
1

Лабораторная работа № 1

РАЗРАБОТКА ПРОЕКТА ПО КЛАССИФИКАЦИИ РУКОПИСНЫХ ЦИФР

НА ПЛАТФОРМЕ TEACHABLE MACHINE

Время выполнения – 8 часов (аудиторная работа – 2 часа, самостоятельная

работа – 6 часов).

Цель работы: освоить алгоритм классификации изображений с использо-

ванием платформы Teachable Machine и датафреймов, размещенных на сайте

Kaggle.

Задачи работы

1. Изучить возможности платформы визуального программирования

Teachable Machine.

2. Научиться находить готовые наборы данных для машинного обучения на

платформе Kaggle.

3. Освоить алгоритм классификации изображений с использованием

Teachable Machine и готовых датасетов Kaggle.

Перечень обеспечивающих средств

1. Платформа Kaggle для поиска и загрузки наборов данных для машинного

обучения.

2. Платформа визуального программирования Teachable Machine.

3. Персональный компьютер с доступом в интернет.

4. Современный веб-браузер для работы с платформами (например, Google

Chrome).

2

Общие теоретические сведения

Kaggle – это открытая платформа для работы с данными и машинным обу-

чением. На платформе доступны готовые наборы данных, инструменты для ана-

лиза, а также возможность взаимодействия с другими специалистами.

Teachable Machine – это онлайн-инструмент для создания моделей машин-

ного обучения, предназначенных для распознавания изображений, звуков и поз

человека. Основное преимущество платформы заключается в её доступности:

для работы с инструментом не требуется программирование, а процесс построе-

ния модели осуществляется через интуитивно понятный интерфейс.

1. Регистрация на Kaggle и подготовка данных.

Зарегистрируйтесь на платформе Kaggle (https://www.kaggle.com).

Перейдите в раздел Datasets / Classification и найдите набор данных

«Handwritten Digits 0–9» (рис. 1) или воспользуйтесь прямой ссылкой:

https://www.kaggle.com/datasets/olafkrastovski/handwritten-digits-0-9.

Рис. 1. Платформа Kaggle

Скачайте архив набора данных на локальный диск и разархивируйте его. В

случае невозможности скачать набор данных с сайта Kaggle.com вы можете за-

грузить его по ссылке: https://drive.google.com/file/d/15nY2-p-iSZQPWe-9-

cEslNJD9pzx_axR/view?usp=drive_link.

https://www.kaggle.com/
https://www.kaggle.com/datasets/olafkrastovski/handwritten-digits-0-9
https://drive.google.com/file/d/15nY2-p-iSZQPWe-9-cEslNJD9pzx_axR/view?usp=drive_link
https://drive.google.com/file/d/15nY2-p-iSZQPWe-9-cEslNJD9pzx_axR/view?usp=drive_link

3

После этого в вашей рабочей папке появятся 10 папок, каждая из которых

содержит изображения одной из цифр от 0 до 9.

2. Создание модели на платформе Teachable Machine.

Перейдите на платформу Teachable Machine

(https://teachablemachine.withgoogle.com).

Нажмите кнопку «Начать» и выберите «Новый проект с изображениями /

Стандартная модель изображения».

Создайте классы для каждой цифры (0–9) и загрузите в них соответствую-

щие изображения из набора данных Kaggle.

3. Обучение модели.

В разделе дополнительных параметров обучения обратите внимание на па-

раметр «Эпохи». Эпоха – это один полный проход всех данных через модель.

Увеличение числа эпох обычно улучшает качество модели, но может занять

больше времени.

Нажмите «Обучить», чтобы запустить процесс обучения модели (рис. 2).

Рис. 2. Обучение модели по распознаванию изображений рукописных цифр

4. Тестирование модели.

Выберите любое изображение цифры из набора данных и откройте его в

графическом редакторе (например, Paint).

Удалите изображение цифры ластиком и нарисуйте новую цифру, затем со-

храните файл в формате JPG (рис. 3).

https://teachablemachine.withgoogle.com/

4

Загрузите созданное изображение в обученную модель.

Оцените точность распознавания новой цифры моделью (рис. 4).

Рис. 3. Изображение рукописной цифры

Рис. 4. Точность распознавания нарисованной цифры

5. Анализ результатов.

Откройте раздел «Дополнительные сведения» в Teachable Machine и выбе-

рите опцию «Вычислить точность на каждый класс» (рис. 5).

Программа автоматически разделит загруженные изображения каждого

класса на две выборки: обучающую и тестируемую.

5

Обучающая выборка (80 % изображений) используется для обучения мо-

дели.

Тестируемая выборка (20 % изображений) применяется для проверки её

точности.

Во время обучения нейросеть принимает на вход изображения из обучаю-

щей выборки, а на выходе – соответствующие им названия классов (метки). Мо-

дель формирует взаимосвязь между входными изображениями и их классами.

В процессе тестирования нейросети на вход подаются изображения из те-

стируемой выборки, но метки классов при этом не предоставляются. Нейросеть

самостоятельно предсказывает класс для каждого изображения.

Предсказанные моделью классы сравниваются с фактическими метками из

тестируемой выборки.

Ключевые метрики:

− SAMPLES – количество изображений, использованных для тестирования;

− ACCURACY – доля изображений, для которых модель правильно

определила класс.

Этот процесс позволяет оценить, насколько точно обученная модель справ-

ляется с классификацией изображений из ранее незнакомой выборки.

Рис. 5. Точность обученной модели

6

6. Сохранение проекта.

Сохраните проект на Google Диск с именем по шаблону: Фамилия_студента

Название_группы (например, Иванов БИ-23).

Для сохранения откройте меню (символ ≡) и выберите «Сохранить проект

на Диск».

Задания

В заданиях используется условное обозначение: N – порядковый номер пер-

вой буквы фамилии студента согласно русскому алфавиту (например, А = 1, Б =

2 и т. д.).

Задание 1. Распознавание рукописных цифр.

1. Обучите модель на платформе Teachable Machine для распознавания

рукописных цифр, используя набор данных «Handwritten Digits 0 – 9».

2. Установите количество эпох, равное N + 50.

3. После обучения распознайте две рукописные цифры, соответствующие

порядковому номеру первой буквы фамилии студента (например, для буквы «А»

это 0 и 1).

 А Б В Г Д Е Ё Ж З

Цифры
0 0 0 0 0 0 0 0 0

1 2 3 4 5 6 7 8 9

 И Й К Л М Н О П Р

Цифры
1 1 1 1 1 1 1 1 1

2 2 3 4 5 6 7 8 9

 С Т У Ф Х Ц Ч Ш Щ

Цифры
2 2 2 2 2 2 2 3 3

3 4 5 6 7 8 9 4 5

 Ъ Ы Ь Э Ю Я

Цифры
3 3 3 3 4 4

6 7 8 9 5 6

7

Задание 2. Распознавание арифметических знаков.

1. Скачайте с сайта Kaggle набор данных «Basic arithmetics dataset»

(https://www.kaggle.com/datasets/simepavlic/basic-arithmetics-dataset или

https://drive.google.com/file/d/1xdJxtH6ZfPKfjMnvOHGfBM1BtOx5UBdZ/view?us

p=sharing).

2. Создайте на платформе Teachable Machine новый проект по

распознаванию следующих арифметических знаков:

− division (деление);

− left_bracket (левая скобка);

− minus (минус);

− plus (плюс);

− right_bracket (правая скобка);

− multiplication (умножение).

3. Установите количество эпох, равное 70 – N.

4. После обучения распознайте арифметический знак, соответствующий

порядковому номеру первой буквы фамилии студента (например, для буквы «А»

это символ деления).

Знак : деле-

ние

(левая

скобка

- минус + плюс) правая скобка * умножение

Буква

А Б В Г Д Е

Ё Ж З И К Л

М Н О П Р С

Т У Ф Х Ц Ч

Ш Щ Ы Э Ю Я

Контрольные вопросы

1. Какие этапы включают процесс обучения модели в Teachable Machine?

2. Что такое эпоха в контексте машинного обучения?

3. Как параметры выборок (обучающей и тестирующей) влияют на качество

модели?

https://www.kaggle.com/datasets/simepavlic/basic-arithmetics-dataset
https://drive.google.com/file/d/1xdJxtH6ZfPKfjMnvOHGfBM1BtOx5UBdZ/view?usp=sharing
https://drive.google.com/file/d/1xdJxtH6ZfPKfjMnvOHGfBM1BtOx5UBdZ/view?usp=sharing

8

4. Какие преимущества и ограничения имеет использование Teachable

Machine для решения задач машинного обучения?

Содержание отчета

1. Титульный лист

2. Цель работы.

3. Формулировка задания.

4. Описание результатов выполнения задания в текстовом и графическом

виде (скриншоты).

5. Ответы на контрольные вопросы.

6. Подробный вывод о проделанной работе.

1

Лабораторная работа № 2

ПОСТРОЕНИЕ АЛГОРИТМА КЛАССИФИКАЦИИ ЦВЕТОВ ИРИСА С

ПОМОЩЬЮ ВИДЖЕТОВ НА ПЛАТФОРМЕ ORANGE DATA MINING

Время выполнения – 8 часов (аудиторная работа – 2 часа, самостоятельная

работа – 6 часов).

Цель работы: изучить механизм решения задачи классификации объектов

с использованием технологий искусственного интеллекта на платформе Orange

Data Mining.

Задачи работы

1. Освоить навыки работы со специализированной платформой визуального

программирования Orange Data Mining.

2. Ознакомиться со структурой датасетов, применяемых в задачах машин-

ного обучения.

3. Изучить этапы разработки и обучения модели классификации объектов с

помощью виджетов на платформе.

Перечень обеспечивающих средств

1. Программное обеспечение Orange Data Mining.

2. Датасет для работы Iris Dataset, предустановленный в платформе.

Общие теоретические сведения

Orange Data Mining – это платформа для визуализации данных, процессов

машинного обучения и интеллектуального анализа данных.

Основными элементами платформы являются виджеты, которые выпол-

няют отдельные функции:

− подготовка данных для машинного обучения;

2

− визуализация (отображение) этих данных в виде удобных для восприятия

таблиц;

− деление данных на обучающую и тестируемую выборки;

− выбор алгоритма обучения модели;

− обучение модели на основе выбранного алгоритма;

− определение качества модели.

Создание процесса машинного обучения осуществляется за счёт соедине-

ния виджетов, где входные и выходные сигналы определяют передачу данных

между ними.

Рассмотрим основные этапы работы в Orange Data Mining.

1. Установка Orange Data Mining.

Перейдите на сайт Orange Data Mining (https://orangedatamining.com/down-

load/). Скачайте и установите последнюю версию программы для вашей опера-

ционной системы. После установки запустите программу.

2. Работа с набором данных Iris.

Создайте новый рабочий процесс через виджет New Workflow.

Для загрузки набора данных можно воспользоваться несколькими видже-

тами.

Виджет File считывает данные из файла или загружает по URL.

Виджет Datasets извлекает выбранный набор данных с сервера, загружает

его в локальную память и становится доступен без подключения к Интернету.

Каждый из доступных набором данных снабжен описанием (количество объек-

тов в наборе, количестве характеристик объектов и т. д.).

Перетащите виджет Datasets на холст.

Дважды щёлкните на виджет Datasets и выберите набор данных Iris.

Набор данных Iris предназначен для решения задачи классификации объек-

тов с использованием технологии машинного обучения. Набор данных о цветках

ириса содержит информацию о 150 цветках. Каждый цветок характеризуется 5

характеристиками, включая класс (метку), к которому цветок относится. Все

цветки ириса подразделяются на три класса.

3

Каждый виджет имеет входные и выходные сигналы. Сигнал определяет

данные, которые поступают на вход виджету или являются его результатом. При

получении входного сигнала виджет выполняет определенные действия и от-

правляет соответствующие сигналы связанным с ним виджетам.

Виджет Datasets имеет выходной сигнал Data, который поступает в качестве

входного сигнала на виджет Data Table.

3. Отображение данных в таблице.

Виджет Data Table выводит данные из файла на экран в виде удобной для

восприятия таблицы. Перетащите виджет Data Table на холст.

Соедините виджеты Datasets и Data Table (сигнал Data). При создании связи

между виджетами входной и выходной сигналы выбираются автоматически. При

обновлении файла Datasets обновляется Data Table. Связь между двумя видже-

тами подписывается над стрелкой (рис. 1).

Рис. 1. Установление связи между виджетами

Дважды щёлкните на Data Table, чтобы просмотреть содержимое набора

данных.

4. Визуализация данных.

Раздел Visualization объединяет виджеты, используемые для представления

наборов данных в виде графиков:

− виджет Box Plot показывает медиану, нижний и верхний квантили,

минимальное и максимальное значение выборки и выбросы;

− виджет Distributions для построения диаграммы частотного

распределения признака;

− виджет Heat Map для построения тепловой диаграммы;

− виджет Venn Diagram для построения диаграммы Венна;

https://ru.wikipedia.org/wiki/%D0%9A%D0%B2%D0%B0%D0%BD%D1%82%D0%B8%D0%BB%D1%8C#%D0%9C%D0%B5%D0%B4%D0%B8%D0%B0%D0%BD%D0%B0_%D0%B8_%D0%BA%D0%B2%D0%B0%D1%80%D1%82%D0%B8%D0%BB%D0%B8

4

− виджет Sieve Diagram для построения диаграммы Ридвиля и Шюпбаха;

− виджет Pythagorean Tree и Pythagorean Forest для построения деревьев

Пифагора;

− виджет Mosaic Display для построения мозаичной диаграммы;

− виджет Tree Viewer для визуального представления древовидных

структур;

− виджет FreeViz и Radviz для визуализации многомерных данных.

Виджет Scatter Plot позволяет строить двумерные графики по выбранным

признакам.

Виджет Scatter Plot имеет три входных сигнала:

− связь Data используется для отображения на графике всех данных;

− связь Data Subset используется для отображения на графике

подмножества данных;

− связь Features.

Перетащите виджет Scatter Plot на холст.

Соедините его с Data Table (сигнал Data). В качестве осей выберите при-

знаки ириса: petal length (длина лепестка) и sepal length (длина чашелистика).

