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1. Программа курса «Специальные разделы (главы) математики» 

 Кратные и криволинейные интегралы 

 Интеграл по плоскому замкнутому контуру. Формула Грина. 

 Элементы теории поля. Производная функции многих переменных 

по направлению, градиент. Поток вектора через квадрируемую по-

верхность. Формула Остроградского – Гаусса. Циркуляция вектора 

по замкнутому контуру в трёхмерном пространстве. Формула Сто-

кса. 

 Ряды Фурье и гармонический анализ. Ортогональные системы 

функций. Разложение функции в тригонометрический ряд по фор-

муле Эйлера  - Фурье. Комплексная форма ряда Фурье. Преобразо-

вание Фурье. 

 Элементы операционного исчисления. Преобразование Лапласа и 

его свойства. Решение линейных краевых задач операционным ме-

тодом. 
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2.  Краткие указания к выполнению контрольной работы №1 по дисциплине 

«Специальные разделы (главы) математики»  

Контрольная работа №1 состоит из 7 заданий. В каждом задании вве-

дены два параметра m  (номер предпоследней цифры студенческого билета) 

и p  (номер последней цифры студенческого билета). Если указанная цифра 

«0», то соответствующий параметр следует положить «1». 

Целью контрольной работы №1 является проверка знаний, умений и 

навыков по следующим разделам дисциплины «Специальные разделы (гла-

вы) математики»: 

 кратные интегралы; 

 криволинейные интегралы, формула Грина; 

 производная по направлению и градиент функции многих переменных; 

 поток вектора через поверхность, формула Остроградского; 

 циркуляция вектора в пространственном случае, формула Стокса; 

 разложение функции в тригонометрический ряд Эйлера - Фурье; 

 решение линейной краевой задачи через преобразование Лапласа. 
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2.  Варианты заданий 

 

Задание № 1 

Вычислить   
D

dxdyymxp 221 , где область D образована линия-

ми: 

1,0,0 
p

y

m

x
yx  

 

Задание № 2 

Вычислить интеграл по замкнутому контуру   
L

dypxdxmxxy 2

, где 

контур L образован линиями: 1) отрезок параболы 10,2  xxy , 

2) отрезок прямой 10,1  xy , 3) отрезок оси ординат 10  y .   

Направление обхода контура – против часовой стрелки; начальная точка – 

произвольна. Интеграл вычислить непосредственно и с помощью форму-

лы Грина. 

 

Задание № 3 

Дано скалярное  поле  
222

1
,,

zyx
zyx


  и 2 точки    1,,0,1,0, pBmA . 

Найти угол, образованный градиентом скалярного поля в точках А и В. 

 

Задание № 4 

Дано векторное поле   222,, kzjpyimxzyxF 


. Используя формулу 

Остроградского – Гаусса найти поток вектора через верхнюю полусферу 

S: 0,2222  zrzyx . 
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Задание № 5 

Дано векторное поле        yxkxzjzyizyxF ,,


. Исполь-

зуя формулу Стокса найти циркуляцию вектора по контуру 

L: pzxmyx  ,222 . 

 

Задание № 6 

Разложить в тригонометрический ряд функцию 

 











xpxm

xm
xf

0,

0,
. 

 

 

Задание № 7 

Решить операционным методом краевую задачу: 

     
   







00,10

43

yy

mpxxyxyxy
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4. Примеры решения 

 

 

К  з а данию  №1  

Пусть номер студенческого билета оканчивается на 07. Тогда полагаем 

7,1  pm . 

Далее получаем    
 

 


dyyxdxdxdyyx
D

x17

0

22
1

0

22 7171  

 

    





  






 





dxxxdx yyxy
xy

y

1

0

33

17

0

1

0

17
3

22
1732

3

1
7  

 
3

1
632

3

722
7227227

3

722
7

1

0

3
3

233
3








 



  dxxxx  

Отв.: 
3

1
632 . 

 

К  з а данию  №2  

 

Пусть 2,3  pm . Рекомендуется сделать эскиз контура и ограниченной 

им области плоскости. 

Получаем   
L

dyxdxxxyI 223 . В нашем случае 
22,3 xQxxyP  . 

Находим частные производные xQxP yx 4,  . Сводя двойной интеграл к 

повторному, внешний возьмём по x , внутренний по y : 

     
1 1

0

2
1

0 2 4

3

4

3

2

3
134

x

dxxxdyxxdxI . 

При непосредственном вычислении по контуру за исходную точку примем 

начало координат; контур и, соответственно интеграл, разобьём на 3 части: 
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отрезок параболы, горизонтальный участок, вертикальный участок. Для пер-

вого участка полагая dxdyxy 2,2  , получаем 

 
4

1

2

3

4

5
43

1

0

33

1   dxxxxI . Для второго полагаем 0,1  dyy с учё-

том направления движения по контуру получаем   123
1

0

0

1
2   xdxdxxxI . 

На третьем вертикальном участке 0,0  dxx , следовательно и 03 I . 

Окончательно получаем 
4

3
321  IIII . 

Отв.: 
4

3
I . 

 

К  з а данию  №3  

 

Пусть 2,3  pm . Записываем координаты точек А(3,0,1), В(0,2,1). 

