоянии 

покоя в некоторой инерциальной системе отсчета. 

 Первое условие равновесия в ИСО: сумма всех внешних сил, приложен-

ных к телу, равна нулю. 

 В этом случае равно нулю ускорение центра инерции (центра масс) те-

ла. Всегда можно найти такую систему отсчета, в которой центр инерции поко-

ится. 

 Однако это условие не означает, что все точки тела покоятся. Они мо-

гут принимать участие во вращательном движении вокруг некоторой оси (при-

мер – пара сил). Поэтому возникает второе условие равновесия в ИСО:  

сумма моментов всех внешних сил относительно любой оси равна нулю. 

Указанные условия широко используются в рычажных устройствах. 

Представим тело состоящим из большого числа точечных масс mi. В со-

стоянии статического равновесия в однородном поле тяжести (вектор g


 одина-

ков во всех точках тела) полный вектор силы тяжести тела  

gMmggmF ii


т  )( , (14) 

где Мт – полная масса тела. Существует точка в пространстве, называемая цен-

тром тяжести, такая, что момент силы тяжести тF


 относительно неѐ равен ну-

лю.  

Можно считать, что в состоянии равновесия вектор силы тяжести всего 

тела приложен в центре тяжести. Геометрически центр тяжести совпадает с 

центром масс- точкой тела (если можно считать, что величина и направление 

ускорения силы тяжести g


 не меняются в пределах тела). 

 

4.4 Теорема Гюйгенса — Штейнера 

Момент инерции тела зависит от выбора оси вращения. Однако это не 

значит, что для всякой новой оси момент инерции I следует вычислять заново, 

пользуясь формулой (2.2). 

 

 

  

Рисунок 3    К теореме Гюйгенса-Штейнера 

 

Пусть момент инерции твердого тела относительно оси С, проходящей через 
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его центр инерции, известен и равен Iс. Нетрудно показать, что относительно 

оси  АА, параллельной оси СС (рис. 11), он равен 

IA= Iс+ mа
2
,        (15) 

где m — масса твердого тела, а — расстояние между осями. 

 
4.5 Момент инерции твердого тела относительно произвольной оси 

Для применения теоремы Гюйгенса—Штейнера нужно знать момент 

инерции Iс  тела относительно оси СС, проходящей через его центр тяжести 

(центр инерции). Этот момент зависит от направления оси СС. Однако нет не-

обходимости вычислять Iс по формуле или измерять его для каждой оси вновь. 

Оказывается, для любого твѐрдого тела существуют три взаимно пер-

пендикулярные оси, проходящие через его центр инерции (главные оси тела), 

такие, что момент инерции относительно любой оси СС выражается через мо-

менты инерции тела I1, I2 и I3 относительно этих главных осей. Таким образом, 

задача определения момента инерции тела относительно произвольной оси сво-

дится к определению главных осей и соответствующих им моментов инерции 

I1, I2 и I3. 

Как же найти главные оси инерции данного твердого тела? Главные оси 

легко определить для однородных симметричных тел (шар, куб, цилиндр, пря-

моугольный параллелепипед и т.д.) Главные оси  инерции таких тел всегда сов-

падают с осями симметрии тела. Например, главные оси однородного прямо-

угольного параллелепипеда проходят через его геометрический центр перпен-

дикулярно граням (рисунок 4) 

Для однородного шара главными являются любые три взаимно перпен-

дикулярные оси, проходящие через его центр Можно доказать, что таким же 

свойством обладает и однородный куб Для тел сложной формы главные оси и 

моменты инерции можно найти более сложными  экспериментальными и тео-

ретическими способами.  