Постройте график распределения данных (рис. 2).

Рис. 2. Представление набора данных в виде графика

5

5. Обучение моделей классификации.

Раздел Model объединяет виджеты алгоритмов, с помощью которых осу-

ществляется обучение модели (рис. 3).

Перетащите на холст три виджета: kNN (метод k-ближайших соседей), Lo-

gistic Regression (метод логистической регрессии), Random Forest (метод случай-

ных деревьев).

Самый простой из перечисленных методов классификации – это метод k-

ближайших соседей. В соответствие с данным методом объект (цветок ириса)

относится к тому классу, который наиболее распространён среди k-соседей дан-

ного объекта, классы которых уже известны.

Рис. 3. Методы классификации объектов

На рис. 4 новый объект (зелёный круг) классифицируется как красный тре-

угольник, если k = 3, или как синий квадрат, если k = 5.

6

Рис. 4. Метод k-ближайших соседей

Соедините виджет Datasets с этими виджетами (сигнал Data).

6. Оценка качества моделей.

Раздел Evaluate объединяет виджеты для тестирования качества алгоритмов

построения модели.

Для тестирования создаваемой модели воспользуйтесь виджетом Test and

Score.

Виджет Test and Score принимает следующие входные сигналы:

- связь Data соединяет виджет Test and Score с виджетом Datasets для за-

грузки данных, на которых будет обучена модель;

- связь Test Data соединяет виджет Test and Score с виджетом Datasets для

загрузки данных для проверки модели;

- связь Learner соединяет виджет Test and Score с виджетами алгоритмов

обучения модели.

Виджет Test and Score позволяет тестировать классификаторы несколькими

способами.

1. k-Fold Cross Validation (перекрестная проверка на k группах). Набор дан-

ных перемешивается случайным образом и подразделяется на k групп. Состав

групп в течение всей процедуры кроссвалидации остается неизменным. Одна

группа используется для тестирования модели, остальные группы (k – 1) – для

7

обучения модели с помощью выбранного алгоритма классификации. Для каж-

дого из сравниваемых алгоритма классификации тестирующая и обучающие

группы подбираются случайным образом.

2. Random sampling (случайная разбивка в заданном соотношении). Набор

данных подразделяется случайным образом на обучающую и тестируемую вы-

борки в заданном соотношении. На обучающей выборке осуществляется обуче-

ние модели, на тестируемой выборке – проверка надежности модели. Тестирова-

ние повторяется заданное количество раз, результаты тестирований усредня-

ются.

Перетащите виджет Test and Score на холст.

Соедините виджеты алгоритмов классификации (kNN, Logistic Regression,

Random Forest) с виджетом Datasets связью Data, а с виджетом Test and Score

связью Learner. Соедините виджет Datasets с виджетом Test and Score связью

Data.

В качестве способа проверки в параметрах виджета Test and Score выберите

способ Random sampling.

Размер обучающей выборки установите равным 80 %, количество тестиро-

ваний равным 10 (рис. 5).

Рис. 5. Оценка надежности алгоритмов классификации

8

Сравните алгоритмы по показателям:

− AUC (соотношение между долей правильно классифицированных

объектов и долей ошибочно классифицированных объектов);

− Classification accuracy (отношение количества правильно

классифицированных объектов к общему количеству объектов);

− F1 (соотношение между показателями точности Precision и полноты

Recall, вычисляемое по формуле

F1 = 2*(Precision*Recall)/(Precision+Recall),

где Precision – доля объектов, фактически принадлежащих к данному классу, по

отношению ко всем объектам, которые модель классифицировала в качестве

принадлежащих к этому классу;

Recall – доля объектов, которые модель классифицировала в качестве при-

надлежащих к этому классу, по отношению ко всем объектам, фактически

принадлежащих к данному классу.

7. Построение матрицы несоответствий.

Для большей наглядности результатов сравнения алгоритмов классифика-

ции можно использовать виджет Confusion Matrix.

Добавьте на холст виджет Confusion Matrix, соедините его с Test and Score и

постройте матрицу несоответствий для каждого алгоритма (рис. 6).

Рис. 6. Матрица несоответствий

9

8. Создание и модификация нового набора данных.

Создайте новый набор данных из цветков ириса на основе датасета Iris. Для

этого перетащите виджет Data Save на холст, соедините его с виджетом Datasets

с помощью связи Data и сохраните на локальном диске.

Откройте сохраненный файл с помощью текстового редактора и оставьте в

файле количество строк, соответствующее номеру варианта + 10. Остальные

строки удалите. Удалите также названия классов объектов. Данные в строках не-

много измените (рис. 7).

Сохраните новый набор данных на локальном диске.

Рис. 7. Сохранение набора данных Iris

9. Загрузка и использование нового набора данных.

Перетащите на холст виджет File и загрузите новый набор данных.

Перетащите на холст виджет Data Table и соедините его с виджетом File.

Выведите на экран новый набор данных (рис. 8).

Рис. 8. Табличная форма нового набора данных

10. Классификация новых объектов.

10

Перетащите на холст виджет Prediction из раздела Evaluate. Соедините ви-

джет Prediction с виджетом Data Table (1) связью Data. Соедините виджет Pre-

diction с виджетами kNN, Logistic Regression, Random Forest. Посмотрите резуль-

таты классификации новых объектов (рис. 9).

Рис. 9. Результаты классификации новых объектов

11. Сохранение рабочего процесса.

Сохраните созданный рабочий процесс на локальный диск через меню File

/ Save Workflow.

Задания

В заданиях используются условные обозначения:

− N – порядковый номер первой буквы фамилии студента согласно

русскому алфавиту;

− M – порядковый номер первой буквы имени студента согласно русскому

алфавиту.

Задание 1. Работа с набором данных Iris.

В разработанном с помощью виджетов рабочем процессе:

− создайте новый набор данных из цветков ириса на основе датасета Iris;

− количество объектов (цветков ириса) в новом наборе данных должно

равняться N;

− в параметрах метода kNN установите количество ближайших соседей

равным M.

− проведите классификацию новых объектов (цветков ириса).

11

Задание 2. Работа с набором данных Wine.

Создайте новый рабочий процесс с набором данных Wine:

− создайте новый набор данных из бутылок вина на основе датасета Wine;

− количество объектов (бутылок вина) в новом наборе данных должно

равняться N;

− в параметрах метода kNN установите количество ближайших соседей

равным M;

− проведите классификацию новых объектов (бутылок вина).

Контрольные вопросы

1. Что представляет собой платформа Orange Data Mining?

2. Перечислите основные разделы виджетов, доступные на платформе.

3. Какие виджеты используются для загрузки наборов данных?

4. Как подключить виджет для визуализации данных?

5. Какие виджеты можно использовать для разделения данных на

выборки?

6. Для чего используется виджет Scatter Plot?

7. Перечислите другие виджеты из раздела Visualization, которые можно

использовать для анализа набора данных.

8. Как работает метод k-ближайших соседей?

9. Чем отличаются методы Logistic Regression и Random Forest?

10. Какие параметры можно настроить в виджете Test and Score?

11. Какие методы оценки качества модели доступны в Orange?

12. Что такое метрики AUC, Classification Accuracy и F1, и как их

интерпретировать?

Содержание отчета

1. Титульный лист

2. Цель работы.

3. Формулировка задания.

12

4. Описание результатов выполнения задания в текстовом и графическом

виде (скриншоты).

5. Ответы на контрольные вопросы.

6. Подробный вывод о проделанной работе.

1

Лабораторная работа № 3

РАЗРАБОТКА МОДЕЛИ МАШИННОГО ОБУЧЕНИЯ ДЛЯ РЕШЕНИЯ

ЗАДАЧИ КЛАССИФИКАЦИИ С ИСПОЛЬЗОВАНИЕМ БИБЛИОТЕК,

МОДУЛЕЙ И ФРЕЙМВОРКОВ PYTHON

Время выполнения – 8 часов (аудиторная работа – 2 часа, самостоятельная

работа – 6 часов).

Цель работы: решение задачи классификации объектов на примере цветков

ириса и бутылок вина с помощью программного кода, написанного на языке

Python в блокнотах на платформе Google Colab.

Задачи работы

1. Изучить библиотеки, модули и фреймворки Python, применяемые для ма-

шинного обучения.

2. Освоить навыки работы на платформе Google Colab.

3. Научиться решать задачи классификации объектов с использованием про-

граммного кода на языке Python.

Перечень обеспечивающих средств

1. Платформа Google Colab.

2. Библиотеки, модули и фреймворки Python для машинного обучения.

Общие теоретические сведения

Jupyter Notebook – это среда для разработки и выполнения программного

кода и его отдельных фрагментов. Она работает офлайн.

Google Colab (далее Colab) – облачный сервис, который позволяет исполь-

зовать файлы Jupyter Notebook без их установки на локальный компьютер.

Файлы, созданные в Jupyter Notebook или Colab, имеют расширение .ipynb

и называются блокнотами (тетрадями, ноутбуками). В них можно писать код на

2

различных языках программирования, однако для задач искусственного интел-

лекта чаще всего используется Python. Популярность Python обусловлена нали-

чием множества библиотек и фреймворков для работы с искусственным интел-

лектом и машинным обучением.

Блокноты Colab хранятся в облаке Google Диск, в папке Colab Notebooks,

которая создаётся автоматически. Для работы в Colab требуется аккаунт Google.

Рассмотрим подробно решение задачи классификации ирисов с использова-

нием машинного обучения и программного кода на языке Python. Создаваемая

модель будет копией модели, разработанной в рамках предыдущей лабораторной

работы и реализованной с помощью виджетов на платформе Orange Data Mining.

Для создания модели потребуются модули, фреймворки и датасеты библио-

теки scikit-learn (версия 1.2.2).

1. Работа с блокнотом Colab.

Перейдите на сайт Google Colab (https://colab.research.google.com/) и выбе-

рите опцию New Notebook (Создать новый блокнот).

Войдите в аккаунт Google.

В блокноте информация размещается в ячейках, которые бывают двух ти-

пов: кодовые и текстовые. Текстовые ячейки используются для написания по-

яснений к программному коду, отображения изображений, видео и т. д. Кодовые

ячейки используются для написания и выполнения программного кода.

Чтобы добавить кодовую или текстовую ячейку в Colab, нужно выбрать со-

ответствующий пункт в меню Вставка или подвести указатель мыши к середине

нижней границы ячейки и выбрать одну из кнопок: «+ Код» или «+ Текст».

В блокноте создайте текстовую ячейку, в которой напишите текст без кавы-

чек: «Лабораторная работа студента группы … Фамилия, имя», указав свои дан-

ные: номер группы, фамилию и имя.

Далее мы будем создавать кодовые ячейки, в которые будем вводить про-

граммный код. Также в кодовых ячейках мы будем указывать комментарии к

программному коду. Они начинаются с символа #.

3

После ввода программного кода необходимо его запускать для получения

результата.

Установите пакет scikit-learn. Если библиотека уже установлена, этот шаг

можно пропустить.

загружаем библиотеку scikit-learn

!pip install scikit-learn

2. Установка и импорт библиотек.

Установите библиотеку sklearn, а также различные модули, необходимые

для работы.

импортируем библиотеки и модули

import sklearn

from sklearn.datasets import load_iris

from sklearn.model_selection import train_test_split

from sklearn.neighbors import KNeighborsClassifier

from sklearn.linear_model import LogisticRegression

from sklearn.ensemble import RandomForestClassifier

Загрузите набор данных load_iris из модуля datasets библиотеки sklearn.

загружаем датасет load_iris

iris_dataset = load_iris()

3. Ознакомление с данными.

Просмотрите описание набора данных.

получим информацию о датасете load_iris

print(iris_dataset.DESCR)

Датасет содержит информацию о 150 цветках ириса. Каждый цветок харак-

теризуется 4 параметрами:

− длина чашелистика в сантиметрах (sepal length);

− ширина чашелистика в сантиметрах (sepal width);

− длина лепестка в сантиметрах (petal length);

4

− ширина лепестка в сантиметрах (petal width).

Все цветки ириса подразделяются на 3 класса:

− setosa;

− versicolour;

− virginica.

Выведите на экран параметры цветков ириса.

выведем набор данных с параметрами цветков ириса

print(iris_dataset.data)

Каждый столбец набора данных характеризует тот или иной параметр

цветка ириса: длина чашелистика, ширина чашелистика, длина лепестка, ширина

лепестка.

Каждая строка набора данных – это информация о параметрах одного цветка

ириса.

Отобразите метки классов.

выведем метки цветков ириса

print(iris_dataset.target)

Метка показывает, к какому классу относится тот или иной цветок ириса.

Все цветки распределены по трем классам. Метка «0» означает, что цветок ириса

относится к классу «setosa», метка «1» – к классу «versicolour», метка «2» – к

классу «virginica».

Обратите внимание, цветки ириса выстроены в датасете в строгом порядке:

в начале списка идут цветки с меткой «0» (класс «setosa»), вторыми перечислены

цветки с меткой «1» (класс «versicolour»), третьи в списке – цветки с меткой «2»

(класс «virginica»).

4. Разделение данных на обучающую и тестовую выборки.

Процесс построения модели разбивается на два основных этапа:

− этап обучения модели;

− этап тестирования модели (проверка надежности модели).

5

Соответственно набор данных о цветках ириса нужно разбить на два под-

множества. Большее по количеству объектов подмножество используется для

обучения модели. На меньшем подмножестве осуществляется проверка качества

обучения модели.

Разобьем датасет с данными о цветках ириса на обучающую и тестируемую

выборку. Обозначим набор данных обучающей выборки следующим образом:

данные с характеристиками цветков ириса – X_train, соответствующие им метки

– y_train. Набор данных тестируемой выборки обозначим следующим образом:

данные с характеристиками цветков ириса – X_test, соответствующие им метки

– y_test.

Для разбиения датасета в библиотеке scikit-learn есть функция

train_test_split(X, y, train_size = k, random_state = 10), где X – данные с характери-

стиками объектов, y – метки объектов, k – доля датасета, которую нужно вклю-

чить в обучающую выборку.