Найдём частные производные скаляра по каждой из координат: 

      2/32222/32222/3222
,,

zyx

z

zyx

y

zyx

x
zyx 







  . 

Далее находим градиент в точках А и В: 

   
 

     
 

 
55

1,2,0

12

1,2,0
,

1010

1,0,3

13

1,0,3
2/322/32









 BA  . Косинус ис-

комого угла найдём как отношение скалярного произведения двух получен-

ных векторов к произведению длин векторов: 

      
    25

1

5

1

10

1

5050

1,
cos

1







 







BA

BA


 . 

Отв.: .
25

1
arccos 






  
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К  з а данию  №4  

 

Пусть 2,3  pm . Запишем поток в виде поверхностного интеграла II ро-

да: dxdyzdzdxydydzxJ
S

222 23  . В плоскости основания сферы 

  0,0  dzzXOY . Следовательно, поток через любую площадку в этой 

плоскости равен нулю. Добавив нулевое слагаемое, переформулируем поток 

в виде интеграла по замкнутой поверхности, образуемой верхней полу сфе-

рой  её плоским основанием:  
S

dxdyzdzdxydydzxJ 222 23 . Согласно 

теореме Остроградского – Гаусса этот интеграл равен интегралу дивергенции 

вектора по объёму, ограниченному полученной замкнутой поверхностью, т.е. 

  
SV

dVzyxJ 246 . В сферических координатах 

 20,
2

0,0  r  интеграл примет вид: 

               
r

dddJ
0

2

0

2

0

3 sinsincos2coscos3cos2




 . Производя ин-

тегрирование и используя факт     
 2

0

2

0

0sincos dxxdxx ,окончательно полу-

чаем 4

2

1
rJ  . 

Отв.: 4

2

1
rJ  . 

 

К  з а данию  №5  

 

Пусть 2,3  pm . Имеем контур 2,922  zxyx .Найдём ротор 

векторного поля 
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     2,2,2, 













yxxzzy
xxx

kji

FFrot


. Согласно теореме Стокса 

циркуляция по замкнутому контуру равна потоку ротора вектора через по-

верхность, натянутую на контур. Поверхностью является плоское сечение 

кругового цилиндра. Запишем соответствующий интеграл через определи-

тель: 

dxdy

y

z
x

z
J

xzyx











2,922

10

01

222

. Подставляя 0,1 





y

z

x

z
 и переходя 

к полярным координатам, получаем 2
2

00

44 mddJ
m




  . 

Отв.: 24 mJ  . 

К  з а данию  №6  

 

Пусть 2,3  pm . Имеем функцию  











xx

x
xf

0,23

0,3
. По форму-

лам Эйлера – Фурье вычислим коэффициенты тригонометрического ряда 

  
















  


623
11

0
0 xdxdxdxxfa , 

        





  








  0

cos2cos3
1

cos
1

xdxkxdxkxdxxfkxak . Первый инте-

грал равен нулю. Второй, беря по частям, находим 

         
0,

11
cos

1
sinsin

1
cos

202
0

0
0










   k

k
kx

k
dxkxxkx

k
xdxkx

k







. 
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В полученной последовательности отличны от нуля только нечётные члены. 

Таким образом, формула общего члена для косинусов примет вид: 

  .0,
12

4
2 


 k

k
ak 

 

Для второй последовательности коэффициентов, заменяя косинус на синус, 

получим: 

        





  








  0

sin2sin3
1

sin
1

xdxkxdxkxdxxfkxbk . Первый интеграл 

  по прежнему равен нулю. Второй, беря по частям, находим 

         
.

sin
coscoscos

1
sin

0

2
0

0
0







k

kx
k

k
dxkxxkx

k
xdxkx 









 


   

Второе слагаемое в последнем выражении равно нулю, первое составляет 

 
k

k 11  . Формула общего члена примет вид  
k

b k

k

2
1 . Таким образом, 

тригонометрический ряд составит: 

    
 

 









11

2

sin
2

12

12cos4

2
3~

k

kx

k

xk
xf

k


.  

Отв.:     
 

 









11

2

sin
2

12

12cos4

2
3~

k

kx

k

xk
xf

k


. 

 

К  з а данию  №7  

 

Пусть 2,3  pm . 

Получаем
     
   







00,10

3243

yy

xxyxyxy
. 

Находим преобразование Лапласа обеих частей дифференциального уравне-

ния с учётом начальных условий : 
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            
pp

pYyppYypypYp
32

40300
2

2    или 

   3
32

43
2

2  p
pp

pppY . Откуда находим    
432 


pp

pQ
pY , 

где  pQ  - правая часть последнего уравнения. Далее, разлагая знаменатель 

на простые дроби, получаем 













 1

1

4

1

5

1

43

1
2 pppp

. Полагая 

   tt ee
pp

Ltu  




















 41

5

1

1

1

4

1

5

1
, получаем 

             
tt

dudduutututy
0 00

2303


 . Подставляя   00 u и произве-

дя все указанные вычисления, находим  
8

45

2

1

5

1

40

3 4   teety tt . Непосред-

ственной подстановкой убеждаемся, что полученное решение обращает диф-

ференциальное уравнение в тождество и удовлетворяет начальным условиям. 

 

Отв.:  
8

45

2

1

5

1

40

3 4   teety tt . 

 

 

 

 

 

 

 

 

 

 

 