 

 

 

Рисунок 4 Главные оси инерции прямоугольного параллелепипеда  

 

 

4.6 Кинетическая энергия вращающегося вокруг оси тела 
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Кинетическая энергия произвольной i-й материальной точки массой mi; 

равна 

222

2
1

2
1  iiii rmmW ,  (16) 

где υi = ωri — скорость материальной точки, ω — угловая скорость, ri — рас-

стояние от точки до оси вращения. Суммируя кинетические энергии всех мате-

риальных точек, получим кинетическую энергию твердого тела: 

  222

2
1

2
1   IrmWW iiкiк .           (17) 

Формула (2 8) справедлива в том случае, когда тело вращается вокруг 

неподвижной оси. Если тело движется как целое и еще вращается, то его кине-

тическую энергию можно представить в виде суммы кинетических энергий по-

ступательного и вращательного движений. 
22

2
1

2
1  CCк ImVW  (18) 

где VC – скорость центра масс (центра инерции) твѐрдого тела; IC – момент 

инерции относительно оси, проходящей через центр масс параллельно вектору 

угловой скорости. 

 

4.8 Колебания тела на пружине. Уравнение малых колебаний 

Свободные колебания совершаются под действием внутренних сил сис-

темы после того, как система была выведена из состояния равновесия. Приме-

ром свободных колебаний могут служить колебания груза на пружине. 

Для того, чтобы свободные колебания совершались по гармоническому 

закону, необходимо, чтобы сила, стремящаяся возвратить тело в положение 

равновесия, была пропорциональна смещению х тела из положения равновесия. 

Этому условию удовлетворяет упругая сила пружины Fх=-kx. Коэффи-

циент k называется жесткостью пружины. Все другие силы, удовлетворяющие 

этому условию, называются квазиупругими. 

Если тело, прикрепленное к упругой пружине, вывести из состояния 

равновесия, то на тело начнет действовать упругая сила со стороны пружины, 

которая по закону Гука пропорциональна отклонению тела от положения рав-

новесия. Следует помнить, что закон Гука справедлив только для малых откло-

нений от положения равновесия (количественно это выражается неравенством 

x << l, где l – длина нерастянутой пружины, х -  удлинение пружины).  

 Уравнение движения под действием упругой силы имеет вид: 

 

kx
dt

xd
m 

2

2

 (19) 

Его можно переписать в другой форме, введя обозначение ω
2 

= k/m. То-

гда 

02

2

2

 x
dt

xd
 (20) 
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Система, совершающая колебания,  описываемые этим уравнением, на-

зывается гармоническим осциллятором. Величина ω называется собственной 

круговой частотой колебаний. Для груза на пружине 

k
mT

m
k  2;0 ; (21) 

Гармонические колебания происходят по закону 

 

 000 cos   txx ,  (22) 

где x0 и φ0 - амплитуда и начальная фаза колебаний. Эти величины зави-

сят от начальных условий. 

При гармонических колебаниях кинетическая и потенциальная энергия 

периодически изменяются, но полная механическая энергия Е замкнутой сис-

темы, в которой отсутствуют силы сопротивления, остается неизменной. 

Для груза на пружине 

 

22

22 kxm
EEE ПК 


 ;  

2

2

0

max

kx
EП  ; (23) 

 

    EE
xmm

E ПК 






max

2

0

2

0

2

0

max
22

 (24) 

При гармонических колебаниях происходит периодическое превраще-

ние кинетической энергии в потенциальную и наоборот. 

При наличии сил трения (сопротивления) полная энергия системы 

уменьшается со временем, и колебания становятся затухающими. 

Если сила сопротивления пропорциональна скорости (вязкое трение) 

Fтр= - bυ, амплитуда колебаний А уменьшается по закону 

 

A = x0e
-δt

, где δ=b/2m (25) 

Постоянная δ называется коэффициентом затухания. Интервал времени 

τ = 1/δ, в течение которого амплитуда уменьшается в  e≈2,7 раза, называется 

временем затухания. 

 

4.9 Гармонические колебания 

Уравнение Ньютона, приведенное выше, имеет решение в виде гармо-

нического колебания. 