Одновременно функция train_test_split(X, y, train_size = k, random_state = 10)

перемешивает набор данных в датасете.

Разделите набор данных с использованием функции train_test_split, значе-

ние переменной variant_number должно быть равно номеру вашего варианта.

разбиваем датасет на обучающую и тестируемую выборку

variant_number = 15 # номер варианта

k = 1 - ((variant_number + 10) / 100) # пропорция обучающей выборки

X_train, X_test, y_train, y_test = train_test_split(

 iris_dataset.data, iris_dataset.target, train_size=k, random_state=10

)

Проверьте размеры обучающей и тестовой выборок.

Проверяем размер выборок

print(f"Размер обучающей выборки: {len(X_train)}, {len(y_train)}")

print(f"Размер тестовой выборки: {len(X_test)}, {len(y_test)}")

5. Выбор и обучение моделей классификации.

6

Обучим разрабатываемую модель для решения задачи классификации объ-

ектов с помощью трех алгоритмов классификации: kNN (метод k ближайших со-

седей), Logistic Regression (метод логистической регрессии), Random Forest (ме-

тод случайных деревьев).

Метод kNN (метод k ближайших соседей) был подробно описан в предыду-

щей лабораторной работе.

Метод логистической регрессии является методом классификации, в соот-

ветствии с которым определяется вероятность отнесения исходного значения к

тому или иному классу.

Результатом использования логистической регрессии является построение

n-мерной разделительной плоскости, разделяющей пространство исходных зна-

чений на классы.

Предположим, множество исходных чисел состоит из двух классов: поло-

жительных и отрицательных чисел.

Если логистическая функция принимает значение от 0,5 до 1, то исходное

число относится к классу положительных чисел. Если функция принимает зна-

чение от 0 до 0,5, то исходное число относится к классу отрицательных чисел

(рис. 1).

Рис. 1. График логистической регрессии

7

Загрузите алгоритмы классификации kNN, Logistic Regression, Random For-

est в новую кодовую ячейку. Количество ближайших соседей n в алгоритме клас-

сификации kNN установите равным 5.

инициализируем классификаторы

knn = KNeighborsClassifier(n_neighbors=5)

logreg = LogisticRegression(max_iter=1000)

ranfor = RandomForestClassifier()

Обучите модели на обучающей выборке.

Для обучения моделей воспользуйтесь функцией fit из библиотеки sklearn.

Данная функция подает на входной слой нейросети данные о характеристиках

объектов из обучающей выборки (параметры цветков ириса), а на выходной слой

– метки данных объектов (классы цветков ириса). Обучение модели заключается

в установлении таких параметров нейросети, которые обеспечивают соответ-

ствие между характеристиками объектов и их метками.

обучаем модели

knn.fit(X_train, y_train)

logreg.fit(X_train, y_train)

ranfor.fit(X_train, y_train)

делаем предсказания

y_knn = knn.predict(X_test)

y_logreg = logreg.predict(X_test)

y_ranfor = ranfor.predict(X_test)

выводим результаты

print("Фактические метки:", y_test)

print("kNN:", y_knn)

print("Logistic Regression:", y_logreg)

print("Random Forest:", y_ranfor)

8

6. Оценка качества моделей.

Оцените качество моделей с помощью функции score. Данная функция

сравнивает метки, предсказанные моделью для объектов тестовой выборки, с

фактическим метками данных объектов и рассчитывает долю правильно пред-

сказанных меток. Максимальное значение показателя score равно 1. Это озна-

чает, что все метки для объектов тестовой выборки предсказаны правильно.

Метрика score считает долю правильно предсказанных объектов, а для бо-

лее точной оценки лучше использовать метрики precision, recall, F1-score.

оцениваем качество моделей

print("kNN score:", knn.score(X_test, y_test))

print("Logistic Regression score:", logreg.score(X_test, y_test))

print("Random Forest score:", ranfor.score(X_test, y_test))

Результат оценки качества моделей представлен на рис. 2.

Рис. 2. Проверка качества обучения моделей классификации с помощью

метрики score

7. Классификация новых объектов.

Создайте данные для новых объектов и выполните их классификацию.

Так как каждый цветок ириса характеризуется 4 параметрами, то для каж-

дого цветка укажите 4 числа.

Для первого цветка первое число должно совпадать с порядковым номером

дня из даты рождения студента. Для второго цветка первое число должно совпа-

дать с порядковым номером месяца из даты рождения студента.

классификация новых объектов

9

day = 31 # заменить на порядковый номер своего дня рождения

month = 12 # заменить на порядковый номер своего месяца рождения

X_new = [[day, 4, 3, 1], [month, 9, 3, 10]]

Предсказания для новых объектов

print("kNN:", iris_dataset['target_names'][knn.predict(X_new)])

print("Logistic Regression:", iris_dataset['target_names'][logreg.predict(X_new)])

print("Random Forest:", iris_dataset['target_names'][ranfor.predict(X_new)])

Результат классификации представлен на рис. 3.

Рис. 3. Классификация новых цветков ириса

8. Сохранение работы.

Сохраните блокнот через меню «Файл / Сохранить».

Переименуйте файл на Google Диске, используя шаблон «Лабораторная ра-

бота № 3 студента группы … Фамилия Имя», указав свой номер группы, фами-

лию и имя.

Задание

В задании используются следующие условные обозначения:

− N – порядковый номер первой буквы фамилии студента согласно

русскому алфавиту;

− M – порядковый номер первой буквы имени студента согласно русскому

алфавиту.

10

Разработайте модели классификации для набора данных load_wine.

При этом должны выполняться следующие параметры:

− доля объектов, включаемых в тестируемую выборку, должна равняться N

+ 5;

− количество ближайших соседей в методе kNN должно равняться 7;

− в наборе данных для двух новых объектов для первой бутылки вина

первое число должно совпадать с N;

− в наборе данных для двух новых объектов для второй бутылки вина

первое число должно совпадать с M.

Контрольные вопросы

1. Что такое машинное обучение, и какие основные этапы разработки

модели вы можете назвать?

2. В чём состоит основная цель задачи классификации?

3. Какие этапы включает в себя процесс построения модели машинного

обучения?

4. Что такое обучающая и тестовая выборки, и зачем их разделяют?

5. Как загрузить встроенные датасеты из библиотеки scikit-learn?

6. В чём заключается принцип работы метода ближайших соседей (kNN)?

Какие параметры важно учитывать при его использовании?

7. Объясните, как работает метод логистической регрессии. Почему он

подходит для решения задач классификации?

8. Какой принцип лежит в основе метода случайного леса (Random Forest)?

Какие преимущества он имеет?

9. Что означает значение score, возвращаемое моделью? Как

интерпретировать его?

10. Почему важно тестировать модель на данных, которые она раньше не

видела?

11

Содержание отчета

1. Титульный лист

2. Цель работы.

3. Формулировка задания.

4. Описание результатов выполнения задания в текстовом и графическом

виде (скриншоты).

5. Ответы на контрольные вопросы.

6. Подробный вывод о проделанной работе.

1

Лабораторная работа № 4

РАЗРАБОТКА МОДЕЛИ ЛИНЕЙНОЙ РЕГРЕССИИ

Время выполнения – 8 часов (аудиторная работа – 2 часа, самостоятельная

работа – 6 часов).

Цель работы: получить навыки прогнозирования количественных призна-

ков объекта (например, цены недвижимости, стоимости подержанных автомоби-

лей, экономических показателей, прогноза состояния пациента и т. д.) на основе

построения и оценки качества моделей регрессии.

Задачи работы

1. Изучить библиотеки, модули и фреймворки Python, применяемые для ре-

шения задач регрессии.

2. Освоить основные алгоритмы регрессии.

3. Научиться разрабатывать, обучать и оценивать модели регрессии на языке

Python в Google Colab.

Перечень обеспечивающих средств

1. Платформа Google Colab.

2. Библиотеки, модули и фреймворки Python, предназначенные для решения

задач регрессии.

Общие теоретические сведения

Построение модели машинного обучения зависит от задачи, которую дан-

ная модель должна решать. Выделяют три основные задачи:

− классификация (рассмотрена в предыдущих лабораторных работах);

− регрессия;

− кластеризация.

2

Регрессия (regression) – это задача предсказания для каждого объекта значе-

ния, которое является действительным числом (например, прогноз стоимости ак-

ций, объема продаж товара, количества загрузок мобильного приложения и т. д.).

Предположим, у объектов (красные точки) имеется единственный признак

x. Тогда ось абсцисс будет соответствовать этому признаку x, а ось ординат –

целевому значению y, зависящему от переменной x.

Прямая линия – это построенная модель регрессии, цель которой – прохо-

дить максимально близко ко всем точкам. Построив модель регрессии, можно

спрогнозировать целевое значение y при определенном значении переменной x

(рис. 1).

Рис. 1. Линейная регрессия

1. Создание нового блокнота.

Создайте новую текстовую ячейку и впишите следующий текст:

«Лабораторная работа студента группы … Фамилия Имя», указав свой номер

группы, фамилию и имя.

Установите пакет scikit-learn. Если библиотека уже установлена, этот шаг

можно пропустить.

загружаем библиотеку scikit-learn

!pip install scikit-learn

3

2. Модель для прогнозирования цен на недвижимость на основе датасета

fetch_california_housing.

Для создания модели потребуются модули, фреймворки и датасеты библио-

теки scikit-learn.

Загрузите необходимые для работы библиотеки.

Загружаем библиотеку scikit-learn

import numpy as np

import sklearn

from sklearn.datasets import fetch_california_housing

from sklearn.model_selection import train_test_split

from sklearn.linear_model import LinearRegression

from sklearn.preprocessing import PolynomialFeatures

from sklearn.metrics import mean_squared_error

3. Загрузка датасета fetch_california_housing.

Загрузите данный датасет из модуля datasets библиотеки sklearn и обозна-

чьте его как housing.

загружаем датасет

housing = fetch_california_housing()

X, y = housing.data, housing.target

4. Изучение информации о датасете.

Ознакомьтесь с информацией о данном датасете, воспользовавшись таким

параметром датасета как ‘DESCR’.

информация о датасете housing

print(housing.DESCR)

Датасет содержит информацию о жилой недвижимости в Калифорнии. Каж-

дый объект характеризуется 8 параметрами:

− MedInc – медианный доход жителей района (в десятках тысяч долларов);

− HouseAge – средний возраст домов в районе;

4

− AveRooms – среднее количество комнат на домохозяйство;

− AveBedrms – среднее количество спален на домохозяйство;

− Population – численность населения района;

− AveOccup – среднее количество жителей на домохозяйство;

− Latitude – географическая широта района;

− Longitude – географическая долгота района.

Целевая переменная (MedHouseVal) – медианная стоимость дома в районе

(в сотнях тысяч долларов).

5. Вывод набора данных с параметрами объектов недвижимости.

Выведите на экран набор данных с параметрами объектов недвижимости.

выводим набор данных с параметрами 10 объектов недвижимости

print(housing.data[0:10])

Каждый столбец в наборе данных характеризует параметры объекта недви-

жимости (например, средний возраст домов, численность населения района и

др.). Каждая строка представляет параметры одного объекта недвижимости.

6. Вывод цен 10 объектов недвижимости.

Выведите на экран цены 10 объектов недвижимости (метки).

выводим метки объектов недвижимости

print(housing.target[0:10])

7. Построение модели регрессии для предсказания цен объектов недвижи-

мости.

Процесс делится на два этапа:

− обучение модели;

− тестирование модели (оценка надежности).

Набор данных нужно разделить на обучающую и тестовую выборки:

− обучающая выборка содержит большую часть данных и используется для

обучения;

− тестовая выборка служит для проверки качества модели.

5

Разбиение выполняется функцией train_test_split(X, y, train_size = k, ran-

dom_state = 10), где X – данные с характеристиками объектов, y – метки объектов,

k – доля датасета. Функция перемешивает данные и разделяет их в заданных про-

порциях.

Разбейте датасет с данными об объектах недвижимости на обучающую и

тестовую выборки. Обозначьте набор данных обучающей выборки следующим

образом: данные с характеристиками объектов недвижимости – X_train, соответ-

ствующие им метки – y_train. Набор данных тестовой выборки обозначьте сле-

дующим образом: данные с характеристиками объектов недвижимости – X_test,

соответствующие им метки – y_test.

Проверьте правильность разбиения датасета с помощью функции len, кото-

рая подсчитывает количество данных в массиве.

разбиваем датасет на обучающую и тестовую выборки

variant_number = 15 # замените на свой номер варианта

k = 1 - ((variant_number + 10) / 100)

X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=k, random_state=10)

проверяем размеры выборок

print(f"Размер обучающей выборки: {len(X_train)} объектов")

print(f"Размер тестовой выборки: {len(X_test)} объектов")

8. Выбор алгоритма для обучения модели.

Рассмотрим два алгоритма регрессии:

− линейная регрессия;

− полиномиальная регрессия.

9. Линейная регрессия.

Уравнение линейной регрессии:

𝑎(𝑥𝑖) = 𝑤0 +𝑤1 ∗ 𝑥𝑖1 +⋯+𝑤𝑑 ∗ 𝑥𝑖𝑑, (1)

где 𝑎(𝑥𝑖) – регрессионная модель,

6

𝑥𝑖 = (𝑥𝑖1, … , 𝑥𝑖𝑑) – входной вектор, содержащий d значений признаков xij,

𝑤0, 𝑤1, … , 𝑤𝑑 – весовые коэффициенты (веса), полностью определяющие

предсказания модели.

Обучение модели заключается в нахождении таких коэффициентов, при ко-

торых минимизируется ошибка. После обучения модель способна предсказывать

значение целевой переменной для любого входного вектора.

10. Полиномиальная регрессия.

Для построения полиномиальной регрессии нужно ввести новые признаки,

построив их на основе существующих. В полиномиальной регрессии вводятся

новые признаки с помощью полинома: 𝑤0 +𝑤1 ∗ 𝑥 + 𝑤2 ∗ 𝑥
2 +⋯+𝑤𝑛 ∗ 𝑥

𝑛.

Степень полинома n определяет степень нелинейности модели (рис. 2). Уве-

личение степени полинома приводит к более гибкому моделированию, но может

вызвать переобучение.

Рис. 2. Полиномиальная регрессия

11. Обучение и тестирование моделей.

Обучите и протестируйте две модели (линейная регрессия, полиномиальная

регрессия). Используйте функции fit (обучение) и predict (тестирование).

Для обучения моделей воспользуйтесь функцией fit из библиотеки sklearn.

Функция fit подает на вход обучающей выборки данные о характеристиках объ-

ектов и соответствующие им метки.

7

Для тестирования моделей воспользуйтесь функцией predict из библиотеки

sklearn. Данная функция подает на входной слой нейросети данные о характери-

стиках объектов из тестируемой выборки (параметры объектов недвижимости),

но, в отличие от функции fit, не подает на выходной слой метки данных объектов

(цены продажи этих объектов). Модель сама должна спрогнозировать цены объ-

ектов недвижимости из тестируемой выборки.

линейная регрессия

создаем и обучаем модель

LR = LinearRegression()

LR.fit(X_train, y_train)

делаем предсказание

y_pred_LR = LR.predict(X_test)

полиномиальная регрессия

преобразуем признаки

poly = PolynomialFeatures(degree=2)

X_train_poly = poly.fit_transform(X_train)

X_test_poly = poly.transform(X_test)

обучаем модель

LR_poly = LinearRegression()

LR_poly.fit(X_train_poly, y_train)

делаем предсказание

y_pred_poly = LR_poly.predict(X_test_poly)

12. Сравнение моделей.

Выведите на экран фактические цены, по которым были проданы k первых

объектов недвижимости из тестируемой выборки, и цены продажи этих объек-

тов, предсказанные разработанными моделями. Установите значение k равным

номеру варианта.

8

выведем предсказанные и фактические цены

k = variant_number # количество объектов для сравнения (номер варианта)

print("Фактические цены:", y_test[:k])

print("Линейная регрессия:", y_pred_LR[:k])

print("Полиномиальная регрессия:", y_pred_poly[:k])

13. Оценка качества моделей.

Воспользуйтесь функцией mean_squared_error (среднеквадратичная

ошибка, MSE). Функция рассчитывает среднее арифметическое квадратов разно-

стей между предсказанными моделью регрессии ценами на объекты недвижимо-

сти из тестируемой выборки фактическими ценами продажи этих объектов, со-

держащимися в датасете. Чем ниже значение показателя, тем надежнее модель,

тем лучше она предсказывает цены недвижимости. Если MSE полиномиальной

регрессии значительно ниже, чем у линейной, это может указывать на лучшее

приближение данных, но при слишком малой тестовой выборке — на переобу-

чение.

оценим качество моделей

mse_LR = mean_squared_error(y_test, y_pred_LR)

mse_poly = mean_squared_error(y_test, y_pred_poly)

print("MSE линейной регрессии:", mse_LR)

print("MSE полиномиальной регрессии:", mse_poly)

14. Предсказание для новых объектов.

Создайте данные для двух новых объектов и выполните предсказание.

Так как каждый объект недвижимости характеризуется 8 параметрами, то

для каждого объекта недвижимости укажите 8 чисел.

Для первого объекта недвижимости второй показатель, отражающий сред-

ний возраст домов в районе, должен совпадать с номером варианта. Для второго

объекта этот же показатель установите равным величине 10 + номер варианта.

9

предсказание для новых объектов недвижимости

X_new = np.array([

 [3.5, variant_number, 6, 1.2, 1200, 3.5, 37.4, -122.1],

 [4.0, 10 + variant_number, 7, 1.5, 1500, 4.0, 38.1, -121.8]

])

print("Предсказанные цены (Линейная регрессия):", LR.predict(X_new))

print("Предсказанные цены (Полиномиальная регрессия):", LR_poly.pre-

dict(poly.transform(X_new)))

15. Сохранение работы.

Сохраните блокнот через меню «Файл / Сохранить».

Переименуйте файл на Google Диске, используя шаблон «Лабораторная ра-

бота № 4 студента группы … Фамилия Имя», указав свой номер группы, фами-

лию и имя.

Задания

В заданиях используются следующие условные обозначения:

− N – порядковый номер первой буквы фамилии студента согласно

русскому алфавиту;

− M – порядковый номер первой буквы имени студента согласно русскому

алфавиту.

1. В моделях регрессии для набора данных, состоящего из объектов недви-

жимости (датасет fetch_california_housing), выполните следующие условия:

− доля объектов, включаемых в тестируемую выборку, должна равняться N;

− количество объектов тестируемой выборки, отображаемых при выводе

фактических цен продажи и предсказанных моделями цен, должно быть равно N;

− в наборе данных для двух новых объектов недвижимости:

1) для первого объекта второй показатель должен совпадать с N;

2) для второго объекта второй показатель установите равным величине 10

+ M.

10

2. Разработайте на основе регрессии факторную модель прогнозирования

количественной оценки состояния больного сахарным диабетом через год после

определения исходного уровня заболевания (датасет load_diabetes).

При этом должны выполняться следующие условия:

− доля объектов, включаемых в тестируемую выборку, должна равняться N.

− в наборе данных для нового объекта (больного сахарным диабетом)

значение первого параметра (возраст больного) должно совпадать с N.

Контрольные вопросы

1. Что такое регрессия? В каких задачах она применяется?

2. Чем задачи регрессии отличаются от классификации и кластеризации?

3. Как выглядит уравнение линейной регрессии?

4. В чем преимущества и недостатки полиномиальной регрессии?

5. Каково назначение функции mean_squared_error?

6. Какова структура датасета fetch_california_housing? Какие параметры и

целевая переменная в нем представлены?

7. Как с помощью функции train_test_split задать размер тестируемой

выборки?

8. Как выполняется обучение модели линейной регрессии с помощью

функции fit?

9. В чем разница в использовании функции predict для моделей линейной и

полиномиальной регрессии?

10. Как оценить качество модели регрессии? Какие метрики, кроме MSE,

можно использовать?

Содержание отчета

1. Титульный лист

2. Цель работы.

3. Формулировка задания.

11

4. Описание результатов выполнения задания в текстовом и графическом

виде (скриншоты).

5. Ответы на контрольные вопросы.

6. Подробный вывод о проделанной работе.

1

Лабораторная работа № 5

РАЗРАБОТКА МОДЕЛИ ДЛЯ КЛАСТЕРИЗАЦИИ МНОЖЕСТВА НЕ-

ПОМЕЧЕННЫХ ОБЪЕКТОВ

Время выполнения – 8 часов (аудиторная работа – 2 часа, самостоятельная

работа – 6 часов).

Цель работы: получить навыки подготовки данных для машинного обуче-

ния и решения задач «без учителя» на примере кластеризации (разделения на

кластеры) непомеченных объектов (объектов без меток).

Задачи работы

1. Освоить работу с библиотеками, модулями и фреймворками Python,

используемыми для решения задач кластеризации непомеченных объектов.

2. Получить навыки конвертации файлов формата .xlsx в датафреймы,

используемые в машинном обучении.

3. Научиться проводить подготовку и очистку данных в датафрейме перед

обучением модели (приведение данных к единому формату, выявление и

исправление недостоверных данных).

4. Изучить основные алгоритмы кластеризации (метод k-средних, графовый

алгоритм Крускала, иерархическая кластеризация и др.)

5. Осуществить кластеризацию множества непомеченных объектов с

использованием изученных алгоритмов.

Перечень обеспечивающих средств

1. Платформа Google Colab.

2. Платформа с наборами данных для машинного обучения Kaggle.

3. Библиотеки, модули и фреймворки Python, предназначенные для решения

задачи кластеризации.

2

Общие теоретические сведения

Сущность машинного обучения «без учителя» заключается в том, что алго-

ритму до начала обучения не демонстрируются примеры и не предъявляются

правильные ответы, так как их попросту нет. Например, имеется множество

изображений объектов, которые потенциально могут быть разделены на не-

сколько классов. Однако, в отличие от задачи классификации, объекты не поме-

чены, то есть заранее неизвестно, к какому классу принадлежит то или иное изоб-

ражение. Соответственно, мы не можем обучить модель на правильных приме-

рах и показать ей, к какому классу относится каждое изображение.

На практике с непомеченными объектами приходится работать гораздо

чаще, чем с помеченными, что подчеркивает актуальность машинного обучения

«без учителя».

Одной из самых популярных задач машинного обучения «без учителя» яв-

ляется кластеризация.

Кластеризация – это процесс разделения множества непомеченных объек-

тов на подмножества. Каждое подмножество называется кластером. Внутри од-

ного кластера объекты должны быть относительно похожи друг на друга, но при

этом отличаться от объектов в других кластерах.

Основой кластеризации является гипотеза компактности или непрерывно-

сти: близкие объекты схожи и принадлежат одному кластеру. Близость объектов

определяется расстоянием между ними: схожесть или различие объектов зависят

от того, насколько они удалены друг от друга. Таким образом, задача кластери-

зации заключается в том, чтобы распределить объекты по кластерам так, чтобы

каждый кластер содержал близко расположенные объекты, а объекты из разных

кластеров находились далеко друг от друга.

После разделения объектов на кластеры каждому объекту присваивается

метка того кластера, к которому он принадлежит. Новый объект будет отно-

ситься к тому кластеру, в котором находятся ближайшие к нему объекты вы-

борки.

3

Для выполнения кластеризации множество непомеченных объектов преоб-

разуется в матрицу «объекты – признаки» размерностью k строк на n столбцов,

где k – количество объектов в выборке, а n – число признаков, описывающих

каждый объект.

1. Конвертация файлов xlsx в датафрейм.

Перейдите в раздел Datasets / Classification и найдите набор данных «Student

Stress Factors: A Comprehensive Analysis» или воспользуйтесь прямой ссылкой:

https://www.kaggle.com/datasets/rxnach/student-stress-factors-a-comprehensive-

analysis.

Скачайте архив набора данных на локальный диск и разархивируйте его. В

случае невозможности скачать набор данных с сайта Kaggle.com вы можете за-

грузить его по ссылке:

https://drive.google.com/file/d/1MP1Y8vhwqSBM7e_3HPqiLVZp93jgDDfe/view?u

sp=sharing.

Этот файл содержит данные о 20 факторах, влияющих на уровень стресса

студентов, и включает информацию о 1100 студентах.

Примечание: CSV-файл – текстовый файл, где строки таблицы разделены

символами-разделителями (например, запятой).

Конвертируйте файл CSV в формат xlsx. Для этого выполните следующие

действия:

− откройте файл StressLevelDataset.csv в Excel;

− выделите первый столбец;

− перейдите во вкладку «Данные» → «Текст по столбцам»;

− выберите формат данных «С разделителями»;

− укажите запятую в качестве разделителя;

− сохраните файл в формате xlsx, указав имя файла по шаблону

«Familiya_stress», где Familiya – фамилия студента на английском языке.

Требования к данным в Excel:

− первая строка таблицы зарезервирована для заголовков, а первый столбец

используется для идентификации единицы выборки;

https://www.kaggle.com/datasets/rxnach/student-stress-factors-a-comprehensive-analysis
https://www.kaggle.com/datasets/rxnach/student-stress-factors-a-comprehensive-analysis
https://drive.google.com/file/d/1MP1Y8vhwqSBM7e_3HPqiLVZp93jgDDfe/view?usp=sharing
https://drive.google.com/file/d/1MP1Y8vhwqSBM7e_3HPqiLVZp93jgDDfe/view?usp=sharing

4

− пробелы в названиях и значениях заменяются символами _, -, или

написанием слов с заглавной буквы;

− имена столбцов и значений должны быть короткими и не содержать

специальных символов (? $ % ^ & * () - # < > / | \ [] { });

− все комментарии должны быть удалены.

2. Создание нового блокнота.

В новом блокноте создайте текстовую ячейку и впишите следующий текст:

«Лабораторная работа студента группы … Фамилия Имя», указав свой номер

группы, фамилию и имя.

3. Загрузка библиотек и данных.

Для создания и работы с датафреймами используются модули и фреймворки

Python, такие как библиотека Pandas.

Pandas – это библиотека Python для обработки и анализа структурирован-

ных данных. Название библиотеки происходит от выражения «panel data» («па-

нельные данные»), что означает данные, организованные в виде таблиц. Pandas

поддерживает операции чтения и записи данных в различных форматах, включая

Excel 2007+, CSV, SQL, HTML, JSON и другие.

В библиотеке Pandas используются два основных класса объектов для ра-

боты с данными:

− Series – одномерный массив для хранения значений любого типа данных.

Пример Series: [1, 2, 3, 1, 2, 3];

− DataFrame – двумерный массив, представленный в виде таблицы, где

столбцы являются объектами класса Series.

Пример DataFrame:

 A B C D

0 10 20 30 40

1 23 43 55 65

2 10 20 30 40

Загрузите библиотеку Pandas.

загружаем библиотеку Pandas

5

import pandas as pd

Загрузите файл smirnov_stress.xlsx в Google Colab. Для этого сохраните дан-

ный файл на Google Диске и подключите Google Диск к среде Google Colab.

подключаем хранилище Google Drive

from google.colab import drive

drive.mount('/content/drive')

Укажите путь к файлу на Google Диске.

укажем путь к файлу

smirnov_stress = '/content/drive/MyDrive/smirnov_stress.xlsx'

Конвертируйте файл в DataFrame.

Для выполнения данной операции используйте функцию библиотеки

Pandas pd.ExcelFile(file). В скобках вместо file укажите название загруженного в

среду Google Colab файла с информацией об уровне стресса студентов.

конвертируем файл Excel в DataFrame

smirnov_stress_xl = pd.ExcelFile(smirnov_stress)

Проверьте наличие листов в файле.

выводим на экран названий листов

smirnov_stress_xl.sheet_names

Загрузите данные из листа в DataFrame.

загружаем данные из листа в DataFrame

smirnov_fr = smirnov_stress_xl.parse('StressLevelDataset')

Выведите первые n строк DataFrame, где n соответствует номеру варианта.

выводим на экран первые n строк DataFrame

n = 25 # номер варианта

smirnov_fr.head(n)

4. Предварительная обработка данных.