Простое одномерное гармоническое колебание – такое движение, при 

котором координата тела зависит от времени по закону 

 

x(t) = A cos(ωt + φ0). (26) 

Величина A называется амплитудой колебаний (максимальное отклоне-

ние от положения равновесия), ω – циклическая, или круговая, частота колеба-

ний ([ω] = Гц = с
–1

), φ0 – начальная фаза колебаний. 
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 Главной особенностью выписанного решения является то, что каждое 

значение x в силу периодичности косинуса повторяется через один и тот же 

промежуток времени, называемый периодом T ([T] = c). Действительно, если 

аргумент косинуса изменится на угол 2π радиан, то значение косинуса не изме-

нится. Назовем периодом тот интервал времени, за который аргумент косинуса 

меняется на 2π.  

Тогда   ω(t + T) + φ0 = ωt + φ0 + 2π, (27) 

откуда 

T = 2π/ω. (28) 

По определению частота         

ν = 1/T, 

([ν] = Гц = с
–1

). (29) 

Подставляя выражение для Т через круговую частоту ω, находим соот-

ношение: 

ω = 2πν. (30) 

Альтернативные формы записи гармонического колебания: 

)2cos()
2

cos()cos()( 000 


  tAt
T

AtAtx   (31) 

Следует отметить, что можно с тем же результатом описывать гармони-

ческое колебание функцией sin(ωt + φ0), что эквивалентно иному выбору на-

чальной фазы. 

 Последовательно дифференцируя выписанное решение по времени, 

можно получить выражения для проекций скорости и ускорения колеблющего-

ся тела в любой момент времени. 

 Скорость: 

υх = dx/dt = –ωAsin(ωt + φ0). (32) 

Ускорение: 

aх = dυх/dt = –ω
2
Acos(ωt + φ0). (33) 

Подставляя выражение для ускорения в уравнение движения, можно 

убедиться в том, что это уравнение удовлетворяется. 

 

4.10 Энергия гармонического осциллятора 

Полная энергия гармонического осциллятора: 

 

E = mυ
2
/2 + kx

2
/2 = K + U. (34) 

Если подставить приведенные выше выражения для x и υ в формулу для 

полной энергии, получим 

E = mω
2
A

2
/2 = kA

2
/2. (35) 

Полная энергия гармонического осциллятора пропорциональна квадрату 

амплитуды колебаний и не зависит от времени. 
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4.11 Математический маятник 

На невесомой нити длиной l подвешен груз массой m, совершающий ко-

лебания относительно положения равновесия. Нулевое значение потенциальной 

энергии выбрано в точке равновесия, тогда в произвольном положении 

U = mgh = mgl(1 – cos θ), (36) 

где угол отклонения маятника от положения равновесия θ однозначно 

определяет положение груза в любой момент времени. Как было показано, 

уравнение второго закона Ньютона в случае движения по окружности прини-

мает вид: M
dt

d
I






.  

 
Рисунок 5  Математический маятник 

 

Вектор 


 направлен вдоль оси z (если принять плоскость качаний маят-

ника за плоскость (x,y)). Момент инерции точки на окружности равен  

I = ml
2
. Соответствующая проекция момента силы тяжести относительно оси, 

проходящей через точку подвеса, равна М = –mglsinθ. Поэтому уравнение коле-

баний маятника принимает вид: 

 




sin2 mgl
dt

d
ml  (37) 

Так как угловая скорость ω = dθ/dt, то окончательно 




sin
2

2
2 mgl

dt

d
ml  (38) 

Это уравнение точное, однако его решение сложно. Представим теперь, 

что маятник совершает малые колебания. В этом случае θ << 1 и можно сделать 

замену: sinθ ≈ θ. Уравнение малых колебаний математического маятника при-

обретает вид уравнения для гармонического осциллятора: 

 

00 2

2

2

2

2
















dt

d

l

g

dt

d
  (39) 
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где введено обозначение ω = (g/l)
1/2

. Этой формулой определяется часто-

та колебаний математического маятника. Период колебаний математического 

маятника равен 

g

l
T  2 . (40) 

 

4.12  Физический маятник 

Физический  маятник (рисунок 8) представляет собой твердое тело, 

которое может совершать колебания относительно горизонтальной неподвиж-

ной  оси О.   