6

В проектах по машинному обучению часто приходится работать с данными,

собранными из различных источников. Как правило, такие данные содержат не-

достатки или пропуски, поэтому перед обучением модели требуется их предва-

рительная обработка.

Подготовка данных – это важный этап в процессе машинного обучения, по-

скольку некорректные или «шумные» данные могут существенно снизить каче-

ство модели кластеризации.

Основная цель предварительной обработки данных – обеспечить их доста-

точное качество и корректность, чтобы построить надежную и эффективную мо-

дель кластеризации.

4.1. Проверьте формат данных.

При конвертации данных в DataFrame тип данных может быть распознан

неверно, что потребует его изменения. Например, число «1» может быть загру-

жено в датафрейм как строка (текстовый тип данных), а не как числовой.

Чтобы проверить типы данных в датафрейме, воспользуйтесь методом

df.info().

проверим формат данных датафрейма

smirnov_fr.info()

4.2. Исправьте неверный формат в столбце blood_pressure.

исправим строчный формат данных на числовой формат

smirnov_fr['blood_pressure'] = pd.to_numeric(smirnov_fr['blood_pressure'], er-

rors='coerce')

4.3. Исправьте отрицательные значения.

Периодически в датафреймах могут встречаться отрицательные значения в

показателях, которые по определению должны быть только положительными,

например, цена товара, объем продаж или возраст пациента.

В редактируемом датафрейме к таким показателям можно отнести, в част-

ности, уровень кровяного давления студентов (столбец «blood_pressure»).

7

Найдите ошибочные данные с отрицательными значениями в столбце

«blood_pressure» датафрейма, используя функцию query('blood_pressure < 0').

В случае, если были обнаружены отрицательные значения уровня кровяного

давления студентов, исправьте их на положительные значения. Воспользуйтесь

функцией abs(), отражающей абсолютное значение числа.

найдем отрицательные значения уровень кровяного давления студентов

smirnov_fr.loc[smirnov_fr['blood_pressure'] < 0, 'blood_pressure'] =

smirnov_fr['blood_pressure'].abs()

4.4. Удалите выбросы с помощью Z-оценки.

Выбросы – это результаты измерений, которые значительно выделяются из

общей выборки данных. Они могут возникать, например, из-за погрешностей из-

мерений датчиков или ошибок при ручном вводе данных.

Очистка датафрейма от случайных выбросов выполняется в два этапа:

− проверка объекта на наличие выбросов;

− обработка выявленных выбросов.

Методы обработки выбросов:

− замена на среднее значение;

− замена на медианное значение;

− замена на соседнее значение;

− трехточечная фильтрация, при которой каждое значение в ряду

заменяется средним арифметическим данного значения и двух соседних.

Для выявления выбросов используется метод Z-оценки.

Z-оценка показывает, насколько текущее значение отклоняется от среднего

в единицах стандартного отклонения.

Формула расчета Z-оценки:

𝑧 =
𝑋 − μ

σ

где X – текущее значение показателя,

μ – среднее значение,

σ – стандартное отклонение.

8

Значение считается выбросом, если его Z-оценка меньше −3 или больше +3.

Функция для расчета Z-оценки находится в библиотеке SciPy.

SciPy – это библиотека для Python, которая расширяет возможности библио-

теки NumPy.

NumPy предназначена для работы с большими многомерными массивами

данных и содержит базовые математические функции для операций с ними.

SciPy добавляет больше функций и методов для глубокого анализа данных.

Так как библиотека SciPy зависит от NumPy, для выполнения Z-оценки необ-

ходимо установить обе библиотеки.

рассчитаем Z-оценку для определения случайных выбросов

import numpy as np

from scipy import stats

z_scores = np.abs(stats.zscore(smirnov_fr))

Если Z-оценка показателя больше или равна 3, то соответствующее значе-

ние считается выбросом и подлежит исключению из датафрейма.

Удалим строки, у которых хотя бы один признак имеет Z-оценку >= 3. В

очищенном датафрейме должны остаться только значения, которые не являются

выбросами.

очистим датафрейм от случайных выбросов

smirnov_fr_clean = smirnov_fr[(z_scores < 3).all(axis=1)]

4.5. Проверьте наличие пропущенных данных.

проверим наличие незаполненных ячеек

missing_data = smirnov_fr_clean.isnull().sum()

print(missing_data)

Если в датасете обнаружены незаполненные строки, следует либо исклю-

чить их (в случае небольшого количества пропусков), либо обработать одним из

следующих способов:

− заменить пропущенные значения средним арифметическим по столбцу;

− заменить пропущенные значения медианой по столбцу;

9

− заменить пропущенные значения ближайшим соседним значением;

− применить трёхточечную фильтрацию: каждое значение в ряду числовых

данных заменяется средним арифметическим этого значения и двух соседних.

4.6. Исключите столбец с метками объектов для кластеризации.

Полученный после этапа подготовки данных датафрейм готов для выполне-

ния задач машинного обучения. Однако он содержит метки объектов, такие как

уровень стресса (stress_level) для каждого студента. Поскольку кластеризация

предполагает разделение множества объектов без заранее известных меток,

необходимо подготовить данные.

Для этого удалите из датафрейма столбец, содержащий значения уровня

стресса (stress_level).

Кроме того, удалите первую строку, которая содержит названия столбцов.

Выведите на экран первые 10 строк скорректированного датафрейма.

удаляем столбец 'stress_level' из исходного датафрейма

smirnov_z1 = smirnov_fr_clean.drop(columns='stress_level')

преобразуем датафрейм в массив NumPy (убираем индексы и заголовки

столбцов)

smirnov_z2 = smirnov_z1.values

выводим первые 10 строк массива для проверки

print(smirnov_z2[:10])

Теперь датафрейм полностью подготовлен для выполнения задачи класте-

ризации объектов.

5. Построение модели кластеризации.

Выберите алгоритм, с помощью которого будет обучаться разрабатываемая

модель для решения задачи кластеризации объектов. Рассмотрите два алгоритма

кластеризации:

− агломеративная иерархическая кластеризация;

− метод k-средних.

10

Рассмотрим алгоритм агломеративной иерархической кластеризации (алго-

ритм Ланса-Уильямса).

Изначально каждый объект рассматривается как отдельный кластер. На

каждой итерации определяются два ближайших кластера, для которых межкла-

стерное расстояние минимально среди всех возможных пар. Эти кластеры объ-

единяются в один, формируя новое разбиение данных на кластеры. После этого

межкластерные расстояния пересчитываются с учетом нового кластера, и алго-

ритм переходит к следующей итерации. Процесс продолжается до тех пор, пока

все объекты не будут объединены в один общий кластер.

Для визуализации иерархической агломеративной кластеризации использу-

ется дендрограмма. На одной оси дендрограммы отображаются условные номера

объектов выборки, а на другой – межкластерные расстояния. Линии от объектов

ведут вертикально вверх вдоль оси межкластерных расстояний. Когда два кла-

стера объединяются, между их линиями строится горизонтальная перемычка. За-

тем вместо двух линий от объединенных кластеров продолжается одна общая

линия (рис. 5.1).

Рис. 5.1. Дендрограмма

11

5.1. Загрузите функцию AgglomerativeClustering. В качестве параметра дан-

ной функции укажите разделение множества объектов на 3 кластера.

кластеризация с помощью алгоритма агломеративной иерархической кла-

стеризации

import sklearn

from sklearn.cluster import AgglomerativeClustering

model = AgglomerativeClustering(n_clusters=3)

clusters = model.fit_predict(smirnov_z2)

5.2. Обучите модель на множестве smirnov_z2 с использованием метода

fit_predict. Также настройте вывод всех элементов массива с помощью

np.set_printoptions и отобразите результаты кластеризации.

np.set_printoptions(threshold=np.inf)

smirnov_AgglClust = model.fit_predict(smirnov_z2)

print(smirnov_AgglClust)

5.3. Визуализируйте результаты кластеризации с помощью библиотеки

mglearn.

установим библиотеку mglearn

!pip install mglearn

Импортируйте модули библиотеки mglearn и функцию scatter_matrix для

построения матрицы рассеяния с графиком KDE (графиком оценки плотности

ядра вдоль диагоналей матрицы).

Датафрейм smirnov_z1 содержит 20 столбцов (факторы, влияющие на уро-

вень стресса студентов) и 1100 строк (данные о студентах). Визуализация резуль-

татов кластеризации такого большого набора данных обладает низкой информа-

тивностью. Поэтому создайте матрицу рассеивания только для первых четырех

столбцов датафрейма и отобразите результаты кластеризации первых студентов

в количестве, равном номеру вашего варианта + 200.

import mglearn

12

grafic = pd.plotting.scatter_matrix(

 smirnov_z1.iloc[0:219, 0:4],

 c=clusters[0:219],

 figsize=(15, 15),

 marker='o',

 diagonal='kde'

)

Теперь рассмотрим метод k-средних, который является одним из наиболее

популярных методов кластеризации.

Пусть имеется выборка X, состоящая из непомеченных объектов, каждый из

которых характеризуется n признаками. Заранее задается предполагаемое коли-

чество кластеров k.

Суть алгоритма заключается в следующем:

1. Выбираются начальные центры кластеров. Обычно это объекты, которые

максимально удалены друг от друга.

2. Каждый объект из множества X назначается тому кластеру, центр

которого находится к нему ближе всего (в зависимости от выбранной метрики

расстояния, например, Евклидовой).

3. Для каждого кластера вычисляется суммарное квадратичное отклонение

точек кластера от его текущего центра.

4. Проверяется, есть ли внутри кластера объекты, которые могут стать

новым центром, минимизирующим суммарное квадратичное отклонение точек

кластера. Если такой объект найден, он назначается новым центром кластера.

5. После обновления центров кластеров происходит перераспределение

объектов множества X между кластерами.

Итерации продолжаются до тех пор, пока на очередной итерации не пере-

станет изменяться внутрикластерное расстояние (суммарное отклонение). Рас-

пределение объектов по кластерам на этой итерации считается окончательным

(рис. 5.2).

13

Рис. 5.2. Метод k-средних

5.4. Обучите модель кластеризации методом k-средних.

метод k-средних

from sklearn.cluster import KMeans

kmeans = KMeans(n_clusters=3, random_state=0, n_init=10)

kmeans_clusters = kmeans.fit_predict(smirnov_z2)

5.5. Выполните кластеризацию множества с использованием метода k-сред-

них.

разделим множество на кластеры с помощью метода k-средних

y_predict_kmeans = kmeans.predict(smirnov_z2)

print(y_predict_kmeans)

6. Создание нового объекта.

Создайте новый объект с параметрами факторов, определяющих уровень

стресса нового студента.

Факторы, определяющие уровень стресса студента:

− самооценка;

− уровень тревожности;

− история психического здоровья;

− депрессия;

− головная боль;

14

− кровяное давление;

− качество сна;

− проблемы с дыханием;

− уровень шума;

− условия жизни;

− безопасность;

− основные потребности;

− академическая успеваемость;

− учебная нагрузка;

− отношения между преподавателем и студентом;

− забота о будущей карьере;

− социальная поддержка;

− давление со стороны сверстников;

− внеклассные мероприятия;

− травля.

создаем новый объект

variant_number = 15 # укажите ваш номер варианта

New_student = [variant_number, variant_number + 10, 0, 11, 2, 1, 2, 4, 2, 3, 3, 2, 3,

2, 3, 3, 2, 3, 3, 2]

Первый параметр (самооценка) установите равным номеру вашего вари-

анта.

Второй параметр (уровень тревожности) сделайте равным номеру варианта

+ 10.

С помощью обученной модели K-Means выполните предсказание для нового

объекта.

определим метку нового объекта

New_student_predict_KMeans = kmeans.predict([New_student])

print(New_student_predict_KMeans)

15

7. Сохранение работы.

Сохраните блокнот через меню «Файл / Сохранить».

Переименуйте файл на Google Диске, используя шаблон «Лабораторная ра-

бота № 5 студента группы … Фамилия Имя», указав свой номер группы, фами-

лию и имя.

Задания

В заданиях используются следующие условные обозначения:

− N – порядковый номер первой буквы фамилии студента согласно

русскому алфавиту;

− M – порядковый номер первой буквы имени студента согласно русскому

алфавиту.

1. В модели кластеризации уровня стресса студентов настройте параметры

выполнения следующим образом:

− при выводе строк DataFrame с помощью команды head(n) количество

выводимых строк (n) должно быть равно N;

− при построении матрицы рассеивания на экран должны выводиться

результаты кластеризации первых студентов в количестве N + 200.

Для нового объекта в наборе данных (определение уровня стресса нового

студента) задайте:

− первый параметр (самооценка) – N,

− второй параметр (уровень тревожности) – M.

2. Разработайте модель кластеризации источников воды с точки пригодно-

сти ее для питья.

Выполните следующие шаги:

1. Скачайте с сайта Kaggle файл Water Quality and Potability в формате CSV,

содержащий информацию о качестве источников воды.

Этот набор данных содержит измерения качества воды и оценки ее пригод-

ности для потребления человеком. Каждая строка в наборе представляет собой

образец воды с определенными количественными характеристиками.

16

Характеристики качества воды:

− pH – показатель концентрации ионов водорода;

− жесткость (hardness);

− примеси (solids);

− хлорамины (chloramines);

− сульфат (sulfate);

− электропроводность (conductivity);

− органический углерод (organic_carbon);

− тригалометаны (trihalomethanes);

− мутность (turbidity).

Столбец «Пригодность для питья» (Potability) содержит булевый признак,

указывающий, пригодна ли вода для потребления.

2. Конвертируйте скачанный CSV-файл в формат XLSX.

3. Создайте на его основе объект DataFrame.

4. Выполните очистку и предварительную подготовку данных:

− проверьте и исправьте формат данных;

− исправьте отрицательные значения на положительные, если они

обнаружены;

− удалите случайные выбросы (аномалии).

5. Удалите столбец Potability, содержащий метки (target), которые

указывают, к какой группе по пригодности для питья относится источник воды.

6. Разделите источники воды на два кластера с использованием метода k-

средних.

7. Визуализируйте результаты кластеризации, отобразив матрицу

рассеивания для первых источников воды в количестве N + 200.

8. Создайте набор данных для нового объекта, чтобы оценить возможность

потребления ее человеком. Для этого задайте параметр pH равным M + 18.

9. Определите, к какому кластеру относится новый источник воды.

17

Контрольные вопросы

1. Что представляет собой машинное обучение «без учителя»?

2. В чем заключается основная цель кластеризации объектов?

3. Как определяется схожесть объектов при кластеризации?

4. Какие этапы включает процесс подготовки данных для кластеризации?

5. В чем разница между алгоритмами кластеризации методом k-средних и

агломеративной иерархической кластеризации?

6. Какие этапы включены в предварительную обработку данных?

7. Как проверить наличие пропущенных данных в датафрейме?

8. Какие методы существуют для устранения выбросов в данных?

9. Почему необходимо исключать столбцы с метками объектов при

кластеризации?

10. Как работает метод агломеративной иерархической кластеризации?

11. Как работает метод k-средних? Опишите процесс его выполнения.

12. Почему важно правильно задавать количество кластеров при

использовании метода k-средних?

13. Почему для кластеризации важно проводить предварительную

обработку данных?

Содержание отчета

1. Титульный лист

2. Цель работы.

3. Формулировка задания.

4. Описание результатов выполнения задания в текстовом и графическом

виде (скриншоты).

5. Ответы на контрольные вопросы.

6. Подробный вывод о проделанной работе.

1

Лабораторная работа № 6

РАЗРАБОТКА ЧАТ-БОТА НА ОСНОВЕ МАШИННОГО ОБУЧЕНИЯ

Время выполнения – 8 часов (аудиторная работа – 2 часа, самостоятельная

работа – 6 часов).

Цель работы: освоение навыков разработки чат-бота, способного отвечать

на вопросы пользователей по заранее заданной тематике.

Задачи работы

1. Изучить инструменты Python для обработки текстовых данных и создания

чат-ботов.

2. Освоить создание JSON-файлов с использованием онлайн-редактора дан-

ных, содержащих: перечень намерений пользователей, задающих вопросы; воз-

можные вопросы, соответствующие этим намерениям; набор ответов на во-

просы.

3. Начать разработку итогового проекта по созданию специализированного

чат-бота.

Перечень обеспечивающих средств

1. Платформа Google Colab.

2. Онлайн-редактор данных формата JSON.

3. Библиотеки, модули и фреймворки Python, предназначенные для

обработки текстовых данных и разработки чат-ботов на основе машинного

обучения.

Общие теоретические сведения

В рамках метода проектного обучения результатом освоения дисциплины

становится созданный студентом чат-бот, способный отвечать на вопросы поль-

зователей по заданной тематике.

2

Чат-бот – это программа, использующая технологии искусственного интел-

лекта, которая имитирует общение с человеком и может мгновенно реагировать

на пользовательские запросы.

Проект, разработанный студентом, может найти практическое применение

в учебной деятельности, например, при защите курсовых работ, отчетов по прак-

тике, а также при организации студенческих конференций и научных семинаров.

Реализация итогового проекта начинается с шестой лабораторной работы, в

которой студенты разрабатывают чат-ботов на основе алгоритмов классифика-

ции, и продолжается в следующих лабораторных работах.

1. Создание нового блокнота.

Создайте новый блокнот в Google Colab, добавьте текстовую ячейку и впи-

шите следующий текст: «Лабораторная работа студента группы … Фамилия

Имя», указав свой номер группы, фамилию и имя.

2. Работа с файлами формата JSON.

JSON (JavaScript Object Notation) – текстовый формат, предназначенный для

обмена данными между программами. Он похож на словари и списки Python, но

записывается как обычный текст.

Объекты JSON представляют собой пары «ключ-значение» и заключаются

в фигурные скобки {}.

Ключи могут быть только строками, значения – различными типами дан-

ных.

Если ключ имеет несколько значений, они записываются в квадратные

скобки [] через запятую.

students = {

 "Студенты": ["Иванов", "Петров", "Сидоров"]

}

В указанном примере «Студенты» – это ключ, а фамилии студентов («Пет-

ров», «Иванов») – это значения, которые принимает ключ

Создайте JSON-файл с использованием JSON Editor Online

(https://jsoneditoronline.org) или другого редактора.

https://jsoneditoronline.org/

3

В левой части редактора JSON Editor Online наберите необходимый текст и

трансформируйте (Transform) его в файл JSON.

Пример содержимого файла JSON:

{

 "Студенты": {

 "Фамилия": {

 "Вопрос": [

 "Ваша фамилия?",

 "Как Вас зовут?",

 "Представьтесь, пожалуйста."

],

 "Ответ": ["Иванов", "Петров", "Сидоров"]

 },

 "Дисциплины": {

 "Вопрос": [

 "Какие дисциплины Вы изучаете?",

 "Что Вам преподают?",

 "Чему Вас учат?"

],

 "Ответ": ["Математика", "История", "Физика"]

 }

 }

}

Одна из фамилий должна совпадать с фамилией студента, выполняющего

лабораторную работу.

Обратите внимание, что у разных объектов («Фамилия», «Дисциплина»)

одинаковые ключи («Вопрос», «Ответ»), хотя значения ключей различны.

4

Сохраните файл JSON на Google Диск.

3. Загрузка данных в Google Colab.

Подключите Google Диск.

подключаем Google Drive

from google.colab import drive

drive.mount('/content/drive')

Найдите файл JSON, скопируйте его путь и загрузите в Colab:

выбор файла в Google Drive

file_path = '/content/drive/MyDrive/StudentDis.json'

with open(file_path, "r", encoding="utf-8") as file:

 data = file.read()

Данные в файле json записаны как обычный текст. Чтобы текст в файле json

конвертировался в объекты, необходимо из библиотеки json загрузить функцию

loads(), которая преобразует текст в объект (пара «ключ-значение»).

Импортируйте библиотеку json и конвертируйте содержимое файла:

импорт библиотеки json

import json

students_data = json.loads(data)

print(students_data)

4. Работа с массивами данных.

Массив – это упорядоченный набор элементов, каждый из которых имеет

свой уникальный номер (индекс), позволяющий быстро получить к нему доступ.

Нумерация элементов в массиве начинается с 0.

Для загрузки объектов из файла JSON в массив можно воспользоваться ме-

тодом append(). Этот метод добавляет элемент, переданный в качестве аргу-

мента, в конец списка. Например, чтобы добавить элемент item в конец списка

list, используйте следующий код:

list.append(item)

5

Загрузите в массив X вопросы (слова и словосочетания), представляющие

собой значения ключа «Вопрос», а в массив y – метки, соответствующие значе-

ниям ключа «Студенты».

установление меток, соответствующих намерениям пользователя, для

каждого вопроса

X = []

y = []

for key, value in students_data["Студенты"].items():

 for question in value["Вопрос"]:

 X.append(question)

 y.append(key)

print(X)

print(y)

В приведённом примере пользователь может интересоваться либо фамили-

ями студентов, либо изучаемыми ими дисциплинами. В результате каждому во-

просу будет присвоена одна из меток: «Фамилия» или «Дисциплины».

Чтобы загрузить вопросы пользователя из файла json в массив X, а соответ-

ствующие метки – в массив y, используется циклическая конструкция.

В результате в массивы X и y были успешно загружены вопросы и соответ-

ствующие им метки, которые будут использованы для обучения модели. Процесс

обучения сводится к решению задачи классификации, где обученная модель смо-

жет определять метку для заданного вопроса пользователя и, основываясь на

этой метке, выбирать соответствующий ответ.

5. Преобразование текста в числовой вектор.

Работа с текстом – одно из ключевых направлений применения алгоритмов

машинного обучения. Однако текстовые данные не могут быть напрямую пере-

даны в алгоритмы машинного обучения, так как они работают только с число-

выми векторами фиксированного размера, а тексты имеют переменную длину.

6

Поэтому, прежде чем использовать массив X для машинного обучения,

необходимо преобразовать содержащиеся в нем слова и фразы в числовые век-

торы.

Для этого можно воспользоваться модулем sklearn.feature_extraction.text из

библиотеки sklearn. Этот модуль содержит функции, которые позволяют преоб-

разовывать текстовые данные в формат, совместимый с алгоритмами машинного

обучения.

Одной из таких функций является CountVectorizer(). Она выполняет следу-

ющие задачи:

− разделяет текст на отдельные слова (токенизация), используя пробелы и

знаки препинания в качестве разделителей токенов;

− подсчитывает количество уникальных слов в каждом документе.

При этом положение слов в тексте не учитывается.

Используйте модуль CountVectorizer из библиотеки sklearn:

преобразуем текст в числовой вектор

import sklearn

from sklearn.feature_extraction.text import CountVectorizer

students_vectorizer = CountVectorizer()

students_m = students_vectorizer.fit_transform(X)

students_m.toarray()

6. Обучение модели.

Выберите метод классификации RandomForestClassifier() из модуля

sklearn.ensemble.

Основой метода RandomForestClassifier() является другой метод – деревья

решений (decision trees).

Метод деревьев решений работает следующим образом: в каждом узле про-

веряется определённый признак объекта. На основе проверки выполняется пере-

ход по соответствующей ветке. Процесс повторяется до тех пор, пока не будет

7

достигнут лист, содержащий информацию о принадлежности объекта к опреде-

лённому классу.

На рис. 1 представлен пример классификации потенциальных заёмщиков на

два класса: «Клиенты, которым банк одобрил кредит» и «Клиенты, которым банк

не одобрил кредит».

Рис. 1. Пример классификации заемщиков методом decision trees

В методе RandomForestClassifier() базовые модели представляют собой де-

ревья решений (decision trees), которые обучаются на данных, сформированных

из случайных подмножеств исходной обучающей выборки. Для повышения точ-

ности классификации предсказания этих моделей усредняются.

Импортируйте и настройте метод классификации RandomForestClassifier:

загрузка метода классификации RandomForestClassifier() и обучение модели

классификации текста

from sklearn.ensemble import RandomForestClassifier

students_RandomFCl = RandomForestClassifier()

students_RandomFCl.fit(students_m, y)

7. Проверка модели.

Проверьте работу модели, задав произвольный вопрос.

8

Для этого введите произвольный вопрос о фамилиях студентов (например,

«Как фамилия студента?») или об изучаемых ими дисциплинах (например, «Ка-

кие дисциплины вы изучаете?»). Преобразуйте текст вопроса в числовой вектор

и проверьте, правильно ли модель присвоила ему метку («Фамилия» или «Дис-

циплины»), используя функцию predict.

проверим качество модели

text = input()

test = students_vectorizer.transform([text])

vopros = students_RandomFCl.predict(test)[0]

print("Метка вопроса: ", vopros)

8. Генерация ответа.

Создайте функцию для получения ответа.

Так как ответ генерируется случайным образом из множества возможных

вариантов, соответствующих указанному намерению, необходимо предвари-

тельно импортировать модуль библиотеки random.

создадим функцию, генерирующую ответ пользователю

import random

def get_answer(vopros):

 responses = students_data["Студенты"][vopros]["Ответ"]

 return random.choice(responses)

answer = get_answer(vopros)

print(f"Ответ: {answer}")

9. Создание чат-бота.

Создайте чат-бота, который будет отвечать на вопросы пользователя о науч-

ном конгрессе «Интерэкспо ГЕО-Сибирь».

9.1. Скачайте файл GEO-Siberia.json по следующей ссылке:

https://drive.google.com/file/d/1Q7ZvXsw5qONU6zCVqjW4Iam9hGJYHQ-k.

9

9.2. Данный файл содержит вопросы о научном конгрессе «Интерэкспо

ГЕО-Сибирь» и ответы на них, распределенные по следующим разделам:

− hello – приветствие;

− name – информация о названии;

− bye – прощание;

− тематика – темы, которые рассматриваются на конгрессе;

− спикеры – список выступающих;

− длительность – продолжительность мероприятия;

− секции – информация о секциях конгресса;

− цель – цели мероприятия;

− польза – преимущества участия;

− проезд – информация о транспортной доступности;

− проживание – варианты проживания;

− открытие – дата и время открытия;

− выставка – информация о выставках;

− публикация – сведения о публикациях участников;

− награждение – информация о наградах.

В качестве основы для создания чат-бота, отвечающего на вопросы о науч-

ном конгрессе «Интерэкспо ГЕО-Сибирь» вы можете использовать программ-

ный код:

from google.colab import drive

import json

import random

from sklearn.feature_extraction.text import CountVectorizer

from sklearn.ensemble import RandomForestClassifier

Подключение Google Диска

drive.mount('/content/drive')

Открытие файла

10

smirnov_Geo = open('/content/drive/MyDrive/Colab Notebooks/GEO-Siberia.json',

"r")

Geo = smirnov_Geo.read()

Загрузка данных из JSON

Geo_test = json.loads(Geo)

Подготовка данных

XX = []

yy = []

for name, data in Geo_test["Интерэкспо ГЕО-Сибирь"].items():

 for example in data['Вопрос']:

 XX.append(example)

 yy.append(name)

Преобразование текста в числовые векторы

Geo_vectorizer = CountVectorizer()

Geo_m = Geo_vectorizer.fit_transform(XX)

Создание и обучение классификатора

Geo_RandomFCl = RandomForestClassifier()

Geo_RandomFCl.fit(Geo_m, yy)

Функция для получения ответа

def getAnswerGeo(voprosGeo):

 responsesGeo = Geo_test["Интерэкспо ГЕО-Сибирь"][voprosGeo]["Ответ"]

 return random.choice(responsesGeo)

Основной цикл работы бота

while True:

 textGeo = input("Введите вопрос: ")

 testGeo = Geo_vectorizer.transform([textGeo])

11

 voprosGeo = Geo_RandomFCl.predict(testGeo)[0]

 otvetGeo = getAnswerGeo(voprosGeo)

 print("Ответ:", otvetGeo)

10. Сохранение работы.

Сохраните блокнот через меню «Файл / Сохранить».

Переименуйте файл на Google Диске, используя шаблон «Лабораторная ра-

бота № 6 студента группы … Фамилия Имя», указав свой номер группы, фами-

лию и имя.