Пусть центр масс маятника находится в точке С на расстоянии а от оси 

вращения О. Так как ось О неподвижна, то движение маятника определяется 

уравнением моментов (9) относительно этой оси: 

внешML 00 
   (41) 

   Пусть  I0 — момент инерции маятника  относительно оси вращения   О, ω =   

— угловая  скорость, тогда  L0 = I0ω = I0 .  Момент внешних   сил М0внеш скла-

дывается  из момента силы тяжести 

Мтяж = - mgasinθ (42) 

и момента сил трения, модуль и направление  которого зависят от угловой 

скорости маятника: 

Мтр = Мтр( ) (43) 

 
Рисунок 6 Физический маятник 

 

Таким образом, уравнение движения маятника (уравнение моментов) 

можно  записать в виде 

  тртяж ММI
dt

d
0 , (44) 

или, считая, что момент  инерции  I0 = const, 

)(sin0  
трМmgaI  (45) 

В это уравнение входят неизвестная функция - угол отклонения маятни-

ка θ(t) — и  ее производные по времени: угловая скорость  (t) и угловое уско-

рение  (t). Наша задача — найти эту неизвестную функцию.  Зная θ(t), мы пол-

ностью определим движение маятника в  любой момент  времени.    Для вычис-

ления  θ(t)  из уравнения (45) необходимо знать зависимость момента сил тре-

ния от угловой скорости, т. е. функцию Мтр ( ). Эта зависимость может быть 

сложной. Поэтому при учете трения применяются  различные идеализирован-
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ные, т. е. приближенные  виды такой  зависимости. В данной работе трение 

достаточно мало, так что им будем пренебрегать. В этом приближении период 

малых колебаний физического маятника равен        

 mgaIT 02  (46) 

где I0 — момент инерции маятника относительно оси качаний О, m - масса ма-

ятника, а - расстояние от оси О до центра масс маятника,  g — ускорение  сво-

бодного падения.     

В данной работе проводится экспериментальная проверка соотношения 

(46) для физического маятника, имеющего форму стержня. По  стержню   мо-

жет  перемещаться легкая  опорная призма. Стержень  колеблется относительно 

горизонтальной оси, опираясь нижним ребром призмы на закрепленную на 

штативе опорную площадку. Фиксируя  призму в  различных  точках стержня, 

можно  менять  расстояние от оси качаний маятника до его центра масс.  

Момент инерции I0  стержня длиной l и массой m относительно оси О 

(рисунок 9) может  быть найден с помощью теоремы Гюйгенса — Штейнера: 
222

0 12
1 mamlmaII C   (47) 

 

 
 

С  - центр масс, О  - оси качаний, θ  - угол отклонения маятника, l  - длина 

стержня, а - расстояние от оси О до центра масс маятника 

Рисунок 7  Принципиальная схема физического маятника 

 

Здесь Iс = 
12

1 ml
2
 — момент инерции однородного тонкого стержня относи-

тельно оси, проходящей через его центр масс С. Поэтому  период колебаний  

стержня 














l

a

a

l

g

l

mga

maml
T

12
212

1

2

22

 (48) 

или 

  1210TT  (49) 

Мы  ввели обозначения 

glT  20 , ε=a/l.  (50) 

Величина  Т0 имеет размерность времени. Она совпадает с периодом ко-

лебаний математического маятника длиной l. Безразмерная величина ε=a/l ха-
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рактеризует положение оси подвеса стержня относительно его центра масс.    В 

этой работе необходимо изучить зависимость периода колебаний Т тонкого од-

нородного стержня от расстояния а от оси подвеса до центра  масс.  

Результаты измерений удобно изобразить на координатной плоскости  

(х = ε=a/l; y=T/T0) и сравнить  их с  зависимостью Т (ε), предсказываемой фор-

мулой (49). Для тонкого стержня любой длины записанная  в безразмерных пе-

ременных (x, у) зависимость  периода малых  колебаний стержня от положения 

точки подвеса имеет вид 

 xxy 121  (51) 

    График этой функции нужно построить по точкам, рассчитав на  микрокаль-

куляторе  у (x) для 10—15 значений х,  и  сравнить  его с экспериментально по-

лученной зависимостью T(ε). 

 

4.13 Методика измерений 

Формулы  (46) и (49) справедливы для идеализированной модели  физи-

ческого маятника. В частности, при выводе формулы (46)  были  приняты сле-

дующие предположения: 1) маятник совершает колебания  малой амплитуды,  и  

поэтому  их  период от  амплитуды  не  зависит (изохронность  колебаний): 2) 

затуханием можно  пренебречь. 

Необходимо выяснить, обеспечивается ли выполнение этих предполо-

жений  в условиях эксперимента.     Легко убедиться, что периоды колебаний 

стержня при малых  (≤ 5) и больших ( 30) амплитудах отличаются друг от 

друга. Так как соотношение (1) справедливо только для малых амплитуд,  то 

необходимо выяснить, в пределах каких значений амплитуды  период колеба-

ний остается постоянным с заданной степенью точности (например, с точно-

стью до 0,5%). Это легко сделать, измеряя период колебаний маятника  для раз-

личных  амплитуд, постепенно  увеличивая их от 2—3° до  10—15°.    

Выясним теперь, как оценить влияние затухания на период колебаний 

маятника. Наблюдая колебания маятника, легко убедиться, что их амплитуда 

постепенно уменьшается. Значит, модель незатухающих колебаний, принятая  

при выводе формул (46)  и (49),  строго говоря, неверна. Нетрудно понять каче-

ственно, как влияет  затухание колебаний на их период: под действием трения 

движение маятника замедляется, и период его колебаний увеличивается.  Во-

прос заключается в том, является ли это увеличение периода существенным 

или им  можно  пренебречь.    

Чтобы получить количественно изменение периода колебаний ΔТ  в ре-

зультате трения, необходимо выяснить, какие силы трения действуют в данной 

лабораторной установке. Трение может быть сухим, вязким или более слож-

ным. Выяснение характера трения требует специальной постановки экспери-

мента и является сложной задачей. 

Можно, однако, показать, что при любом типе сил трения (вязком и су-

хом) их влияние на период колебаний является малым, если только мало само 
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затухание. Например, связанная с вязким трением поправка ΔТ/Т  к периоду Т 

незатухающих   колебаний маятника  равна 

228

1

NT

T





~

2100

1

N
 (52) 

где N -- число колебаний, за которое их амплитуда уменьшается в 

е=2,718 раза (т. е. примерно в три раза). Практически при N ~ 10 как в случае 

вязкого, так и в случае сухого трения влиянием затухания на период колебаний 

заведомо можно пренебречь. 

 

5 Порядок выполнения работы 

 

1. Проверьте изохронность колебаний маятника. Для этого измерьте пе-

риод колебаний для 5—6 значений амплитуды в пределах  от 2-3° до 10-15°. Ре-

зультаты занесите в таблицу 1. Так как трудно «поймать» возвращение маят-

ника в одно и то же положение, то период колебаний определяется следующим 

образом: определяется время десяти колебаний не менее 3 раз, среднее значе-

ние получившейся величины, разделѐнное на десять (количество колебаний), и 

будет искомым значением периода колебания маятника. 

 

Таблица 1 Проверка изохронности физического маятника 

θ       

t1(10), с       

t2(10), с       

t3(10), с       

Т(θ), с       

 

Выясните, в каком диапазоне амплитуд колебания являются изохронны-

ми  с точностью до 0,5°о; до 1%.  

2. Оцените влияние затухания на период колебаний. С этой целью опре-

делите число колебаний N, за которое амплитуда колебаний уменьшается при-

мерно в три раза. Измерения проведите при трех различных положениях опор-

ной призмы от а≈ l/10 до а≈ l/2.   

Если  найденные значения N10, то влиянием затухания на  период ко-

лебаний можно  пренебречь.  

3. Постройте по точкам график теоретически ожидаемой зависимости 

периода колебаний стержня от параметра ε=a/l в области значений 0 < ε  1/2.     

График  стройте в координатной плоскости  х =ε, y=T/T0. 