Задание

Создайте чат-бота, который будет отвечать на вопросы пользователей в со-

ответствии с темой (табл. 1).

Бот должен обрабатывать вопросы по пяти разделам. Для каждого раздела

необходимо составить:

− 10 вопросов-синонимов, которые пользователь может задать;

− 5 ответов-синонимов, которые бот может предоставить.

Табл. 1. Варианты выполнения задания

Первая

буква фа-

милии сту-

дента

Тема Первая

буква фа-

милии сту-

дента

Тема

А Любимый фильм О Любимое время суток

Б Любимая книга П Любимый цвет

В Любимый город Р Любимый цветок

Г Любимый вид спорта С Любимый мультфильм

Д Любимое время года Т Любимая компьютер-

ная игра

E Любимая страна У Любимый праздник

12

Ё Любимое блюдо Ф Искусственный интел-

лект

Ж Любимый вид отдыха Х Чат-боты

З Любимый жанр музыки Ц Роботы

И Любимая музыкальная

группа

Ч Умные гаджеты

Й Любимый актер Ш Учеба в вузе

К Любимый поэт Щ Знаки зодиака

Л Любимый писатель Э Карьера

М Хобби Ю Семья

Н Любимая учебная дис-

циплина

Я Каникулы

Контрольные вопросы

1. Какие платформы и инструменты используются для выполнения

лабораторной работы?

2. Что такое JSON и для чего он используется?

3. Как с помощью Python загрузить данные из JSON-файла и преобразовать

их в словари?

4. Какова роль метода RandomForestClassifier в разработке чат-бота?

5. Какие данные передаются в массивы X и y для обучения модели?

6. Как проверить качество работы модели с помощью пользовательских

вопросов?

7. Какие этапы включает процесс обучения модели на основе текстовых

данных?

8. Почему для классификации текста используются деревья решений и

случайные леса?

9. Как чат-бот определяет метку для заданного вопроса?

10. Как генерируется ответ пользователю на основе обученной модели?

13

Содержание отчета

1. Титульный лист

2. Цель работы.

3. Формулировка задания.

4. Описание результатов выполнения задания в текстовом и графическом

виде (скриншоты).

5. Ответы на контрольные вопросы.

6. Подробный вывод о проделанной работе.

1

Лабораторная работа № 7

РАЗРАБОТКА ЧАТ-БОТА НА ОСНОВЕ БИБЛИОТЕК ДЛЯ ОБРАБОТКИ

ЕСТЕСТВЕННОГО ЯЗЫКА

Время выполнения – 8 часов (аудиторная работа – 2 часа, самостоятельная

работа – 6 часов).

Цель работы: овладеть навыками разработки чат-бота с использованием

библиотек для обработки естественного языка (NLTK, re и др.).

Задачи работы

1. Изучить модули и функции библиотек, предназначенных для обработки

естественного языка (например, NLTK, re и других).

2. Ознакомиться с возможностями Python как инструмента для анализа и об-

работки текстовых данных.

3. Освоить алгоритм объединения нескольких чат-ботов в один универсаль-

ный чат-бот.

Перечень обеспечивающих средств

1. Платформа Google Colab.

2. Библиотеки и модули Python, используемые для обработки естественного

языка (например, NLTK, re и др.).

Общие теоретические сведения

Обработка естественного языка (NLP) – это область искусственного интел-

лекта и лингвистики, которая занимается анализом, пониманием и созданием че-

ловеческого языка с помощью компьютеров. Python является одним из наиболее

популярных языков программирования для работы с NLP благодаря обширному

набору библиотек.

2

Обработка естественного языка становится все более значимой, поскольку

она находит применение в различных сферах, таких как:

− автоматический перевод,

− извлечение информации,

− создание вопросно-ответных систем и многое другое.

Точное понимание текста, извлечение скрытых смыслов и генерация «чело-

векопонимаемого» контента возможны только при наличии у разработчиков глу-

боких знаний инструментов машинной обработки естественного языка.

1. Создание нового блокнота.

В новом блокноте создайте текстовую ячейку и впишите следующий текст:

«Лабораторная работа студента группы … Фамилия Имя», указав свой номер

группы, фамилию и имя.

2. Создание чат-бота на основе библиотек NLP.

Наиболее популярной библиотекой с богатым инструментарием для обра-

ботки естественного языка считается библиотека Natural Language Toolkit

(NLTK).

Установите библиотеку Natural Language Toolkit (NLTK) и загрузите необ-

ходимые модули.

загружаем библиотеку NLTK

!pip install nltk

import nltk

from nltk.tokenize import word_tokenize

загрузка модуля punkt

nltk.download('punkt')

3. Токенизация текста.

Используйте функцию word_tokenize для разбивки предложения на слова.

токенизируем предложение

text = input("Введите предложение для токенизации: ")

word_tokens = word_tokenize(text)

3

print("Первоначальный текст:", text)

print("Токенизированный текст:", word_tokens)

4. Сравнение строк с использованием edit_distance.

Функция edit_distance сравнивает две строки и подсчитывает количество

символов, в которых они отличаются.

Общение пользователя с чат-ботом предполагает, что человек может варьи-

ровать отдельные слова в вопросе, сохраняя его общий смысл. Кроме того, поль-

зователь может допускать ошибки при написании отдельных слов.

Поэтому разработчик чат-бота должен предусмотреть определённую сте-

пень гибкости в распознавании формулировок, задаваемых пользователем.

После ввода вопроса пользователем необходимо сравнить его с вопросом,

заданным в программном коде. Если различия между ними незначительны, во-

прос пользователя может быть идентифицирован как синоним программного во-

проса.

Для сравнения вопросов используйте функцию edit_distance(text1, text2), где

text1 – это вопрос, заданный пользователем, а text2 – это вопрос, прописанный в

коде (например, «Какая сейчас погода?»).

Загрузите функцию edit_distance из библиотеки NLTK для сравнения строк.

сравниваем вопрос пользователя с вопросом, сохраненным в памяти про-

граммы

text1 = input("Введите вопрос пользователя: ")

reference_question = "Какая сейчас погода?"

distance = nltk.edit_distance(text1, reference_question)

print("Вопросы различаются на", distance, "символов")

5. Расчет процента различий между строками.

Подсчитывать абсолютное количество различий между символами в двух

строках без учета их длины не совсем корректно. Чем длиннее строки, тем

больше допустимых различий между ними.

4

Функция get_rank(text1) должна вычислять процент несовпадающих симво-

лов относительно средней длины этих строк.

def get_rank(text1):

 reference_question = "Какая сейчас погода?"

 distance = nltk.edit_distance(text1, reference_question)

 average_length = (len(text1) + len(reference_question)) / 2

 return (distance / average_length) * 100

text1 = input("Введите вопрос пользователя: ")

print("Различия составляют", get_rank(text1), "процентов")

Установите процентное различие между вопросом пользователя и заранее

заданным вопросом, например, на уровне 40 %. Если различие между ними со-

ставляет меньше указанного процента, программа распознаёт вопрос пользова-

теля как синонимичный программному вопросу. В противном случае вопрос

пользователя не будет распознан.

идентификация вопроса пользователя

if get_rank(text1) < 40:

 print("Расхождение между заданным пользователем вопросом и вопросом

'Какая сейчас погода?' составляет менее 40 %, поэтому вопрос идентифициро-

ван")

elif get_rank(text1) < 100:

 print("Расхождение между заданным пользователем вопросом и вопросом

'Какая сейчас погода?' составляет более 40 %, поэтому вопрос не идентифи-

цирован")

else:

 print("Вопрос пользователя и вопрос 'Какая сейчас погода?' абсолютно не

совпадают")

6. Использование модуля регулярных выражений re.

5

Регулярные выражения позволяют искать, заменять и разбивать текст на ос-

нове шаблонов. Одна из наиболее популярных функций модуля re – функция

search(), которая используется для поиска шаблона в строке. Если совпадение

найдено, функция возвращает объект совпадения, иначе – None.

Найдите слово «погода» в тексте с помощью функции search().

найдем шаблон в строке текста

import re

text = input("Введите текст. Заданный шаблон поиска – слово 'погода': ")

pattern = "погода"

poisk = re.search(pattern, text)

if poisk:

 print("Совпадение найдено:", poisk.group())

else:

 print("Совпадение не найдено")

7. Использование функции lower() для преобразования текста в нижний ре-

гистр.

Функция lower() преобразует прописные буквы в строчные. Это полезно,

так как пользователь может вводить текст в произвольном регистре.

преобразуем прописные буквы в строчные буквы с помощью функции

lower()

text_propisnie = input("Введите текст прописными буквами: ")

text_strochnie = text_propisnie.lower()

print("Введенный текст:", text_propisnie)

print("Преобразованный текст:", text_strochnie)

8. Использование функции sub() для удаления знаков препинания.

Данная функция ищет в тексте string шаблон pattern, который нужно найти,

и заменяет его на выражение repl.

6

При общении с чат-ботом пользователь может вводить вопросы, содержа-

щие знаки препинания. Эти знаки не влияют на смысл вопроса, поэтому их необ-

ходимо исключить из текста перед обработкой.

Для исключения знаков препинания создайте шаблон, включающий все та-

кие символы: punctuation = r"[^\w\s]", где:

− ̂ – обозначает отрицание последовательности в шаблоне;

− \ – указывает, что следующий символ является специальным символом в

регулярном выражении;

− \w – соответствует всем буквам, цифрам и символу подчеркивания;

− \s – соответствует любым пробельным символам;

− ̂ \w\s – исключает любые символы, которые не являются буквами,

цифрами, символом подчеркивания или пробелами.

Исключите все знаки препинания в вопросе пользователя.

исключим все знаки препинания

import re

text = input("Введите текст со знаками препинания: ")

punctuation = r"[^\w\s]"

print(re.sub(punctuation, "", text))

9. Создание функции normalize() для нормализации текста.

В предыдущих пунктах мы использовали функцию lower() для преобразова-

ния текста в нижний регистр и функцию sub() для удаления из исходного текста

знаков препинания. Теперь объединим их в одну функцию normalize, которая

преобразует текст в нижний регистр и удалит знаки препинания.

Создайте пользовательскую функцию normalize для нормализации вопроса

пользователя.

преобразуем текст в нижний регистр

import re

def normalize(text):

 text = text.lower()

7

 punctuation = r"[^\w\s]"

 return re.sub(punctuation, "", text)

10. Создание функции get_rank_normalize для вычисления различий между

текстами.

Создайте функцию get_rank_normalize, которая подсчитает, на сколько про-

центов различаются нормализованный вопрос пользователя и вопрос, записан-

ный в программе.

создаем функцию get_rank_normalize

import nltk

def get_rank_normalize(text1, text2):

 text1 = normalize(text1)

 text2 = normalize(text2)

 distance = nltk.edit_distance(text1, text2)

 average_length = (len(text1) + len(text2)) / 2

 return (distance / average_length) * 100

11. Загрузка файла с Google Диска в Google Colab.

Подключите Google Диск к среде Google Colab и загрузите файл с информа-

цией о научном конгрессе «Интерэкспо ГЕО-Сибирь» (см. лабораторную работу

№ 6), используя Google Диск в среде Google Colab.

загружаем файл с информацией о научном конгрессе «Интерэкспо ГЕО-Си-

бирь» в среду Google Colab

from google.colab import drive

drive.mount('/content/drive')

После подключения Google Диска к среде Google Colab найдите на подклю-

ченном Google Диске файл с информацией о научном конгрессе «Интерэкспо

ГЕО-Сибирь» и скопируйте путь к этому файлу.

import json

smirnov_Geo = open('/content/drive/MyDrive/GEO-Siberia.json', "r")

8

Geo = smirnov_Geo.read()

Geo_test = json.loads(Geo)

12. Создание функции getIntent() для определения объекта.

Введите две новые переменные:

− best_rank с начальным значением 70;

− result с начальным значением None.

Значение 70 у переменной best_rank предполагает, что функция

get_rank_normalize возвращает числовой результат, отражающий степень разли-

чия между пользовательским вопросом и вопросами из базы данных. Чем

меньше это значение, тем ближе вопросы друг к другу. Значение 70 в нашем слу-

чае выбрано эмпирическим путём как максимальный допустимый порог разли-

чий.

Загрузите метод items(), который возвращает копию списка пар «ключ-зна-

чение» словаря.

Ключом (name) должны быть названия разделов информации о научном

конгрессе «Интерэкспо ГЕО-Сибирь»: «Тематика», «Спикеры», «Длитель-

ность», «Секции» и др. Значениями (data) должны быть другие объекты, вклю-

ченные в разделы информации о конгрессе.

Используйте два цикла for.

Назначение этих циклов – найти значение ключа «Вопрос» в загруженном

файле GEO-Siberia.json, для которого значение функции get_rank_normalize бу-

дет минимальным. Другими словами, нужно найти в файле GEO-Siberia.json во-

прос, с наименьшими отличиями в символах от пользовательского вопроса.

создаем функцию getIntent(text)

text = input("Задайте вопрос про научный конгресс «Интерэкспо ГЕО-Сибирь»

")

def getIntent(text):

 Geo_dis = Geo_test["Интерэкспо ГЕО-Сибирь"]

 best_rank = 70

9

 result = None

 for name, data in Geo_dis.items():

 for question in data["Вопрос"]:

 rank = get_rank_normalize(text, question)

 if rank < best_rank:

 best_rank = rank

 result = name

 return result

13. Вывод результатов функции getIntent.

Выведите результаты функции getIntent на экран.

проверим функцию getIntent(text)

import random

namerenie = getIntent(text)

if namerenie:

 print("Про что пользователь задал вопрос:", namerenie)

else:

 failure_phrases = ("Пожалуйста, перефразируйте вопрос", "Вы спрашиваете

не о конференции")

 print(random.choice(failure_phrases))

14. Генерация ответа на вопрос пользователя.

Поиск ответа осуществляется в файле GEO-Siberia.json, который предвари-

тельно загружен в среду Google Colab. Ответ находится в объекте «Ответ», от-

носящемся к разделу информации о конференции. Название раздела определя-

ется с помощью функции getIntent.

Ответ для пользователя выбирается случайным образом из множества воз-

можных значений ключа «Ответ» с использованием функции choice() из модуля

10

random. Эта функция позволяет получить случайный элемент из переданной ей

последовательности строк.

Сгенерируйте ответ на вопрос пользователя

сгенерируем ответ на вопрос пользователя

responses = Geo_test["Интерэкспо ГЕО-Сибирь"][namerenie]["Ответ"]

otvet = random.choice(responses)

print(otvet)

15. Добавление программного кода чат-бота на основе машинного обуче-

ния.

В новой кодовой ячейке напишите программный код чат-бота, основанный

на алгоритмах машинного обучения (лабораторная работа № 6).

чат-бот, основанный на алгоритмах машинного обучения

import sklearn

import json

import random

from google.colab import drive

Загрузка данных

drive.mount('/content/drive')

with open('/content/drive/MyDrive/GEO-Siberia.json', "r") as smirnov_Geo:

 Geo_test = json.load(smirnov_Geo)

XX, yy = [], []

for name, data in Geo_test["Интерэкспо ГЕО-Сибирь"].items():

 for example in data['Вопрос']:

 XX.append(example)

 yy.append(name)

Подготовка модели

from sklearn.feature_extraction.text import CountVectorizer

11

from sklearn.ensemble import RandomForestClassifier

Geo_vectorizer = CountVectorizer()

Geo_m = Geo_vectorizer.fit_transform(XX)

Geo_RandomFCl = RandomForestClassifier()

Geo_RandomFCl.fit(Geo_m, yy)

Предсказание ответа

textGeo = input("Введите ваш вопрос: ")

testGeo = Geo_vectorizer.transform([textGeo])

voprosGeo = Geo_RandomFCl.predict(testGeo)[0]

def getAnswerGeo(voprosGeo):

 responsesGeo = Geo_test["Интерэкспо ГЕО-Сибирь"][voprosGeo]["Ответ"]

 return random.choice(responsesGeo)

otvetGeo = getAnswerGeo(voprosGeo)

print(otvetGeo)

16. Логика работы чат-бота.

Сначала выполняется программный код чат-бота, использующего библио-

теки обработки естественного языка. Если этот код не находит соответствующий

раздел информации о научном конгрессе «Интерэкспо ГЕО-Сибирь» для задан-

ного пользователем вопроса, то поиск продолжается с использованием чат-бота,

работающего на алгоритмах машинного обучения.

объединим два чат-бота

intent = getIntent(text)

if intent:

 responses = Geo_test["Интерэкспо ГЕО-Сибирь"][intent]["Ответ"]

 otvet = random.choice(responses)

 print(otvet)

else:

12

 text1 = Geo_vectorizer.transform([text])

 intent = Geo_RandomFCl.predict(text1)[0]

 responses = Geo_test["Интерэкспо ГЕО-Сибирь"][intent]["Ответ"]

 otvet = random.choice(responses)

 print(otvet)

17. Сохранение работы.

Сохраните блокнот через меню «Файл / Сохранить».

Переименуйте файл на Google Диске, используя шаблон «Лабораторная ра-

бота № 7 студента группы … Фамилия Имя», указав свой номер группы, фами-

лию и имя.

Задание

Создайте чат-бота, который использует библиотеки обработки естествен-

ного языка для ответа на вопросы пользователей по выбранной теме в рамках

лабораторной работы № 6.

Объедините его с чат-ботом, разработанным в ходе выполнения лаборатор-

ной работы № 6, чтобы создать единую систему.

Контрольные вопросы

1. Что такое обработка естественного языка (NLP), и какие задачи она

решает?

2. Какие библиотеки Python используются для обработки естественного

языка?

3. Какие функции библиотеки NLTK применяются в лабораторной работе?

4. Как осуществляется токенизация текста в NLTK?

5. Как работает функция edit_distance, и для чего она используется в чат-

боте?

6. Почему важно учитывать процент различий между строками при

сравнении вопросов?

13

7. Как можно использовать регулярные выражения для обработки

пользовательских запросов?

8. Как преобразовать текст в нижний регистр с помощью Python?

9. Для чего применяется функция sub() в модуле re?

10. Что делает функция normalize(), и почему она важна при обработке

текста?

11. Как работает функция get_rank_normalize() для вычисления различий

между текстами?

12. Как работает функция getIntent(), и какую роль она выполняет в чат-

боте?

Содержание отчета

1. Титульный лист

2. Цель работы.

3. Формулировка задания.

4. Описание результатов выполнения задания в текстовом и графическом

виде (скриншоты).

5. Ответы на контрольные вопросы.

6. Подробный вывод о проделанной работе.

1

Лабораторная работа № 8

ЛАБОРАТОРНАЯ РАБОТА № 8. РАЗРАБОТКА TELEGRAM-БОТА НА

PYTHON

Время выполнения – 8 часов (аудиторная работа – 2 часа, самостоятельная

работа – 6 часов).

Цель работы: овладеть навыками разработки Telegram-бота на Python с ис-

пользованием API Telegram.

Задачи работы

1. Освоить работу с API Telegram.

2. Изучить библиотеку python-telegram-bot, её пакеты, методы API, обработ-

чики команд и сообщений, а также фильтры обработчиков.

3. Разработать Telegram-бота, отвечающего на вопросы пользователей по за-

данной тематике в рамках итогового задания по учебной дисциплине «Системы

искусственного интеллекта».

Перечень обеспечивающих средств

1. Платформа Google Colab.

2. Мессенджер Telegram.

Общие теоретические сведения

Telegram – это бесплатный мессенджер для обмена сообщениями, изобра-

жениями и документами различных форматов (XLS, PDF, DOCX и др.).

API (Application Programming Interface) – программный интерфейс, позво-

ляющий одной программе взаимодействовать с другой с помощью набора мето-

дов и инструментов.

Telegram API – программный интерфейс, через который Telegram интегри-

руется с внешними сервисами.

2

Telegram Bot API – программный интерфейс, используемый для создания

ботов в Telegram.

1. Создание Telegram-бота.

Для создания телеграм-бота воспользуйтесь сервисом BotFather.

BotFather – это официальный бот в Telegram, предназначенный для реги-

страции и управления пользовательскими ботами.

Ниже перечислим шаги по созданию бота.

Откройте приложение Telegram и введите в строке поиска @BotFather. Убе-

дитесь, что у бота есть синяя галочка.

Начните взаимодействие с ботом, отправив команду /start

Введите команду /newbot для создания нового бота.

Укажите уникальное имя бота (оно будет отображаться в верхней строке

чата).

Укажите юзернейм бота (он должен быть на английском языке, содержать

только буквы и цифры и заканчиваться на bot, например, Familiya01052025_bot,

где Familiya – фамилия студента на английском языке, 01052025 – дата создания

бота в формате ДДММГГГ (день, месяц, год).

BotFather отправит вам токен – уникальный ключ, который потребуется для

управления ботом. Сохраните токен в файле token.txt. Загрузите этот файл в

своем Google Диске.

Введите команду /mybots, выберите бота и перейдите в Edit Bot / Edit

Description. Укажите описание бота (оно будет отображаться пользователям при

открытии чата).

2. Создание нового блокнота.

В новом блокноте создайте текстовую ячейку и впишите следующий текст:

«Лабораторная работа студента группы … Фамилия Имя», указав свой номер

группы, фамилию и имя.

Установите последнюю версию библиотеки python-telegram-bot:

!pip install python-telegram-bot --upgrade

3. Установка необходимых библиотек.

3

импортируем библиотеки

import nltk

import re

import random

import json

import asyncio

import nest_asyncio

from google.colab import drive

from telegram import Update

from telegram.ext import Application, CommandHandler, MessageHandler, filters,

CallbackContext

from sklearn.feature_extraction.text import TfidfVectorizer

from sklearn.ensemble import RandomForestClassifier

4. Подключение Google Диска, загрузка токена и json-файла.

Код, расположенный ниже, написанный через пустую строку следует раз-

мещать в разных ячейках.

Вместо переменной Smirnov укажите переменную с вашей фамилией.

подключаем Google Диск для загрузки токена

drive.mount('/content/drive')

задаем путь к файлу с токеном бота

TOKEN_PATH = "/content/drive/MyDrive/token.txt"

try:

 with open(TOKEN_PATH, "r") as token_file:

 TOKEN = token_file.read().strip()

 if not TOKEN:

4

 raise ValueError("Файл токена пуст.")

except (FileNotFoundError, ValueError) as e:

 print(f"Ошибка загрузки токена: {e}")

 TOKEN = None # Если токен не найден, бот не запустится

загружаем JSON с вопросами и ответами

JSON_PATH = "/content/drive/MyDrive/GEO-Siberia.json"

try:

 with open(JSON_PATH, "r", encoding="utf-8") as file:

 Smirnov = json.load(file)

except (FileNotFoundError, json.JSONDecodeError) as e:

 print(f"Ошибка загрузки JSON-файла: {e}")

 Smirnov = {}

проверяем наличие ключевого раздела в JSON

EXPO_KEY = "Интерэкспо ГЕО-Сибирь"

if EXPO_KEY not in Smirnov:

 print(f"Предупреждение: ключ '{EXPO_KEY}' не найден в JSON.")

 Smirnov[EXPO_KEY] = {}

5. Создание объекта приложения Telegram-бота.

Проверим, задан ли токен, и либо создадим объект Telegram-бота, либо оста-

новим выполнение, если токен отсутствует.

создаем объект Telegram-приложения, если токен загружен

if TOKEN:

 app = Application.builder().token(TOKEN).build()

else:

5

 print("Ошибка: бот не может запуститься без токена.")

 exit()

6. Формирование обучающих данных (X, y) для модели на основе словаря.

формируем обучающие данные для модели

X, y = [], []

for name, data in Smirnov[EXPO_KEY].items():

 for example in data.get("Вопрос", []):

 X.append(example)

 y.append(name)

7. Обработка текста и обучение модели для определения намерения пользо-

вателя.

загрузка модуля punkt

nltk.download('punkt')

проверяем, есть ли данные для обучения

if not X or not y:

 print("Предупреждение: нет данных для обучения модели!")

векторизация текста

vectorizer = TfidfVectorizer()

XX = vectorizer.fit_transform(X) if X else None

обучение модели, если есть данные

model = RandomForestClassifier()

if XX is not None and y:

 model.fit(XX, y)

6

функция нормализации текста

def normalize(text):

 return re.sub(r"[^\w\s]", "", text.lower())

функция оценки схожести строк

def get_rank(text1, text2):

 text1, text2 = normalize(text1), normalize(text2)

 if not text1 or not text2:

 return 100

 return (nltk.edit_distance(text1, text2) / ((len(text1) + len(text2)) / 2)) * 100

определение намерения пользователя

def get_intent(text):

 best_rank = 50

 result = None

 for name, data in Smirnov[EXPO_KEY].items():

 for question in data.get("Вопрос", []):

 rank = get_rank(text, question)

 if rank < best_rank:

 best_rank, result = rank, name

 return result

8. Реализация функции ответа бота на основе правил и машинного обучения.

Функция ответа бота

def bot(text):

 intent = get_intent(text)

7

 if intent in Smirnov[EXPO_KEY]:

 return random.choice(Smirnov[EXPO_KEY][intent].get("Ответ", ["Ответ не

найден"]))

 if XX is not None:

 test = vectorizer.transform([text])

 probabilities = model.predict_proba(test)

 predicted_intent = model.predict(test)[0]

 confidence = max(probabilities[0]) # Берем максимальную вероятность

 print(f"ML-модель предсказала: {predicted_intent} с уверенностью

{confidence:.2f}")

 if confidence < 0.3: # Устанавливаем порог, например 30%

 return "Извините, я не понимаю ваш вопрос."

 if predicted_intent in Smirnov[EXPO_KEY]:

 return random.choice(Smirnov[EXPO_KEY][predicted_intent].get("Ответ",

["Ответ не найден"]))

 return "Извините, я не понимаю ваш вопрос."

9. Обработка команд и сообщений для Telegram-бота.

обработчик команды /start

async def start(update: Update, context: CallbackContext):

 await update.message.reply_text("Привет! Я бот, отвечающий на вопросы о

научном конгрессе Интерэкспо ГЕО-Сибирь. Задайте мне вопрос!")

обработчик текстовых сообщений

async def send_message(update: Update, context: CallbackContext):

 user_text = update.message.text

 response = bot(user_text)

8

 await update.message.reply_text(response)

добавляем обработчики сообщений

app.add_handler(CommandHandler("start", start))

app.add_handler(MessageHandler(filters.TEXT & ~filters.COMMAND, send_mes-

sage))

10. Запуск бота.

запуск бота

nest_asyncio.apply()

async def main():

 await app.run_polling()

Проверяем, работает ли код в среде, поддерживающей event loop

if __name__ == "__main__":

 try:

 asyncio.run(main())

 except RuntimeError:

 print("Асинхронный event loop уже запущен")

11. Откройте Telegram-бот и задайте в чате вопросы о научном конгрессе

«Интерэкспо ГЕО-Сибирь».

12. Сохранение работы.

Сохраните блокнот через меню «Файл / Сохранить».

Переименуйте файл на Google Диске, используя шаблон «Итоговый проект

по созданию телеграм-бота студента группы … Фамилия Имя», указав свой но-

мер группы, фамилию и имя.

9

Задание

Создайте Telegram-бота, использующего библиотеки обработки естествен-

ного языка и алгоритмы машинного обучения. Бот должен отвечать на вопросы

пользователей по заданной теме в рамках лабораторной работы № 6.

Контрольные вопросы

1. Что такое API?

2. Какую функцию выполняет сервис BotFather?

3. Какие основные этапы необходимо выполнить для создания Telegram-

бота?

4. Какие методы машинного обучения используются в итоговом проекте?

5. Как бот выбирает наиболее подходящий ответ для пользователя?

6. Как можно улучшить точность работы бота?

Содержание отчета

1. Титульный лист

2. Цель работы.

3. Формулировка задания.

4. Описание результатов выполнения задания в текстовом и графическом

виде (скриншоты).

5. Ответы на контрольные вопросы.

6. Подробный вывод о проделанной работе.