    Для построения графика найдите с помощью микрокалькулятора зна-

чения у (х) по формуле (51) не менее чем при десяти различных  значениях х в 

интервале 0 < х ≤1/2. Результаты вычислений занесите в таблицу 2. 
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Таблица 2  Теоретические данные 

х           

у(х)           

 

   4. Проведите экспериментальную проверку соотношений (49) и (51). 

Для этого, исходя из вида построенного графика, выберите 10 значений пара-

метра ε=a/l, для которых целесообразно провести измерение соответствующего  

им периода колебаний  Т (ε). 

   Проведите измерение периода колебаний Т для выбранных значений 

ε=a/l. При измерениях периода колебаний особенно в области малых ε=a/l 

(ε0,1) следует внимательно следить за тем, чтобы амплитуда колебаний не вы-

ходила из найденного в п. 1 диапазона изохронности. Результаты измерений за-

несите в таблицу 3. 

 

Таблица 3 Экспериментальные данные 

а, м х=a/l Т, с y=T/T0 

    

    

    

    

    

    

    

    

    

    

 

   Нанесите в плоскости х=ε, у == Т/То полученные экспериментальные 

точки с учетом погрешности, с которой они определены. 

Сравните полученные графики. Сделайте вывод. 

6 Содержание отчета 

6.1 Название лабораторной работы. 

6.2 Цель лабораторной работы. 

6.3 Краткое описание оборудования. 

6.4 Рисунок 7. Принципиальная схема установки. 

6.5  Используемые в работе формулы: (46) - (51) 

6.6 Краткое описание   хода работы. 

6.7 Проверка изохронности колебаний маятника. Определение периода 

колебаний для 5—6 значений амплитуды в пределах  от 2-3° до 10-15°. 

6.8 Таблица 1.  
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6.9 Оценка влияния затухания на период колебаний.  

6.10 Расчѐт с помощью микрокалькулятора значения у(х) по формуле 

(51) не менее чем при десяти различных  значениях х в интервале 

0<х≤1/2.  

6.11 Таблица 2.  
6.12 График полученной по результатам расчѐтов  функции y(x)в коор-

динатной плоскости  х =ε, y=T/T0.  

6.13 Таблица 3.  
6.14 График полученной по результатам измерений в координатной 

плоскости  х =ε, y=T/T0.    

6.15 Сделайте вывод.  

7 Контрольные вопросы и задания  

1. Что называется абсолютно твѐрдым телом? Какое уравнение описыва-

ет вращение твѐрдого тела относительно неподвижной оси?  

2. Дайте определения момента сил, момента инерции, момента импульса 

твѐрдого тела относительно некоторой неподвижной оси. 

3. Дайте определение угла поворота, угловой скорости и углового уско-

рения.  

4. Сформулируйте закон сохранения момента импульса.  

5. Сформулируйте и докажите теорему Гюйгенса – Штейнера.  

6. Какая физическая величина служит основной динамической характе-

ристикой вращающегося тела?  

7. Что называется моментом инерции твѐрдого тела относительного не-

которой оси? От чего зависит момент инерции тела? Какую роль он 

играет во вращательном движении? 

8. Условия возникновения колебаний. Что называется колебаниями? Ка-

кие колебания называют гармоническими? 

9. Виды маятников. Дайте определение физического маятника? 

10. Дайте определение приведенной длины физического маятника? 

11. Чему равен период колебаний физического маятника (формула). 

12. Что такое изохронность маятника? 

13. Уравнение движения физического маятника? 

14. Что такое добротность  маятника и время релаксации маятника? 

15. Чему равны периоды вращения стрелок часов секундной? минутной? 

часовой? 

16. На основании измеренных в работе данных оцените добротность и ло-

гарифмический декремент затухания маятника. 

17. Стержень отводят на угол =450 из положения равновесия и без 

толчка отпускают. Оцените силу давления  маятника на опорную пло-

щадку в тот момент, когда он проходит положение равновесия. Длина 

стержня l=60 см, его масса 355 г . 
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